Uniform Medical Plan coverage limits

Updates effective 09/1/2022

The benefit coverage limits listed below apply to these UMP plans:

- Uniform Medical Plan (UMP) Classic (PEBB)
- UMP Select (PEBB)
- UMP Consumer-Directed Health Plan (UMP CDHP) (PEBB)
- UMP Plus–Puget Sound High Value Network (UMP Plus–PSHVN) (PEBB)
- UMP Plus–UW Medicine Accountable Care Network (UMP Plus–UW Medicine ACN) (PEBB)
- UMP Achieve 1 (SEBB)
- UMP Achieve 2 (SEBB)
- UMP High Deductible Plan (SEBB)
- UMP Plus–Puget Sound High Value Network (UMP Plus–PSHVN) (SEBB)
- UMP Plus–UW Medicine Accountable Care Network (UMP Plus–UW Medicine ACN) (SEBB)

Some services listed under these benefits have coverage limits. These limits are either determined by a Health Technology Clinical Committee (HTCC) decision or a Regence BlueShield medical policy. The table below does not include every limit or exclusion under this benefit. For more details, refer to your plan’s Certificate of Coverage.

Uniform Medical Plan Pre-authorization List

The Uniform Medical Plan (UMP) Pre-authorization List includes services and supplies that require pre-authorization or notification for UMP members.
<table>
<thead>
<tr>
<th>These services or supplies have coverage limits</th>
<th>The rules or policies that define the coverage limits</th>
<th>Limit applies to these codes (chosen by your provider to bill for services)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablation of Primary and Metastatic Liver Tumors</td>
<td>Regence Medical Policy Sur204</td>
<td>• 47370, 47371, 47380, 47381, 47382, 47383</td>
</tr>
<tr>
<td>Adipose-derived Stem Cell Enrichment in Autologous Fat Grafting to the Breast</td>
<td>Regence Medical Policy Sur182</td>
<td>• 15769, 15771, 15772, 11950, 11951, 11952, 11954</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Codes 19380 and 19499 do not require pre-authorization but are considered, and will deny as, investigational when used for autologous fat grafting and adipose-derived stem cell enrichment for augmentation or reconstruction of the breast</td>
</tr>
<tr>
<td>Balloon Dilation of the Eustachian Tube</td>
<td>Regence Medical Policy Sur206</td>
<td>• 69705, 69706</td>
</tr>
<tr>
<td>Balloon Ostial Dilation for Treatment of Sinusitis</td>
<td>Regence Medical Policy Sur153</td>
<td>• 31295, 31296, 31297, 31298</td>
</tr>
<tr>
<td>Bariatric Surgery</td>
<td>Regence Medical Policy Sur58</td>
<td>• 43771, 43848, 43860, 43860</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 43644, 43772, 43773, 43774, 43775, 43820, 43445, 43846, 43887, 43888</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bariatric surgery and HTCC guidelines apply, in order to establish eligibility for surgery and medical necessity.</td>
</tr>
<tr>
<td>Blepharoplasty, Repair of Blepharoptosis, and Brow Ptosis Repair</td>
<td>Regence Medical Policy Sur12.05</td>
<td>• 15820, 15821, 15822, 15823, 67900, 67901, 67902, 67903, 67904, 67906, 67908, 67909, 67950</td>
</tr>
<tr>
<td>Bronchial Valves</td>
<td>Regence Medical Policy Sur184</td>
<td>• 31647, 31648, 31649, 31651</td>
</tr>
<tr>
<td>Chemical Peels</td>
<td>Regence Medical Policy Sur12.50</td>
<td>• 15788, 15789, 15792, 15793, 17360</td>
</tr>
<tr>
<td>Cardiac Stenting</td>
<td>HTCC decision</td>
<td>• 92928, 92933, 92937, 92941, 92943</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Code(s)</th>
<th>Details</th>
<th>Pre-authorization Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carotid Artery Stenting</td>
<td>HTCC decision</td>
<td>37215, 37216, 37217, 37246, 37247</td>
<td>Pre-authorization is not required for members being treated for a condition other than stable angina</td>
</tr>
<tr>
<td>Catheter Ablation Procedures for Supraventricular Tachyarrhythmias (SVTA)</td>
<td>HTCC decision</td>
<td>93653, 93655, 93656, 93657</td>
<td></td>
</tr>
<tr>
<td>Cervical Fusion for Degenerative Disc Disease</td>
<td>HTCC decision</td>
<td>22551, 22552, 22554, 22853, 22854, 22859, 22600</td>
<td></td>
</tr>
<tr>
<td>Cochlear Implant</td>
<td>For Bilateral Cochlear Implants, UMP is subject to HTCC decision</td>
<td>69930, L8614, L8619, L8627, L8628</td>
<td>11920, 11921, 11922, 11950, 11951, 11952, 11954, 15769, 15771, 15772, 15773, 15774, 17106, 17107, 17108, 19355, 21244, 21245, 21246, 21248, 21249, 21295, 21296, 41510, 49250, 54360, 67950, 69300, G0429, Q2026, Q2028</td>
</tr>
<tr>
<td></td>
<td>For Unilateral Cochlear Implant, UMP follows Regence Medical Policy</td>
<td></td>
<td>Pre-authorization is required EXCEPT when services are rendered in association with breast reconstruction and nipple/areola reconstruction following mastectomy for breast cancer. Codes 19380 and 19499 do not require pre-authorization but are considered, and will deny as, investigational when used for autologous fat grafting and adipose-derived stem cell enrichment for</td>
</tr>
<tr>
<td>Cosmetic and Reconstructive Surgery</td>
<td>Regence Medical Policy Sur12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td>Regence Medical Policy</td>
<td>Code(s)</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Cryosurgical Ablation of Miscellaneous Solid Tumors Outside of the Liver</td>
<td>Sur132</td>
<td>31641, 32994, 50542</td>
<td>Deep brain stimulation is not a covered benefit for treatment-resistant depression, per HTCC decision.</td>
</tr>
<tr>
<td>Deep Brain Stimulation</td>
<td>Sur84</td>
<td>61850, 61860, 61863, 61864, 61867, 61868, 61885, 61886, C1820, L8679, L8680, L8685, L8686, L8687, L8688, L8682, L8683</td>
<td></td>
</tr>
<tr>
<td>Discography</td>
<td>HTCC decision</td>
<td>62290, 72295</td>
<td></td>
</tr>
<tr>
<td>Endometrial Ablation</td>
<td>Sur01</td>
<td>58353, 58356, 58563</td>
<td></td>
</tr>
<tr>
<td>Facet Neurotomy</td>
<td>HTCC decision</td>
<td>64633, 64634, 64635, 64636</td>
<td></td>
</tr>
<tr>
<td>Gastric Electrical Stimulation</td>
<td>Sur111</td>
<td>43647, 43881, 64590, 64595, E0765, C1767, L8679, L8680, L8685, L8686, L8687, L8688</td>
<td></td>
</tr>
<tr>
<td>Gastroesophageal Reflux Surgery</td>
<td>Sur180</td>
<td>43279, 43280, 43281, 43282, 43325, 43327, 43328, 43332, 43333, 43334, 43335, 43336, 43337</td>
<td></td>
</tr>
<tr>
<td>Hip Surgery for Femoroacetabular Impingement Syndrome (FAI)</td>
<td>HTCC decision</td>
<td>29914, 29915, 29916</td>
<td></td>
</tr>
<tr>
<td>Hypoglossal Nerve Stimulation</td>
<td>Sur215</td>
<td>64568, 64582, 64583</td>
<td>Effective November, 1 2022: 31767</td>
</tr>
</tbody>
</table>
| Implantable Cardiac Defibrillators | Regence Medical Policy Sur17 | • 33230, 33231, 33240, 33249, 33270, 33271, C1721, C1722, C1882
Pre-authorization is required EXCEPT when the member is age 17 or younger. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Implantable Peripheral Nerve Stimulation and Peripheral Subcutaneous Field Stimulation</td>
<td>Regence Medical Policy Sur205</td>
<td>• 64585, 64590, 64595, L8680, L8683</td>
</tr>
<tr>
<td>Laser Treatment for Port Wine Stains</td>
<td>Regence Medical Policy Sur12.34</td>
<td>• 17106, 17107, 17108</td>
</tr>
<tr>
<td>Leadless Cardiac Pacemakers</td>
<td>Regence Medical Policy Sur217</td>
<td>• 33274</td>
</tr>
<tr>
<td>Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation</td>
<td>Regence Medical Policy Sur195</td>
<td>• 33340</td>
</tr>
</tbody>
</table>
| Lumbar Fusion for Degenerative Disc Disease | HTCC decision | • 22533, 22558, 22612, 22630, 22633, 22853, 22854, 22859
• Lumbar Fusion for degenerative disc disease uncomplicated by comorbidities is not a covered benefit per HTCC Decision; This includes DX codes M51.35, M51.36, M51.37
• Note: This decision does not apply to patients with the following conditions: radiculopathy, spondylolisthesis (>grade 1), severe spinal stenosis, acute trauma or systemic disease affecting spine, e.g., malignancy
• UMP is subject to HTCC decision for Bone Morphogenic Protein |

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Reference</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Resonance (MR) Guided Focused Ultrasound (MRgFUS) and High Intensity Focused Ultrasound (HIFU) Ablation</td>
<td>Regence Medical Policy Sur139</td>
<td>• 0398T, 55880</td>
</tr>
<tr>
<td>Microwave Tumor Ablation</td>
<td>Regence Medical Policy Sur189</td>
<td>• 32998, 50592</td>
</tr>
<tr>
<td>Negative Pressure Wound Therapy for Home Use (NPWT)</td>
<td>HTCC decision</td>
<td>• 97605, 97606, 97607, 97608, A6550, E2402</td>
</tr>
<tr>
<td>View the HTCC Decision: Definition of "Complete Wound Therapy Program"</td>
<td></td>
<td>View the HTCC Decision: Definition of "Complete Wound Therapy Program"</td>
</tr>
<tr>
<td>Occipital Nerve Stimulation</td>
<td>Regence Medical Policy Sur174</td>
<td>• 61885, 61886, 64553, 64568, 64569, 64585, 64590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• C1820, L8679, L8680, L8682, L8683, L8685, L8686, L8687, L8688</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occipital Nerve Stimulation is considered investigational for all indications, including but not limited to headaches.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: These codes may overlap with the codes in the Vagus Nerve Stimulation Medical Policy so to ensure proper adjudication of your claim, please call for pre-authorization on all of the above codes.</td>
</tr>
<tr>
<td>Orthognathic Surgery</td>
<td>Regence Medical Policy Sur137</td>
<td>• 21085, 21110, 21120, 21121, 21122, 21123, 21125, 21127, 21141, 21142, 21143, 21145, 21146, 21147, 21150, 21151, 21154, 21155, 21159, 21160, 21188, 21193, 21194, 21195, 21196, 21198, 21206, 21208, 21209, 21210, 21215, 21230, 21295, 21296</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Osteochondral Allograft and Autograft Transplantation (OAT)
- Codes 21145, 21196, 21198 require pre-authorization EXCEPT when the procedure is performed for oral cancer dx codes: C01, C02-C02.9, C03-C03.9, C04-C04.9, C05-C05.9, C06, C06.2, C06.9, C09-C09.9, C10-C10.0, C41-C41.1, C46.2, D00-D00.00, D10, D10.1-D10.9, D16.4-D16.5, D37-D37.0, D49-D49.0
- **HTCC decision**

Ovarian, Internal Iliac and Gonadal Vein Embolization, Ablation, and Sclerotherapy
- Codes 27415, 27416, 29866, 29867, J7330, S2112
- **Regence Medical Policy Sur147**
- **37241**

Percutaneous Angioplasty and Stenting of Veins
- Codes 37238, 37239, 37248, 37249
- **Regence Medical Policy Sur109**
- **37238, 37239, 37248, 37249**

Panniculectomy
- Codes 15830
- **Regence Medical Policy Sur12.01**
- **15830**

Pectus Excavatum
- Codes 21740, 21742, 21743
- **Regence Medical Policy Sur12.02**
- **21740, 21742, 21743**

Phrenic Nerve Stimulation for Central Sleep Apnea
- Codes C1823
- **Regence Medical Policy Sur212**
- **C1823**

Radiofrequency Ablation (RFA) of Tumors Other Than the Liver
- Codes 0404T, 20982, 31641, 32998, 50542, 50592, 58674
- **Regence Medical Policy Sur92**
- **0404T, 20982, 31641, 32998, 50542, 50592, 58674**

Reconstructive Breast Surgery/Mastopexy, and Management of Breast Implants
- Codes 11920, 11921, 15769, 15771, 15772, 15777, 15779, 19316, 19318, 19325, 19328, 19330, 19340, 19342, 19350, 19355, 19370, 19371, L8600
- **Regence Medical Policy Sur40**
- **11920, 11921, 15769, 15771, 15772, 15777, 15779, 19316, 19318, 19325, 19328, 19330, 19340, 19342, 19350, 19355, 19370, 19371, L8600**
- Pre-authorization is required EXCEPT when services are rendered in association with breast reconstruction and nipple/areola reconstruction following mastectomy for breast cancer.
- **Regence Medical Policy Sur40**
- **11920, 11921, 15769, 15771, 15772, 15777, 15779, 19316, 19318, 19325, 19328, 19330, 19340, 19342, 19350, 19355, 19370, 19371, L8600**
- *Note: Codes 19380 and 19499 do not require pre-authorization but are*
considered, and will deny as investigational when used for autologous fat grafting and adipose-derived stem cell enrichment for augmentation or reconstruction of the breast.

<table>
<thead>
<tr>
<th>Procedure/Medical Policy</th>
<th>Regence Medical Policy</th>
<th>Code(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction Mammoplasty</td>
<td>Sur 60</td>
<td>19318</td>
</tr>
<tr>
<td>Responsive Neurostimulation</td>
<td>Sur 216</td>
<td>61850, 61860, 61863, 61864, 61885, 61886, L8680, L8686, L8688</td>
</tr>
<tr>
<td>Rhinoplasty</td>
<td>Sur 12.28</td>
<td>30120, 30400, 30410, 30420, 30430, 30435, 30450</td>
</tr>
<tr>
<td>Sacral Nerve Neuromodulation/Stimulation for Pelvic Floor Dysfunction</td>
<td>Sur 134</td>
<td>64561, 64581, 64585, 64590, 64595, C1767, L8679, L8680, L8682, L8683, L8685, L8686, L8687, L8688</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Please submit your pre-authorization request for the temporary trial period of sacral nerve neuromodulation AND the permanent placement at the same time, as these are treated as one combined episode.</td>
</tr>
<tr>
<td>Sacroiliac Joint Fusion</td>
<td>HTCC decision</td>
<td>27280, 27279</td>
</tr>
<tr>
<td>Spinal Cord and Dorsal Root Ganglion Stimulation</td>
<td>Sur 45</td>
<td>63650, 63655, 63685, C1767, C1820, C1822, L8679, L8680, L8685, L8686, L8687, L8688</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Please submit your pre-authorization request for the temporary trial AND the permanent placement at the same time. Spinal cord stimulation for the treatment of chronic neuropathic pain is not a covered benefit, per HTCC Decision when associated diagnosis codes are included:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G60.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G89.28-G89.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M47.20-M47.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M47.811-M47.819</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
If treatment is for other than this indication, Regence medical policy applies.

| Spinal Injections | HTCC decision | CPT 62292 for Therapeutic Medial Branch Nerve Block, Intradiscal and Facet Spinal Injections are not a covered benefit, reference the HTCC Decision (PDF):
| | | • CPT 62320, 62321, 62322, 62323, 64479, 64480, 64483, 64484, 64490, 64491, 64492, 64493, 64494, 64495 may be subject to HTCC Decision (PDF). Pre-authorization is not required but may be subject to HTCC Decision (PDF) and require a provider attestation.
| | | • Attestation is needed for timely and accurate processing of claims
| | | o Use the electronic authorization tool on the Availity Portal and select the attestation criteria during the clinical documentation process on MCG Health
| | | o an attestation is not completed pre-
pre-service using the Availity tool, fax the completed attestation form (PDF) to 1 (877) 357-3418

- This coverage policy does not apply to those with systemic inflammatory disease such as ankylosing spondylitis, psoriatic arthritis or enteropathic arthritis

<table>
<thead>
<tr>
<th>Procedure Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal Surgery - Artificial Disc Replacement</td>
<td>HTCC decision</td>
</tr>
<tr>
<td></td>
<td>• 22856, 22858, 22861, 0095T, 0098T</td>
</tr>
<tr>
<td></td>
<td>• Lumbar artificial disc is not a covered benefit: 22857, 22862, 22865, 0163T, 0164T, 0165T</td>
</tr>
<tr>
<td>Stereotactic Radiation Surgery and Stereotactic Body Radiation Therapy</td>
<td>HTCC decision</td>
</tr>
<tr>
<td></td>
<td>• 32701, 61796, 61797, 61798, 61799, 61800, 63620, 63621, 77301, 77338, 77371, 77372, 77373, 77432, 77435, G0339, G0340</td>
</tr>
<tr>
<td>Surgery for Lumbar Radiculopathy</td>
<td>HTCC decision</td>
</tr>
<tr>
<td></td>
<td>• 62380, 63030, 63035, 63042, 63044, 63047, 63048, 63056, 63057, 63090, 63091</td>
</tr>
</tbody>
</table>

Notes:
- Pre-authorization is required only with DX codes M47.20, M47.25, M47.26, M47.27, M47.28, M51.15, M51.16, M51.17, M51.26, M51.27, M54.10, M54.15, M54.16, M54.17, M54.18, M54.30,
<table>
<thead>
<tr>
<th>Surgical Treatments for Hyperhidrosis</th>
<th>Regence Medical Policy Sur165</th>
<th>M54.31, M54.32, M54.40, M54.41, M54.42</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CPT 62380 when billed without one of the listed DX will be denied as an investigational denial based on Regence Medical Policy Automated Percutaneous and Percutaneous Endoscopic Discectomy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sleep Apnea Diagnosis and Treatment</th>
<th>HTCC decision</th>
<th>32664, 64818, 69676</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Code 32664 only requires pre-authorization for hyperhidrosis diagnoses L74.510, L74.511, L74.512, L74.513, L74.519, L74.52, R61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temporomandibular Joint (TMJ) Surgical Interventions</th>
<th>MCG</th>
<th>21010 - MCG A-0522</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Visit MCG’s website at careguidelines.com/products/ for information on purchasing their criteria, or contact us and we will be happy to provide you with a copy of the specific guideline.</td>
<td></td>
<td>21050 - MCG A-0523</td>
</tr>
<tr>
<td>• 21010 - MCG A-0522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 21050 - MCG A-0523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 29800, 29804 - MCG A-0492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 21240, 21242, 21243 - MCG A-0523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Description</td>
<td>Regence Medical Policy</td>
<td>Codes</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Transcatheter Aortic-Valve Implantation for Aortic Stenosis</td>
<td>Sur201</td>
<td>33361, 33362, 33363, 33364, 33365, 33366</td>
</tr>
<tr>
<td>Transcutaneous Bone Conduction and Bone-Anchored Hearing Aids</td>
<td>Sur121</td>
<td>69714, 69716, 69717, 69719, 69726, 69727, L8690, L8691, L8692, L8694</td>
</tr>
<tr>
<td>Transesophageal Endoscopic Therapies for Gastroesophageal Reflux Disease (GERD)</td>
<td>SUR110</td>
<td>43192, 43201, 43236</td>
</tr>
<tr>
<td>Transurethral Water Vapor Thermal Therapy and Transurethral Water Jet Ablation (Aquablation) of the Prostate</td>
<td>SUR210</td>
<td>53854</td>
</tr>
<tr>
<td>Upper Endoscopy for Gastroesophageal Reflux Disease (GERD) and Gastrointestinal (GI) Symptoms</td>
<td></td>
<td>Upper Endoscopy for GERD and GI Symptoms for UMP members are subject to HTCC decision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPT 43200, 43202, 43235, 43237, 43238, 43239, 43242 and 43259 do not require pre-authorization, but may be subject to HTCC decision and require a provider attestation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attestation is needed for timely and accurate processing of claims for adults (members 18 years and older):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Use the electronic authorization tool on the Availity Portal and select the attestation criteria during the clinical documentation process on MCG Health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o If an attestation is not completed pre-service using the Availity tool, fax the completed attestation form (PDF) to 1 (877) 357-3418.</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Reference</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Vagus Nerve Stimulation | Regence Medical Policy Sur74 | • 0720T, 61885, 61886, 64553, 64568, 64569, C1822, K1020, L8679, L8680, L8682, L8683, L8685, L8686, L8687, L8688
| | | • UMP is subject to **HTCC decision** for treatment of epilepsy and depression: 0720T, 61885, 61886, 64553, 64568, C1822, K1020, L8679, L8680, L8682, L8683, L8685, L8686, L8687, L8688
| | | • If treatment is for other than these indications, Regence Medical Policy applies
| | | • The HTCC does not apply to members under age 4. Please use Regence Medical Policy for requests for members under age 4. |
| Varicose Vein Treatment | HTCC decision | • 0524T, 36465, 36466, 36470, 36471, 36475, 36476, 36478, 36479, 36482, 36483, 37700, 37718, 37722, 37735, 37760, 37761, 37765, 37766, 37780, 37785, S2202
| | | Notes:
| | | • Requests for multiple treatment sessions should refer to Regence Medical Policy.
| | | • Code 37241 is not appropriate to use in the coding of varicose vein treatment |
| Ventral Hernia Repair | Regence Medical Policy Sur12.03 | • 15734, 49560, 49565, 49652, 49654, 49656
| | | • Pre-authorization for 15734 required only with diagnosis code K43.0, K43.1, K43.2

*These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.*
<table>
<thead>
<tr>
<th>Procedure Description</th>
<th>Diagnosis Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K43.6, K43.7 or K43.9 for component separation technique (CST)</td>
<td>K43.9 for ventral hernia</td>
</tr>
</tbody>
</table>

- Pre-authorization for 49652 required only with diagnosis code K43.9 for ventral hernia

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
HTCC Decision: Negative Pressure Wound Therapy
Implementation 1/1/18

Definition of “Complete Wound Therapy Program”

A minimum of the following measures must be addressed and documented:
a. Evaluation, care and wound measurements by a licensed medical professional, and
b. Application of dressings to maintain a moist wound environment, and
c. Debridement of necrotic tissue if present, and
d. Evaluation of and provision for adequate nutritional status, and
e. Standard forms of treatment specific to the type of wound.
Endometrial Ablation

Effective: December 1, 2021

Next Review: February 2022
Last Review: October 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Endometrial ablation involves ablation or destruction of the endometrium using a variety of techniques to treat menorrhagia in women who fail standard therapy.

MEDICAL POLICY CRITERIA

I. Endometrial ablation, with or without hysteroscopic guidance, may be considered medically necessary when the clinical records document all of the following criteria (I.A. - D.) are met:

A. There is a diagnosis of abnormally heavy uterine bleeding in a patient who is not post-menopausal; and

B. Hysteroscopy, sonohysterography (SIS), pelvic ultrasound, or other pelvic imaging (e.g. pelvic MRI, pelvic CT) has been performed and report is provided; and

C. Clinical documentation confirms counseling regarding hormonal treatment options has been addressed (see Policy Guidelines); and

D. Endometrial sampling or dilation and curettage (D&C) has been performed or is planned according to either of the following:
 1. Endometrial sampling or D&C has been performed and the histopathology report is provided, either showing absence of endometrial hyperplasia or uterine cancer OR inadequate tissue was obtained for diagnosis; or
2. Cervical stenosis documented in the clinical record precludes endometrial sampling, and D&C is planned concomitantly with ablation procedure.

II. Repeat endometrial ablation may be considered **medically necessary** when all of the following (II.A.-C.) criteria are met:

A. There is a recurrent diagnosis of abnormally heavy uterine bleeding in a patient who is not post-menopausal; and

B. The initial endometrial ablation procedure was performed at least six months prior; and

C. Endometrial sampling or D&C has been performed or is planned according to either of the following:

1. Endometrial sampling or D&C has been performed to evaluate the current abnormal bleeding episode since the previous ablation procedure, and the histopathology report is provided, either showing absence of endometrial hyperplasia or uterine cancer OR inadequate tissue was obtained for diagnosis; or

2. Cervical stenosis documented in the clinical record precludes endometrial sampling, and D&C is planned concomitantly with ablation procedure.

III. Endometrial ablation using any technique is considered **not medically necessary** for all other indications not meeting the criteria in I.A.-D., or II.A.-C.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

HORMONAL THERAPY OPTIONS

Counseling regarding hormonal treatment options has occurred, or uterine intracavitary abnormality (i.e., endometrial polyps, submucosal fibroids) is found on hysteroscopy, sonohysterography, pelvic ultrasound, or endometrial biopsy/curettings and endometrial ablation is to be performed concomitantly with surgical treatment of the uterine intracavitary abnormality.

LIST OF INFORMATION NEEDED FOR REVIEW

SUBMISSION OF DOCUMENTATION

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- Endometrial histopathological report
- Hysteroscopy, sonohysterography (SIS), pelvic ultrasound report, or other pelvic imaging (e.g. pelvic MRI, pelvic CT)
- Clinical notes which specify counseling regarding hormonal therapy in the absence of a structural abnormality
- When relevant, clinical documentation of the following:
 - Counseling regarding hormonal treatment options

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
CROSS REFERENCES

1. Gender Affirming Interventions for Gender Dysphoria, Medicine, Policy No. 153
2. Cosmetic and Reconstructive Surgery, Surgery, Policy No. 12
3. Reconstructive Breast Surgery/Mastopexy, and Management of Breast Implants, Surgery, Policy No. 40
4. Autologous Fat Grafting to the Breast and Adipose-derived Stem Cells, Surgery, Policy No. 182

BACKGROUND

Ablation or destruction of the endometrium is used to treat abnormal uterine bleeding in premenopausal women who fail standard medical therapy. Standard medical management typically includes a trial of nonhormonal therapy with adequate doses of nonsteroidal anti-inflammatory medication and oral tranexamic acid. If this fails, management with hormonal treatment to thin the endometrium may be tried. Hormonal treatment may include oral contraceptive pills, patch, vaginal ring, or progestin-only hormonal therapy (oral, IUD, implant, or injection). Ablation is considered a less invasive alternative to hysterectomy; however, as with hysterectomy, the procedure is not recommended for women who wish to preserve their fertility.

Techniques for endometrial ablation are generally divided into two categories:

HYSTEROSCOPIC TECHNIQUES

Hysteroscopic techniques require skilled surgeons and, due to the requirement for cervical dilation, use of general or regional anesthesia. In addition, the need for the instillation of hypotonic distension media creates a risk of pulmonary edema and hyponatremia such that very accurate monitoring of fluids is required.

The initial hysteroscopic technique involved photovaporization of the endometrium using an Nd-YAG laser. This was followed by electrosurgical ablation using an electrical rollerball or electrical wire loop. The latter technique is also known as transcervical resection of the endometrium, or TCRE. Hydrothermal ablation is another technique involving hysteroscopy.

NON-HYSTEROSCOPIC TECHNIQUES

Non-hysteroscopic techniques can be performed without general anesthesia and do not involve use of a fluid distention medium. Techniques include thermal fluid-filled balloon, cryosurgical endometrial ablation, instillation of heated saline, and radio frequency (RF) ablation.

REGULATORY STATUS

The U.S. Food and Drug Administration (FDA) indicated that endometrial devices are for use in premenopausal women with menorrhagia due to benign causes for whom childbearing is complete. FDA-approved devices for endometrial ablation include, but may not be limited to, laser therapy, electrical wire loop, rollerball using electric current, and thermal ablation using a liquid-filled balloon, microwave, electrode array, or a cryosurgical device. Examples of devices for endometrial ablation are listed below. FDA product code: MNB.

- The Genesys HTA™ system (Boston Scientific), This system involves the instillation and circulation of heated saline into the uterus using hysteroscopic guidance and
includes features such as a smaller console and simplified set-up requirements, was approved by the FDA in May 2010.

- **The Microwave Endometrial Ablation (MEA) system (Microsulis Medical):** This delivers fixed-frequency microwave energy and may be performed in a physician’s office but does require use of the hysteroscope.

- **The ThermaChoice® device (J&J Ethicon Gynecare):** This device ablates endometrial tissue by thermal energy heating of sterile injectable fluid within a silicone balloon. Endometrial ablation will only work when there is direct contact between the endometrial wall and the fluid-filled balloon. Therefore, patients with uteri of abnormal shape, resulting from tumors such as myomas or polyps, or large size, due to fibroids, are generally not considered candidates for this procedure.

- **The NovaSure® impedance-controlled endometrial ablation system (Hologic®):** The system delivers RF energy to the endometrial surface. The device consists of an electrode array on a stretchable porous fabric that conforms to the endometrial surface.

- **Her Option™ Uterine Cryoablation Therapy™ system (American Medical Systems):** The system consists of, in part, a cryoprobe that is inserted through the cervix into the endometrial cavity. When cooled, an ice ball forms around the probe, which permanently destroys the endometrial tissue. Cryoablation is typically monitored by abdominal ultrasound.

EVIDENCE SUMMARY

SYSTEMATIC REVIEWS

Several published systematic reviews have evaluated the accumulated evidence for endometrial ablation. These reviews address both first-generation techniques (laser ablation, electrical wire loop, rollerball, or vaporizing electrode procedure) and second-generation techniques (newer techniques that generally do not require hysteroscopy such as balloon ablation, microwave ablation, and electrode ablation).

Bergeron (2020) performed a systematic review and meta-analysis of the efficacy and safety of endometrial ablation or resection compared with the levonorgestrel intra-uterine system (LNG-IUS) in the treatment of premenopausal women with heavy menstrual bleeding.[1] A total of 13 randomized controlled trials met inclusion criteria. The meta-analysis identified no significant differences between groups for subsequent hysterectomy, satisfaction, quality of life, amenorrhea and treatment failure. Based on data from 10 studies, there was a statistically significant difference between groups for side effects, which were less common in the endometrial ablation/resection group (RR = 0.52, 95% CI 0.37 to 0.71, p<0.001, I²=0%). There was significant heterogeneity between studies for mean age of the included population (p=0.01). When age was limited to 42 years or younger, there was higher risk of subsequent hysterectomy for the endometrial ablation/resection group compared to the LNG-IUS group (RR=5.26, 95% CI 1.21 to 22.91, p=0.03, I²=0%).

In 2018, an updated Cochrane systematic review and meta-analysis compared the efficacy and safety of different endometrial ablation techniques.[2-4] The review included RCTs that compared ablation techniques and assessed amenorrhea and patient satisfaction.

A total of 28 studies with 4,287 premenopausal women were eligible for the review. Five of the trials compared two “first generation” ablation methods (laser ablation, electrical wire loop, rollerball, or vaporizing electrode procedure) to one another and five trials compared “second
"generation" techniques to one another. Fifteen trials compared first- to second-generation procedures. Eighteen trials had adequate randomization methods, but in most trials blinding was not performed or was not reported. Of the studies that compared among second generation techniques, three described triple blinding and two described double blinding.

The investigators also conducted a meta-analysis that combined studies comparing first- and second-generation techniques. A pooled analysis of 12 studies (total n=2,085) did not find a significant difference in the rate of amenorrhea at one year (OR 0.94; 95% CI 0.74 to 1.20). Eleven studies (total n=1,690) reported satisfaction rates at one year, and there was not a significant difference between first- and second-generation techniques (OR 1.00; 95% CI, 0.97 to 1.02). Pooled analysis of adverse effects did not find any significant differences in the rate of perforation (eight studies), endometritis (four studies), or hemorrhage (four studies) using first- versus second-generation ablation techniques. Rates of fluid overload (three studies) and cervical lacerations (seven studies) and hematometra (five studies) were significantly higher with first-generation techniques than with second-generation techniques.

The authors of the Cochrane review concluded that, overall, the existing evidence suggests that success rates and complications profiles of second-generation techniques compare favorably with the first generation hysteroscopic techniques.

In 2011, the Health Technology Assessment (HTA) program in the U.K. conducted a meta-analysis of individual patient data from RCTs evaluating second-line treatments for menorrhagia. They identified data on 2,448 women from 14 trials comparing first- and second-generation endometrial ablation devices and data on 1,127 women from seven trials comparing first-generation devices to hysterectomy. A limitation of the review is that individual patient data were not available for approximately 35% of women randomized in the trials. The most frequently measured outcome in the studies was patient satisfaction/dissatisfaction and this was used as the primary outcome of the meta-analysis. After 12 months of follow-up, 7.3% (57/454) of women treated with first-generation endometrial ablation devices and 5.3% (23/432) of women who had a hysterectomy were dissatisfied with their treatment outcome. This difference was statistically significant, favoring hysterectomy (OR 2.46, 95% CI 1.54 to 3.93, p=0.0002). Rates of dissatisfaction were similar among women treated with first- generation endometrial ablation devices (123/1,006 [12.2%]) and second-generation devices (110/1,034 [10.6%], p=0.20). The authors noted that rates of dissatisfaction were low for all treatments.

The HTA also conducted meta-analyses on several clinical outcomes. For example, when first- and second-generation endometrial ablation devices were compared, there was not a significant difference between groups in the rate of amenorrhea after 12 months. When findings from 13 studies were pooled, rates of amenorrhea were 326/899 (36%) with first-generation devices and 464/1,261 (37%) with second-generation devices (OR 1.12; 95% CI 0.93 to 1.35). There were insufficient data to conduct meta-analyses of longer-term amenorrhea rates. Similarly, the rates of menorrhagia after 12 months did not differ between groups. In a pooled analysis of 12 studies, rates were 111/899 (12.3%) with first-generation devices and 151/1,281 (11.8%) after second-generation devices (pooled OR 0.97, 95% CI 0.74 to 1.28). In addition, a pooled analysis of 6 studies did not find a significant difference in repeat endometrial ablations over 12 months after initial treatment with first-generation devices (4/589, 0.7%) or second-generation devices (4/880, 0.5%) (OR 0.71, 95% CI 0.17 to 2.94). The proportion of women requiring hysterectomy within 12 months after endometrial ablation...
did not differ significantly when first-generation devices (39/933 [4.2%]) or second-generation devices (35/1,343 [2.6%]) were used (OR 0.77; 95% CI 0.47 to 1.24 [11 studies]).

In addition to the meta-analyses of data from published studies, the HTA included an analysis of individual patient data from national databases in Scotland to evaluate long-term outcomes after hysterectomy or endometrial ablation. The investigators identified a total of 37,120 women who underwent hysterectomy and 11,299 women who underwent endometrial ablation for dysfunctional uterine bleeding between 1989 and 2006. Women who received endometrial ablation were significantly older (mean of 42.5 years) compared to those receiving hysterectomy (mean of 41.0 years). The type of endometrial ablation device could not be determined. The median duration of follow-up was 6.2 years in the endometrial ablation group and 11.6 years in the hysterectomy group. During follow-up, 962 (8.5%) women who received endometrial ablation had additional gynecologic surgery compared to 1,446 (3.9%) women who had hysterectomy; this difference was statistically significant (adjusted hazard ratio [HR]: 3.56, 95% CI 3.26 to 3.89). The most common types of additional surgery after endometrial ablation were intrauterine procedures (n=577, 5.1%) and repeat endometrial ablation (n=278, 2.5%). However, women who had initial endometrial ablation procedures were significantly less likely than those with initial hysterectomies to have surgery for pelvic floor repair (0.9% vs. 2.2%, respectively, adjusted HR 0.50 to 0.77). Women were also less likely to have tension-free vaginal tape surgery for stress urinary incontinence after endometrial ablation than after hysterectomy (0.5% vs. 1.1%, respectively, adjusted HR 0.55, 95% CI 0.41 to 0.74).

In 2012, Daniels compared first- and second-generation methods using 14 trials previously addressed in the HTA assessment.[6] A pooled analysis of these studies yielded conclusions that were similar to the HTA group, in that no significant difference in amenorrhea rates was observed with the two types of techniques (OR 0.72, 95% CI 0.52 to 1.101). In addition, three studies compared the second-generation techniques, thermal balloon ablation and bipolar radiofrequency (RF) (total n=264). A pooled analysis showed a higher rate of amenorrhea with bipolar RF (OR 4.56; 95% CI 2.24 to 9.26).

In 2013, Kroft also reported no difference in amenorrhea rates when comparing first- and second-generation methods as a treatment for menorrhagia in premenopausal women (11 randomized controlled trials[7] were included in the review). However, authors did note a decrease in complication rates (seven studies with 1272 patients, rate ratio 0.52, 95% CI 0.35 to 0.76; p<0.001), operating time (16.6 minutes three studies with 486 patients, 95% CI 12.1 to 21.2 minutes; p<0.001) and improved compatibility with anaesthesia (three studies with 558 patients, rate ratio 1.87, 95% CI 1.04 to 3.37; p=0.04) in second-generation devices compared to first-generation methods. In addition, authors reported higher rates of amenorrhea in patients treated with Novasure compared to other second-generation devices (four studies with 407 patients, rate ratio 2.60, 95% CI 1.63 to 4.14; p<0.001).

Several medium and large nonrandomized studies have reported time to surgical reoperation rates, including repeat endometrial ablation, in women who fail initial procedure.[8-10] The majority of surgical reoperations occurred at least one year after the initial procedure.

Section Summary

Evidence from these large systematic reviews do not demonstrate that one ablation technique is superior to another. Overall, these studies continue to report similar amenorrhea rates in first-generation and second-generation techniques.
SAFETY

In 2012, Brown published an analysis of adverse events associated with endometrial ablation procedures that were reported in the U.S. Food and Drug Administration (FDA’s) Manufacturer and User Facility Device Experience (MAUDE) database.[11] There were a total of 829 reported adverse events between 2005 and 2011. Nearly two-thirds of the adverse events (540 of 829, 65%) were genital tract or skin burns and 529 of these events (98%) were associated with hydrothermal endometrial ablation. The next two most frequent types of adverse events were thermal bowel injury (93 of 820, 11%) and transmural uterine thermal activity (89 of 820, 11%). Of the 182 thermal injuries, 140 (77%) were associated with radiofrequency endometrial ablation. In addition, 47 instances of sepsis or bacteremia were reported, and 43 of these cases (91%) were associated with radiofrequency endometrial ablation. There were four reported deaths, two associated with radiofrequency ablation and one each associated with thermal balloon ablation and cryoablation. Sixty-six of the 829 events (8%) occurred when endometrial ablation was performed outside of the labeled instructions for use of the procedure. The authors did not report the total number of endometrial ablations performed during this time period, therefore the proportion of procedures with adverse events cannot be determined from these data.

A 2014 study by Dood examined whether women who undergo endometrial ablation are at increased risk of endometrial cancer compared with those with abnormal uterine bleeding that is managed with medication.[12] The data were collected from a population-based cohort in the U.S. and included a total of 234,721 women with abnormal bleeding, 4776 of whom underwent endometrial ablation. During a median follow-up period of 4.1 years, three women with a history of endometrial ablation and 601 women who were treated medically developed endometrial cancer. There was not a statistically significant difference in endometrial cancer rates between groups (age-adjusted HR=0.61, 95% CI, 0.20 to 1.89, p=0.17). Moreover, the median time to endometrial cancer diagnosis, 237 days after ablation and 299 days with medical management, did not differ significantly between groups.

Section Summary

Adverse events have been associated with endometrial ablation procedures. Certain types of adverse events are more likely to occur with specific approaches to endometrial ablation. Due to lack of information about the total number of procedures and the number of each type of endometrial ablation procedure performed, conclusions cannot be drawn from these data about the relative safety of different types of endometrial ablation procedures.

PRACTICE GUIDELINE SUMMARY

PRACTICE COMMITTEE OF THE AMERICAN SOCIETY FOR REPRODUCTIVE MEDICINE

In 2008, the American Society for Reproductive Medicine (ASRM) reviewed their 2006 Practice Committee report and reissued their statement on indications and options for endometrial ablation.[13] Conclusions were:

- “Endometrial ablation is an effective therapeutic option for the management of menorrhagia.
- Hysteroscopic and nonhysteroscopic techniques for endometrial ablation offer similar rates of symptom relief and patient satisfaction.
• Later definitive surgery may be required in 6% to 20% of women after endometrial ablation.
• Women who undergo hysterectomy after a failed endometrial ablation report significantly more satisfaction after 2 years of follow-up.
• Endometrial ablation generally is more effective when the endometrium is relatively thin.
• Ideally, hysteroscopic methods for endometrial ablation should be performed using a fluid monitoring system to reduce the risks and complications relating to fluid overload and electrolyte imbalance.
• Nonhysteroscopic methods for endometrial ablation require less skill and operating time.”

A 2015 patient fact sheet from the ASRM states that women who meet the following criteria should not have endometrial ablation:

“Women who are pregnant, who would like to have children in the future, or have gone through menopause should not have this procedure.”[14]

AMERICAN CONGRESS OF OBSTETRICIANS AND GYNECOLOGISTS

The American Congress of Obstetricians and Gynecologists (ACOG) published a practice bulletin on endometrial ablation in 2007, which was later reaffirmed in 2013, 2015, and 2018.[15] ACOG made the following recommendations, as being based on good and consistent evidence:

“For women with normal endometrial cavities, resectoscopic endometrial ablation and nonresectoscopic endometrial ablation systems appear to be equivalent with respect to successful reduction in menstrual flow and patient satisfaction at 1 year following index surgery.”

“Resectoscopic endometrial ablation is associated with a high degree of patient satisfaction but not as high as hysterectomy.”

In addition, the ACOG practice bulletin regarding endometrial ablation included the following statement regarding preoperative evaluation:

“The structure and histology of the endometrial cavity should be thoroughly evaluated, both to assess for malignancy or endometrial hyperplasia and to ensure that the length and configuration is suitable for endometrial ablation. These parameters will vary depending on the technique or system used. Endometrial sampling, typically with an outpatient technique, can be used to evaluate all women for hyperplasia or malignancy, and results should be reviewed before ablation is scheduled. Women with endometrial hyperplasia or uterine cancer should not undergo endometrial ablation.”

In 2013, ACOG published committee opinion number 557 (reaffirmed in 2020) regarding the management of acute abnormal uterine bleeding (AUB) in nonpregnant reproductive-aged women.[16] Recommendations regarding laboratory testing and imaging of these patients are as follows:

“Endometrial tissue sampling should be performed in patients with AUB who are older than 45 years as a first-line test. Endometrial sampling also should be performed in patients younger than 45 years with a history of unopposed estrogen exposure (such as seen in patients with obesity or polycystic ovary syndrome), failed medical management, and
Recommendations regarding surgical management of women who do not respond to medical management of symptoms are as follows:

“Surgical options include dilation and curettage (D&C), endometrial ablation, uterine artery embolization, and hysterectomy.”

“Endometrial ablation, although readily available in most centers, should be considered only if other treatments have been ineffective or are contraindicated, and it should be performed only when a woman does not have plans for future childbearing and when the possibility of endometrial or uterine cancer has been reliably ruled out as the cause of the acute AUB.”

The 2013, ACOG practice bulletin regarding the management of abnormal uterine bleeding associated with ovulatory dysfunction (AUB-O) was reaffirmed in 2018.[17] The following recommendation is made primarily based upon consensus and expert opinion:

“Endometrial ablation is not recommended as a first-line therapy for AUB-O. Physicians must provide thorough informed consent and adequate counseling to women with AUB-O who desire endometrial ablation.”

Furthermore, the practice bulletin recommends combined hormonal contraceptive therapy or progestin therapy, and other medical management depending upon age group and menopause status. The bulletin stresses that contraindications to combined hormonal contraceptive therapy should be excluded.

SOCIETY FOR GYNECOLOGIC SURGEONS

In 2012, the Society for Gynecologic Surgeons (SGS) published a clinical practice guideline on treatment of abnormal uterine bleeding.[18] The guideline recommends that, in women with bleeding caused mainly by ovulatory disorders or endometrial hemostatic disorders, any of the following treatments may be chosen depending on patient values and preferences: hysterectomy, endometrial ablation, systemic medical therapies or levonorgestrel-releasing intrauterine systems. In choosing between endometrial ablation and hysterectomy, if the patient’s preference is for amenorrhea, less pain or avoiding additional therapy, hysterectomy is suggested. If the patient’s preference is for lower operative and postoperative procedural risk, and a shorter hospital stay, endometrial ablation is recommended.

SUMMARY

There is enough research to show that endometrial ablation improves overall health outcomes in women with abnormally heavy uterine bleeding who are not post-menopausal. Clinical guidelines recommend endometrial ablation for clinical scenarios that generally align with the policy criteria. Therefore, endometrial ablation may be considered medically necessary when criteria are met.

Evidence and guidelines do not support the use of endometrial ablation when policy criteria are not met. Therefore, endometrial ablation for indications or using techniques other than those specified in policy criteria are considered not medically necessary.
REFERENCES

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>58353</td>
<td>Endometrial ablation, without hysteroscopic guidance</td>
</tr>
<tr>
<td></td>
<td>58356</td>
<td>Endometrial cryoablation with ultrasonic guidance, including endometrial curettage, when performed</td>
</tr>
<tr>
<td></td>
<td>58563</td>
<td>Hysteroscopy, surgical, with endometrial ablation (e.g., endometrial resection, electrosurgical ablation, thermoablation)</td>
</tr>
</tbody>
</table>

HCPCS None

Date of Origin: September 2011
Cochlear Implant

Effective: June 1, 2022

Next Review: March 2023

Last Review: April 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

A cochlear implant is a device for the treatment of severe-to-profound hearing loss in individuals who only receive limited benefit from amplification with hearing aids. A cochlear implant provides direct electrical stimulation to the auditory nerve, bypassing the usual transducer cells that are absent or nonfunctional in deaf cochlea.

MEDICAL POLICY CRITERIA

Notes:

- This policy does not apply to surgically anchored bone-conduction hearing aids or externally worn air-conduction hearing aids. Cochlear implants are not hearing aids. While hearing aids function by amplifying sound, cochlear implants replace the functions of an absent or nonfunctioning cochlea.
- This policy does not address the use of the Nucleus® 24 Auditory Brain Stem Implant, which is designed to restore hearing in patients with neurofibromatosis who are deaf secondary to removal of bilateral acoustic neuromas.
- Hybrid cochlear implant/hearing aid systems are devices that include a hearing aid integrated into the external sound processor of the cochlear implant. If hearing aid components of such systems are billed separately, there may be specific member

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
benefit language addressing coverage of hearing aids that would be applicable. Contract language takes precedence over medical policy.

- Repeat hearing tests or trials of hearing aids are not necessary for patients who have previously met Criteria I. and II. as it is unlikely that natural hearing or the benefit from hearing aids will improve significantly over time.

I. **Unilateral or bilateral implantation of cochlear implants, other than** cochlear implant/hearing aid **hybrid** devices, and associated aural rehabilitation may be considered **medically necessary** when all of the following criteria (A. – D.) are met:

 A. Meets one of the following age requirements:
 1. Age 9 months or older for the Nucleus 24 cochlear implant system (with any of the Cochlear® sound processors); or
 2. Age 12 months or older.

 B. Meets one or more of the following:
 1. Patients diagnosed with enlarged vestibular aqueduct (EVA) (greater than 1mm at the midpoint), as evidenced by MRI or CT imaging; or
 2. Patients with both of the following (a. and b.):
 a. Bilateral severe to profound pre- or postlingual (sensorineural) hearing loss, defined as a pure-tone average of 70 decibels (dB) hearing threshold or greater at 500 Hz (hertz), 1000 Hz and 2000 Hz; and
 b. Limited or no benefit from hearing aids (defined below) unless hearing aids are unreasonable.
 i. Adults: Scores less than or equal to 50 percent correct on tape recorded sets of open-set sentence recognition in the ear to be implanted.
 ii. Children: Failure to develop basic auditory skills, and in older children, less than or equal to 30 percent correct on open-set tests.

 C. Implanted device is FDA approved (PMA or 510k only).

 D. Patients do not have any of the following contraindications:
 1. Deafness due to lesions of the acoustic nerve (eighth cranial nerve), central auditory pathways, or brain stem in the implanted ear.
 2. Active or chronic infections of the external or middle ear and mastoid cavity in the implanted ear, including but not limited to otitis media.
 3. Tympanic membrane perforation.
 4. Radiographic evidence of absent cochlear development in the implanted ear.
 5. Inability or lack of willingness to participate in post-implantation aural rehabilitation.

II. **Unilateral implantation of hybrid** cochlear implant/hearing aid **systems** that include the hearing aid integrated into the external sound processor of the cochlear
implant may be considered **medically necessary** when all of the following criteria are met (A. – F.):

A. Age 18 years or older.

B. Bilateral severe to profound pre- or postlingual (sensorineural) hearing loss, defined as a pure-tone average of 70 decibels (dB) hearing threshold or greater at 500 Hz (hertz), 1000 Hz and 2000 Hz.

C. Limited or no benefit from hearing aids unless hearing aids are unreasonable, defined as scores less than 50 percent correct on tape recorded sets of open-set sentence recognition in the ear selected for implantation.

D. Meets all of the following (1. and 2.):
 1. All of the following in the ear selected for implantation (a. – c.):
 a. Low frequency hearing thresholds no poorer than 60 dB hearing level up to and including 500 Hz (averaged over 125, 250, and 500 Hz; i.e., threshold average of 125, 250, and 500 Hz less than or equal to 60 dB hearing level); and
 b. Severe to profound mid-to-high frequency hearing loss (threshold average of 2000, 3000, and 4000 Hz greater than or equal to 75 dB hearing level); and
 c. Aided consonant-nucleus-consonant word recognition score from 10 percent to 60 percent in the preoperative aided condition.
 2. All of the following for the contralateral ear (a and b):
 a. Moderately severe to profound mid-to-high frequency hearing loss (threshold average of 2000, 3000, and 4000 Hz greater than or equal to 60 dB hearing level); and
 b. Aided consonant-nucleus-consonant word recognition score equal to or better than that of the ear selected for implantation but not more than 80 percent correct.

E. Implanted device is FDA approved (PMA or 510k only).

F. Does not have any of the following contraindications:
 1. Deafness due to lesions of the acoustic nerve (eighth cranial nerve), central auditory pathways, or brain stem in the implanted ear
 2. Active or chronic infections of the external or middle ear and mastoid cavity in the implanted ear, including but not limited to otitis media
 3. Tympanic membrane perforation
 4. Radiographic evidence of absent cochlear development in the implanted ear
 5. Inability or lack of willingness to participate in post-implantation aural rehabilitation
 6. A duration of severe to profound hearing loss of 30 years or greater.

III. Implantation of cochlear implants is considered **not medically necessary** when Criterion I. or II. above is not met.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
IV. **Implant replacement**, including **replacement parts or upgrades** to existing cochlear implants and/or components, may be considered **medically necessary** when components are no longer functional, or for functional devices only in the small subset of patients whose response to existing components is inadequate to the point of interfering with activities of daily living, which would include school and work.

V. **Implant replacement**, including **replacement parts or upgrades** to existing cochlear implants and/or components, are considered **not medically necessary** when Criterion IV. is not met, including but not limited to upgrades of existing, functioning external systems to achieve aesthetic improvement, such as smaller profile components, or a switch from a body-worn external sound processor to a behind-the-ear (BTE) model.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

A Pure Tone Average (PTA) is determined by averaging the hearing threshold levels at a set of specified frequencies: for example, 500, 1000, and 2000 Hz (PTA = 500 Hz (T) + 1000 Hz (T) + 2000Hz (T) ÷ 3).

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Manufacturer and Model Name of Cochlear Implant being requested
- Audiology test results

CROSS REFERENCES

1. [Transcutaneous Bone-Conduction and Bone-Anchored Hearing Aids](#), Surgery, Policy No. 121

BACKGROUND

A cochlear implant provides direct electrical stimulation to the auditory nerve, bypassing the usual transducer cells that are absent or nonfunctional in deaf cochlea. The basic components of a cochlear implant include both external and internal components. The external components include a microphone, an external sound processor, and an external transmitter. The internal components are implanted surgically and include an internal receiver implanted within the temporal bone, and an electrode array that extends from the receiver into the cochlea through a surgically created opening in the round window of the middle ear.

Sounds that are picked up by the microphone are carried to the external signal processor, which transforms sound into coded signals that are then transmitted transcutaneously to the implanted internal receiver. The receiver converts the incoming signals to electrical impulses that are then conveyed to the electrode array, ultimately resulting in stimulation of the auditory nerve.
Hearing loss is rated on a scale based on the threshold of hearing. Severe hearing loss is defined as a bilateral hearing threshold of 70-90 decibels (dB) and profound hearing loss is defined as a hearing threshold of 90 dB and above.

A post-cochlear implant rehabilitation program is necessary to achieve benefit from the cochlear implant. The rehabilitation program includes development of skills in understanding running speech, recognition of consonants and vowels, and tests of speech perception ability.

REGULATORY STATUS

Note: Full FDA approval includes only Premarket Approval (PMA) and 510k approval. Devices with Investigational Device Exemption (IDE) or Humanitarian Device Exemption (HDE) are not considered fully FDA approved.

Several cochlear implants are commercially available in the United States. The FDA-labeled indications for currently marketed electrode arrays are summarized in the table below. Over the years, subsequent generations of the various components of the devices have been FDA approved, focusing on improved electrode design and speech-processing capabilities. Furthermore, smaller devices and the accumulating experience in children have resulted in broadening of the selection criteria to include children as young as 9 months.

<table>
<thead>
<tr>
<th>Manufacturer and FDA approved Cochlear Implants</th>
<th>Indications for Adults or Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVENTIONAL COCHLEAR IMPLANTS</td>
<td></td>
</tr>
<tr>
<td>Advanced Bionics®</td>
<td></td>
</tr>
<tr>
<td>• HiRes™ Ultra implant</td>
<td>Adults:</td>
</tr>
<tr>
<td>• HiResolution Bionic Ear System (HiRes 90K*)</td>
<td>• ≥ 18 years of age</td>
</tr>
<tr>
<td>Sound Processors:</td>
<td>• Post-lingual onset of severe to profound bilateral sensorineural hearing loss (≥70 decibels (dBs)]</td>
</tr>
<tr>
<td>• ClearVoice</td>
<td>• Limited benefit from appropriately fitted hearing aids, defined as scoring ≤ 50% on a test of open-set Hearing in Noise Test (HINT) sentence recognition</td>
</tr>
<tr>
<td>• HiRes Fidelity 120</td>
<td>Children:</td>
</tr>
<tr>
<td>• HiRes Optima</td>
<td>• 12 months to 17 years of age</td>
</tr>
<tr>
<td>Predecessors:</td>
<td>• Profound bilateral sensorineural deafness (>90dB)</td>
</tr>
<tr>
<td>• Clarion Multi-Strategy</td>
<td>• Use of appropriately fitted hearing aids for at least 6 months in children 2 to 17 years of age or at least 3 months in children 12 to 23 months of age.</td>
</tr>
<tr>
<td>• HiFocus CII Bionic Ear</td>
<td>• Lack of benefit in children <4 years of age is defined as a failure to reach developmentally-appropriate auditory milestones (e.g., spontaneous response to name in quiet or to environmental sounds) measured using the Infant-Toddler Meaningful Auditory Integration Scale or Meaningful Auditory Integration Scale or < 20% correct on a simple open-set word recognition test (Multisyllabic Lexical Neighborhood Test) administered using monitored live voice [70 dB SPL (sound pressure level)]</td>
</tr>
<tr>
<td></td>
<td>• Lack of hearing aid benefit in children >4 years of age is defined as scoring < 12% on a difficult open-set word recognition test (Phonetically Balanced-Kindergarten Test) or < 30% on an open-set sentence test (HINT for Children) administered using recorded materials in the soundfield (70 dB SPL)</td>
</tr>
<tr>
<td>Manufacturer and FDA approved Cochlear Implants</td>
<td>Indications for Adults or Children</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Cochlear®</td>
<td>Adults:</td>
</tr>
<tr>
<td>• Nucleus CI600 series</td>
<td>• ≥ 18 years old</td>
</tr>
<tr>
<td>• Nucleus CI500 series</td>
<td>• Pre- or post-lingual onset of moderate to profound bilateral sensorineural hearing loss</td>
</tr>
<tr>
<td>• Nucleus CI24RE series</td>
<td>• ≤50% sentence recognition in the ear to be implanted</td>
</tr>
<tr>
<td>• Nucleus 24 series</td>
<td>• ≤60% sentence recognition in the opposite ear or binaurally</td>
</tr>
<tr>
<td>Sound Processors:</td>
<td>Children 9 months to 24 months:</td>
</tr>
<tr>
<td>• Kanso® 2</td>
<td>• Profound sensorineural hearing loss bilaterally</td>
</tr>
<tr>
<td>• Kanso®</td>
<td>• Limited benefit from appropriate binaural hearing aids</td>
</tr>
<tr>
<td>• Nucleus® 7</td>
<td>• Lack of progress in the development of auditory skills</td>
</tr>
<tr>
<td>• Nucleus® 6</td>
<td>Children 25 months to 17 years 11 months:</td>
</tr>
<tr>
<td>• Nucleus® 5*</td>
<td>• Severe to profound bilateral sensorineural hearing loss</td>
</tr>
<tr>
<td>• Nucleus Freedom</td>
<td>• Multi-syllabic Lexical Neighborhood Test (MLNT) scores of ≤30% in best-aided condition in children 25 months to 4 years 11 months</td>
</tr>
<tr>
<td>Predecessors:</td>
<td>• Lexical Neighborhood Test (LNT) scores of ≤30% in best-aided condition in children 5 years to 17 years and 11 months</td>
</tr>
<tr>
<td>• Nucleus 22, 24</td>
<td>• Lack of progress in the development of auditory skills</td>
</tr>
<tr>
<td>Med El®</td>
<td>Bilateral Hearing Loss</td>
</tr>
<tr>
<td>• Maestro system</td>
<td>Adults:</td>
</tr>
<tr>
<td>• Synchrony Implant</td>
<td>• ≥ 18 years old</td>
</tr>
<tr>
<td>• Synchrony 2 Implant</td>
<td>• Severe to profound bilateral sensorineural hearing loss (≥70dB)</td>
</tr>
<tr>
<td>• Concerto Implant</td>
<td>• ≤40% correct Hearing in Noise test (HINT) sentences with best-sided listening condition</td>
</tr>
<tr>
<td>Sound Processors:</td>
<td>Children:</td>
</tr>
<tr>
<td>• Sonnet</td>
<td>• 12 months to 18 years with profound sensorineural hearing loss (≥90dB)</td>
</tr>
<tr>
<td>• Sonnet 2</td>
<td>• In younger children, little or no benefit is defined by lack of progress in the development of simple auditory skills with hearing aids over a 3-6 month period</td>
</tr>
<tr>
<td>• Concerto implant</td>
<td>• In older children, lack of aided benefit is defined as <20% correct on the MLNT or LNT depending upon the child’s cognitive ability and linguistic skills</td>
</tr>
<tr>
<td>• Opus</td>
<td>• A 3-6 month trial with hearing aids is required if not previously experienced</td>
</tr>
<tr>
<td>• Opus 2</td>
<td>Single-Sided Deafness and Asymmetric Hearing Loss</td>
</tr>
<tr>
<td>• Rondo 2</td>
<td>Adults:</td>
</tr>
<tr>
<td>Predecessors:</td>
<td>• ≥ 5 years old</td>
</tr>
<tr>
<td>• Combi 40+</td>
<td>• Single-sided deafness (SSD) or asymmetric hearing loss (AHL), where:</td>
</tr>
<tr>
<td>• Sonata</td>
<td>o SSD is defined as profound sensorineural hearing loss in one ear and normal hearing or mild sensorineural hearing loss in the other ear.</td>
</tr>
<tr>
<td>• Pulsar</td>
<td>o AHL is defined as a profound sensorineural hearing loss in one ear and mild to moderately severe sensorineural hearing loss in the other ear, with a difference of at least 15 dB in pure tone averages (PTAs) between ears.</td>
</tr>
</tbody>
</table>

*These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.*
Manufacturer and FDA approved Cochlear Implants

<table>
<thead>
<tr>
<th>Indications for Adults or Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Limited benefit from an appropriately fitted unilateral hearing aid in the ear to be implanted.</td>
</tr>
<tr>
<td>• For ages 18 years-old and above, limited benefit from unilateral amplification is defined by test scores of 5% correct or less on monosyllabic consonant-nucleus-consonant (CNC) words in quiet when tested in the ear to be implanted alone.</td>
</tr>
<tr>
<td>• For ages between 5 and 18 years-old, insufficient functional access to sound in the ear to be implanted must be determined by aided speech perception test scores of 5% or less on developmentally appropriate monosyllabic word lists when tested in the ear to be implanted alone.</td>
</tr>
<tr>
<td>• At least 1 month experience wearing a Contra Lateral Routing of Signal (CROS) hearing aid or other relevant device and not show any subjective benefit</td>
</tr>
</tbody>
</table>

Oticon Medical

Neuro Cochlear Implant System (Neuro 2 sound processor and Neuro Zti implant)

<table>
<thead>
<tr>
<th>Adults:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Severe-to-profound bilateral SNHL (≥70 dB at 500, 1000, and 2000 Hz)</td>
</tr>
<tr>
<td>• Limited benefit from appropriately fit hearing aids, defined as scoring ≤50% correct HINT sentences in quiet or noise with best-sided listening condition</td>
</tr>
</tbody>
</table>

HYBRID COCHLEAR IMPLANTS

Cochlear®

- Nucleus® Hybrid™ L24 Cochlear Implant (Nucleus 6)

<table>
<thead>
<tr>
<th>Adults:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ≥ 18 years old</td>
</tr>
<tr>
<td>• Residual low-frequency hearing sensitivity</td>
</tr>
<tr>
<td>• Severe to profound high-frequency sensorineural hearing loss</td>
</tr>
<tr>
<td>• Limited benefit from appropriately fit bilateral hearing aids</td>
</tr>
</tbody>
</table>

Med EL®

- Med EL EAS™

<table>
<thead>
<tr>
<th>Adults:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ≥ 18 years old</td>
</tr>
<tr>
<td>• Residual low-frequency hearing sensitivity</td>
</tr>
<tr>
<td>• Severe to profound high-frequency sensorineural hearing loss</td>
</tr>
<tr>
<td>• Candidates should go through a suitable hearing aid trial, unless already appropriately fit with hearing aids</td>
</tr>
</tbody>
</table>

RECENTLY FDA-APPROVED DEVICES

- New devices that come onto the market are added to the policy at policy updates. In the interim, new devices may be approved for coverage for FDA-approved indications when applicable criteria are met.**

*Note: Cochlear, Ltd. voluntarily recalled the Nucleus CI500 range in September 2011 for device malfunction in the CI512 implant. The external Nucleus 5 sound processor is not a part of the recall. Advanced Bionics HiRes90K was voluntarily recalled in November 2010 and given FDA-approval for re-entry to market the device in September 2011.

** FDA-approved indications can be found by searching by device name in the FDA 510(k) Premarket Notification Database or the De Novo Database and viewing the Summary.

While cochlear implants have typically been used mono laterally, in recent years, interest in bilateral cochlear implantation has arisen. The proposed benefits of bilateral cochlear implants are to improve understanding of speech in noise and localization of sounds. Improvements in
speech intelligibility may occur with bilateral cochlear implants through binaural summation; i.e., signal processing of sound input from two sides may provide a better representation of sound and allow one to separate out noise from speech. Speech intelligibility and localization of sound or spatial hearing may also be improved with head shadow and squelch effects, i.e., the ear that is closest to the noise will be received at a different frequency and with different intensity, allowing one to sort out noise and identify the direction of sound. Bilateral cochlear implantation may be performed independently with separate implants and speech processors in each ear or with a single processor. However, no single processor for bilateral cochlear implantation has been FDA approved for use in the United States. In addition, single processors do not provide binaural benefit and may impair localization and increase the signal to noise ratio received by the cochlear implant.

In March 2014, FDA approved the Nucleus® Hybrid™ L24 Cochlear Implant System (Cochlear Corporation) through the premarket approval process.[1] This system is a hybrid cochlear implant and hearing aid, with the hearing aid integrated into the external sound processor of the cochlear implant. It is indicated for unilateral use in patients aged 18 years and older who have residual low-frequency hearing sensitivity and severe to profound high-frequency sensorineural hearing loss, and who obtain limited benefit from appropriately fit bilateral hearing aid. The electrode array inserted into the cochlea is shorter than conventional cochlear implants. According to the FDA’s premarket approval notification, labeled indications for the device include:

- Preoperative hearing in the range from normal to moderate hearing loss (HL) in the low frequencies (thresholds no poorer than 60 dB HL up to and including 500 Hz).
- Preoperative hearing with severe to profound mid- to high-frequency hearing loss (threshold average of 2000, 3000, and 4000 Hz ≥75 dB HL) in the ear to be implanted.
- Preoperative hearing with moderately severe to profound mid- to high-frequency hearing loss (threshold average of 2000, 3000, and 4000 Hz ≥60 dB HL) in the contralateral ear.
- Consonant-Nucleus-Consonant (CNC) word recognition score between 10% to 60% (inclusively) in the ear to be implanted in the preoperative aided condition and in the contralateral ear equal to or better than that of the ear to be implanted but not more than 80% correct.

In September 2016, FDA approved the Med E L EAS™ (Electric Acoustic Stimulation) Hearing Implant System (Med EL Corp.).[2] This system is a hybrid cochlear implant and hearing aid, with the hearing aid integrated into the external sound processor of the cochlear implant. It is the combination of the SYNCHRONY cochlear implant and the SONNET EAS audio processor. According to the FDA’s premarket approval notification:[3]

The MED-EL EAS System is indicated for partially deaf individuals aged 18 years and older who have residual hearing sensitivity in the low frequencies sloping to a severe/profound sensorineural hearing loss in the mid to high frequencies, and who obtain minimal benefit from conventional acoustic amplification. Typical preoperative hearing of candidates ranges from normal hearing to moderate sensorineural hearing loss in the low frequencies (thresholds no poorer than 65 dB HL up to and including 500 Hz) with severe to profound mid- to high-frequency hearing loss (no better than 70 dB HL at 2000 Hz and above) in the ear to be implanted. For the non-implanted ear, thresholds may be worse than the criteria for the implanted ear, but may not be better. The CNC word recognition score in quiet in the best-aided condition will be 60% or less,
in the ear to be implanted and in the contralateral ear. Prospective candidates should go through a suitable hearing aid trial, unless already appropriately fit with hearing aids.

EVIDENCE SUMMARY

Cochlear implants (CI) are recognized effective treatment of sensorineural deafness in select patient, as noted in a 1995 National Institutes of Health Consensus Development conference, which offered the following conclusions:[4]

- Cochlear implantation has a profound impact on hearing and speech reception in postlingually deafened adults with positive impacts on psychological and social functioning.
- The results are more variable in children. Benefits are not realized immediately but rather are manifested over time, with some children continuing to show improvement over several years.
- Prelingually deafened adults may also benefit, although to a lesser extent than postlingually deafened adults. These individuals achieve minimal improvement in speech recognition skills. However, other basic benefits, such as improved sound awareness, may meet safety needs.
- Training and educational intervention are fundamental for optimal post implant benefit.
- Cochlear implants in children under two years old are complicated by the inability to perform detailed assessment of hearing and functional communication. However, a younger age of implantation may limit the negative consequences of auditory deprivation and may allow more efficient acquisition of speech and language. Some children with post-meningitis hearing loss have been implanted under the age of two years due to the risk of new bone formation associated with meningitis, which may preclude a cochlear implant at a later date.

ENLARGED VESTIBULAR AQUEDUCTS (EVA)

Enlarged vestibular aqueduct (also known as enlarged vestibular aqueduct syndrome (EVAS), large vestibular aqueduct, large vestibular aqueduct syndrome (LVAS), or dilated vestibular aqueduct) is a condition which is associated with childhood hearing loss. According to the NIH National Institute on Deafness and other Communication Disorders (NIDCD):[5] most children with enlarged vestibular aqueducts (EVA) will develop some amount of hearing loss, and approximately 5 to 15% of children with sensorineural hearing loss (hearing loss caused by damage to sensory cells inside the cochlea) have EVA.

Systematic Reviews

Pan (2022) reported a systematic review and meta-analysis of the safety and effectiveness of cochlear implantation for patients with large vestibular aqueduct deformity.[6] A total of five randomized controlled trials met inclusion criteria. There was low to high risk of bias for blinding of participants and personnel and low or unclear risk of bias for the other evaluated biases. Meta-analysis evaluated postoperative hearing ability and speech intelligibility rate between EVA patients and those with normal inner ear structure. No significant differences between groups were identified.

In 2014, Xu conducted a systematic review in Chinese to assess the efficacy and safety of cochlear implantation in deaf patients with inner ear malformations compared to deaf patients with normal inner ear structure, including 11 RTCs (n=655 patients).[7] In terms of postoperative complications, electrode impedance, behavior T-level, hearing abilities and...
speech discrimination; patients with mixed inner ear malformations, Mondini syndrome or EVA were not significantly different than controls. However, the reviewers concluded that additional larger controlled studies with longer follow-up may help to evaluate the efficacy of cochlear implantation for deaf patients with inner ear malformation more reliably.

In 2012, Pakdaman conducted a systematic review to determine if abnormal cochleovestibular anatomy influences surgical and audiologic outcomes following cochlear implant (CI) surgery in children, including 22 studies. Out of the 311 children included, 89 (29%) were diagnosed with EVA, considered to be a mild/moderate anomaly. Outcomes of CI surgery were analyzed based on the severity of the ear malformation (mild/moderate anomaly versus severe), and subgroup analyses were not performed based on the different malformations observed. The reviewers reported that severe inner ear dysplasia was associated with increased surgical difficulty and lower speech perception.

Nonrandomized Studies

There have been a number of case series and retrospective analyses published on the efficacy of cochlear implants in patients with EVA, all generally reporting an improvement of outcomes including various clinical scores for hearing improvement and scores measuring quality of life. These studies range in size from three to 47 cases. Some of these studies have focused on pediatric patients, while others have included mixed patient populations and have not analyzed pediatric patients from adults in terms of outcomes. Overall, these studies report that outcomes in EVA patients are comparable to cochlear implant patients with no malformations, including similar risk of cerebrospinal fluid (CSF) gusher during cochlear implantation.

There is research indicating that the age of cochlear implantation for patients with EVA affects health outcomes. In 2013, Ko conducted a study (1) to assess health outcomes of Mandarin-speaking patients with EVA after cochlear implantation (CI); (2) to compare their performance with a group of CI users without EVA; (3) to understand the effects of age at implantation and duration of implant use on the CI outcomes. Forty-two patients with EVA participating in this study were divided into two groups: the early group received CI before five years of age and the late group after five years of age. The patients with EVA with more than five years of implant use (18 cases) achieved a mean score higher than 80% on the most recent speech perception tests and reached the highest level on the CAP/SIR scales. The early group developed speech perception and intelligibility steadily over time, while the late group had a rapid improvement during the first year after implantation. The two groups, regardless of their age at implantation, reached a similar performance level. These patients do not necessarily need to wait until their hearing thresholds are higher than 90 dB HL or PB word score lower than 40% to receive CI. Similar results have been reported in small pediatric case series, indicating that if patients receive cochlear implants prior to becoming severely to profoundly deaf, that residual hearing is preserved.

In contrast to studies reporting favorable outcomes, one small retrospective study performed by Bichy in 2002 that reported better hearing outcomes in patients with EVA using hearing aid than those who had undergone cochlear implantation. The analysis in this study included 16 children and adults with EVA that had undergone cochlear implantation and 10 children and adults undergoing treatment of progressive or fluctuant sensorineural hearing loss with the use of a hearing aid alone. Although the hearing aid group had a better mean pure-tone average (70.8 dB; SD 24.4) versus (107.0 dB; SD 21.7) for the cochlear implant group, the use of
health utility indexes determined that greater net health benefit (including quality of life) was derived from cochlear implantation over hearing aids.

INFANTS UNDER AGE 12 MONTHS

The literature review focused on studies comparing the impact on hearing, speech development and recognition, and complication rates of implantation in infants younger than 12 months with those of older age groups. This includes the question of whether any early benefits that may occur in these very young patients later converge with those in older patients.

Systematic Reviews

Sbeih (2022) reported a systematic review that assessed the safety of cochlear implantation in children 12 months and younger.[23] A total of 18 studies met inclusion criteria. Major and minor complications were reported in 3.1% and 2.4% of patients, respectively. The authors noted that this is similar to rates of complications in older cohorts.

Two older systematic reviews were identified that addressed CI in children under 12 months of age. The reviews, summarized below, reported few studies of CI in this age group compared with CI in children over one year of age. Both systematic reviews ranked the available studies as poor to fair due to heterogeneity in study participants and study designs, and high risk for potential bias. In addition, differences in outcomes between the age groups did not reach statistical significance.

In 2011 Forli reported similar findings in seven studies comparing CI implanted prior to one year of age with implantations performed after one year of age.[24] The studies precluded meta-analysis due to heterogeneity of age ranges analyzed and outcomes evaluated. While studies suggested improvements in hearing and communicative outcomes in children receiving implants prior to one year of age, between-group differences did not reach statistical significance. In addition, it is not certain whether any improvements were related to duration of cochlear implant usage rather than age of implantation. Nor is it clear whether any advantages of early implantation are retained over time.

In 2010, Vlastarakos conducted a systematic review of studies on bilateral cochlear implants in a total of 125 children implanted before one year of age.[25] The authors noted that follow-up times ranged from a median duration of 6 to 12 months and, while results seemed to indicate accelerated rates of improvement in implanted infants, the evidence available was limited and of lower quality. Additionally, the lack of reliable outcome measures for infants demonstrated the need for further research before cochlear implantation prior to one year of age becomes widespread.

Nonrandomized Studies

In March 2020, the FDA approved an expansion of the indications for Cochlear Americas’ Nucleus 24 cochlear implant system for infants aged 9 to 12 months of age with bilateral profound sensorineural deafness who demonstrate limited benefit from appropriate binaural hearing aids. Previously, this device was approved for ages 12 months and older. According to the FDA’s summary of safety and effectiveness data, approval was based on supporting evidence from a comprehensive literature review and a clinical feasibility study. The clinical feasibility study was a retrospective clinical analysis of 84 subjects implanted with cochlear implants between the ages of 9 and 12 months. Descriptive statistics were reported for time
under anesthesia (unilateral: 2hrs 34min, bilateral: 4hrs 15min), estimated blood loss (unilateral: 10.75 cc, bilateral: 19.88 cc), time in recovery (unilateral: 2hr 18min, bilateral: 1hr 59min), and adverse events (Percent of subjects: 2.4% cerebral spinal fluid leak; 2.4% facial weakness; 2.4% infection; 7.1% minor post-op complication; 3.6% minor skin irritation; 3.6% otitis media; 2.4% seroma; 7.1% temperature regulation during procedure).

The supporting literature review identified 49 articles including 750 total (not necessarily unique) patients implanted with cochlear implants prior to 12 months of age. Safety results were reported on a per-study basis with no meta-analysis. Complication rates were reported between 1.5% and 10% except for two studies. One reported a rate of 29%, and the other reported on two techniques, one of which had a rate of 20.6% and the other 61.5%. Two studies compared complications across different age ranges. One reported similar complication rates across ages and the other reported higher rates for younger ages. The summary section states that the study findings support that the safety profile for cochlear implantation in pediatric patients who are implanted between 9 and 12 months of age is comparable to that of the currently approved population of age 12 months and older. Effectiveness results were reported on a per-study basis with no meta-analysis. No study reported worse hearing outcomes for the early-implanted group and many reported significantly better outcomes for this group.

A 2017 retrospective study by Kalejaiye assessed surgical complications, operative times, and reoperation rates in 73 patients under one year of age.[27] They compared these patients, identified from the American College of Surgeons National Surgical Quality Improvement Program Pediatric database (2012-2013), with pediatric patients in the database above the age of one. They found that the patients under one year had higher readmission rates (6.9% vs. 2.7%) and longer mean operative times (191 minutes vs. 160 minutes), but no significant differences were noted in complication rate, postoperative length of stay, or reoperation rate.

In 2015, Guerzoni conducted a prospective study of 28 children with profound sensorineural hearing loss who were implanted early with cochlear implants (mean age at device activation: 13.3 months).[28] The investigators reported that at one-year follow-up, assertiveness and responsiveness scores were within the normal range of normal-hearing age-matched peers. Age at cochlear implant activation exerted a significant impact, with the highest scores associated to the youngest patients.

In 2011, Colletti reported on the 10-year results comparing 19 children with cochlear implants received between the ages of 2 to 11 months to 21 children implanted between 12-23 months and 33 children implanted between 24 to 35 months.[29] Within the first six months post-implantation, there was no significant difference among groups in Category of Auditory Performance testing but differences became significantly better in the infant group (early implantation) at the 12 and 36 month testing. Previously, Colletti reported on findings from 13 infants who had implants placed before 12 months.[30] The procedures were performed between 1998 and 2004. In this small study, the rate of receptive language growth for these early implant infants overlapped scores of normal-hearing children. This overlap was not detected for those implanted at 12 to 23 or 24 to 36 months.

In 2009 Ching published an interim report on early language outcomes of children with cochlear implants.[31] This study evaluated 16 children who had implants before 12 months of age compared to 23 who had implants after 12 months (specific time of implantation was not provided). The preliminary results demonstrated that children who received an implant before
12 months of age developed normal language skills at a rate comparable to normal-hearing children, while those with later implants performed at two standard deviations below normal. The authors noted that these results are preliminary, as there is a need to examine the effect of multiple factors on language outcomes and the rate of language development.

Johr (2008) highlighted the surgical and anesthetic considerations when performing cochlear implant surgery in very young infants. This was an observational study and literature review by pediatricians at a tertiary children’s hospital in Switzerland. Surgical techniques and anesthetic management aspects of elective surgeries in small infants were analyzed in patients younger than one year of age undergoing cochlear implant surgeries. The results demonstrated that the age of the patient and the pediatric experience of the anesthesiologist, but not the duration of the surgery, are relevant risk factors. The authors concluded, “Further research is needed to provide more conclusive evidence that the performance outcome for children implanted before 12 months of age does not converge with the results of children implanted between 12 and 18 months.”

ADULTS AND CHILDREN OVER AGE 12 MONTHS

Since there is sufficient evidence that bilateral and unilateral cochlear implants are safe and lead to improvements in health outcomes in adults and children over the age of twelve months with bilateral severe to profound pre- or postlingual (sensorineural) hearing loss, the evidence reviewed below will be focused on systematic reviews and randomized studies. Nonrandomized studies will not be described in detail.

Systematic Reviews

The following is a summary of the most recent systematic reviews related to CI. These reviews included a critical analysis of the quality of the included studies. While noting the heterogeneity of the studies, and the potential for bias, these reviews found that the studies consistently reported beneficial outcomes for both bilateral and unilateral CI in select children and adults compared with no hearing devices or with conventional hearing aids.

Adults

A technology assessment published by Health Quality Ontario in 2018 evaluated bilateral cochlear implantation in adults and children in separate analyses. The literature search conducted through March 2017 identified 10 studies on bilateral cochlear implantation in adults: three RCTs and seven prospective observational studies. Two of the three RCTs included data from a single RCT and compared simultaneous bilateral with unilateral cochlear implantation for severe bilateral sensorineural hearing loss. The third RCT randomized 24 adult patients with severe bilateral sensorineural hearing loss to receive bilateral implantation immediately or after a six-month waiting period. The observational studies performed within- or between-patient comparisons of bilateral cochlear implantation with unilateral cochlear implantation with or without hearing aids in the nonimplanted ear. Study quality was evaluated using the GRADE system. The quality of the RCTs was high, medium, and low and the quality of the prospective observational studies ranged from very low to low. The GRADE of evidence for adults overall was rated moderate to high. Overall, the authors concluded that bilateral cochlear implantation improved sound localization, speech perception in noise, and subjective benefits of hearing and that the safety profile was acceptable.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
In a meta-analysis, McRackan (2018) examined the impact of cochlear implantation on quality of life (QOL).[^34] From 14 articles with 679 CI patients who met the inclusion criteria, pooled analyses of all hearing-specific QOL measures revealed a very strong improvement in QOL after cochlear implantation (standardized mean difference [SMD]=51.77). Subset analysis of CI-specific QOL measures also showed very strong improvement (SMD=51.69). Thirteen articles with 715 patients met the criteria to evaluate associations between QOL and speech recognition. Pooled analyses showed a low positive correlation between hearing-specific QOL and word recognition in quiet (r=50.213), sentence recognition in quiet (r=50.241), and sentence recognition in noise (r=50.238). A subset analysis of CI-specific QOL showed similarly low positive correlations with word recognition in quiet (r=50.213), word recognition in noise (r=50.241), and sentence recognition in noise (r=50.255) between QOL and speech recognition ability. Using hearing-specific and CI-specific measures of QOL, patients report significantly improved QOL after cochlear implantation. This study is limited in that widely used clinical measures of speech recognition are poor predictors of patient-reported QOL with CIs.

In another meta-analysis, McRackan (2018) aimed to determine the change in general health-related quality of life (HRQOL) after cochlear implantation and association with speech recognition.[^35] Twenty-two articles met criteria for meta-analysis of HRQOL improvement, but 15 (65%) were excluded due to incomplete statistical reporting. From the seven articles with 274 CI patients that met inclusion criteria, pooled analyses showed a medium positive effect of cochlear implantation on HRQOL (SMD=0.79). Subset analysis of the HUI-3 measure showed a large effect (SMD=0.84). Nine articles with 550 CI patients met inclusion criteria for meta-analysis of correlations between non-disease specific PROMs and speech recognition after cochlear implantation (word recognition in quiet [r=0.35], sentence recognition in quiet [r=0.40], and sentence recognition in noise [r=0.32]). Some limitations are, though regularly used, HRQOL measures are not intended to measure nor do they accurately reflect the complex difficulties facing CI patients. Only a medium positive effect of cochlear implantation on HRQOL was observed along with a low correlation between non-disease specific PROMs and speech recognition. The use of such instruments in this population may underestimate the benefit of cochlear implantation.

In 2013, the authors of the 2011 AHRQ technology assessment reported the following findings of an updated systematic review of studies published through May 2012:[^36]

- **Unilateral cochlear implants**

Sixteen (of 42) studies were of unilateral cochlear implants. Most unilateral implant studies showed a statistically significant improvement in mean speech scores as measured by open-set sentence or multi-syllable word tests. A meta-analysis of four studies revealed a significant improvement in cochlear-implant relevant quality of life (QOL) after unilateral implantation. However, these studies varied in design and there was considerable heterogeneity observed across studies, making it difficult to compare outcomes across studies.

- **Bilateral cochlear implants**

Thirteen studies reported improvement in communication-related outcomes with bilateral implantation compared with unilateral implantation and additional improvements in sound localization compared with unilateral device use or implantation only. The risk of bias varied from medium to high across studies. Based on results from at least two studies, the QOL...
outcomes varied across tests after bilateral implantation. A meta-analysis was not performed because of heterogeneity in design between the studies.

In 2012 and 2013 Crathorne and van Schoonhoven, respectively, published updated systematic reviews for the National Institute for Health and Care Excellence (NICE). Included studies were from the U.S. and Europe and compared bilateral with unilateral cochlear implants. In two studies the unilateral implant group also had an acoustic hearing aid for the contralateral ear. Neither systematic review was able to conduct a meta-analysis due to the heterogeneity of the studies and the level of evidence of the studies which was rated as moderate-to-poor.

In October 2011, Berrettini published results of a systematic review of unilateral and bilateral cochlear implant effectiveness in adults.[37]

- **Unilateral cochlear implants**

 Eight articles on unilateral cochlear implants in advanced age patients were included. All of the studies reported benefits with cochlear implantation despite advanced age at time of implant (age 70 years or older). In six studies, results were not significantly different between younger and older patients. However, two studies reported statistically significant inferior perceptive results (e.g., hearing in noise test and consonant nucleus consonant test) in older patients. This systematic review also examined three studies totaling 56 adults with pre-lingual deafness who received unilateral cochlear implants. The authors concluded unilateral cochlear implants provided hearing and quality-of-life benefits in prelingually deaf patients, but results were variable.

- **Bilateral cochlear implants**

 Thirteen articles on bilateral cochlear implants were reviewed. Sound localization improved with bilateral cochlear implants compared with monaural hearing in six studies. Significant improvements in hearing in noise and in quiet environments with bilateral implants compared with unilateral implants were reported in ten studies and seven studies, respectively. Five of the studies reviewed addressed simultaneous implantation, five studies reviewed sequential implantation, and three studies included a mix of simultaneous and sequential implantation. However, no studies compared simultaneous to sequential bilateral implantation results, and no conclusions could be made on the timing of bilateral cochlear implantation.

In June 2011 the most recent technology assessment, by the Tufts Evidence-based Practice Center for the Agency for Health Care Research and Quality (AHRQ), reported the following findings on the effectiveness of unilateral and bilateral cochlear implants (CIs) in adults:[38]

- **Unilateral cochlear implants**

 The assessment examined 22 studies with 30 or more patients and concluded that, while the studies reviewed were rated as poor to fair quality, unilateral cochlear implants are effective in adults with sensorineural hearing loss. Pre- and post-cochlear implant scores on multi-syllable tests and open-set sentence tests demonstrated significant gains in speech perception regardless of whether a contralateral hearing aid was used along with the cochlear implant. Additionally, the assessment found generic and disease-specific health-related quality of life improved with unilateral cochlear implants. However, the
available evidence was insufficient to draw conclusions on improvements in open-set sentence test scores (i.e., >40% and ≤50% or >50% and ≤60%), and any relationship between pre-implantation patient characteristics and outcomes [e.g., age, duration of hearing impairment, Hearing in Noise Test (HINT) scores and pre- or post-linguistic deafness.]

- **Bilateral cochlear implants**

 The technology assessment examined 16 studies published since 2004 which were determined to be of fair to moderate quality. The assessment concluded that bilateral cochlear implants provided greater benefits in speech perception test scores, especially in noise, when compared with unilateral cochlear implants with or without contralateral hearing aids. Significant binaural head shadow benefits were noted along with some benefit in binaural summation, binaural squelch effects, and sound localization with bilateral cochlear implants. However, it was unclear if these benefits were experienced under quiet conditions, although benefits increased with longer bilateral cochlear implant usage indicating a need for longer term studies. Hearing-specific quality of life could not be assessed because only one study evaluated this outcome. Additionally, although gains were experienced in speech perception using open-set sentences or multi-syllable tests compared with unilateral cochlear implants or unilateral listening conditions, the evidence available on simultaneous bilateral implantation was found to be insufficient. The assessment noted longer term studies are needed to further understand the benefits with bilateral cochlear implantation and identify candidacy criteria given the risks of a second surgery and the destruction of the cochlea preventing future medical intervention.

Children

The technology assessment published by Health Quality Ontario in 2018 discussed above regarding its findings on adult implantation identified 14 studies (all prospective observational studies) on bilateral cochlear implantation in children.\(^{33}\) Two studies included both sequential and simultaneous bilateral implantation while the rest evaluated sequential only. As for adults, overall, the authors concluded that bilateral cochlear implantation improved sound localization, speech perception in noise, and subjective benefits of hearing and that the safety profile was acceptable (GRADE of evidence: moderate to high). The authors additionally concluded that bilateral cochlear implantation allowed for better language development and more vocalization in preverbal communication in children (GRADE of evidence: moderate).

In a 2015 systematic review, Fernandes evaluated 18 published studies and two dissertations that reported hearing performance outcomes for children with ANSD and cochlear implants.\(^{39}\) Studies included four nonrandomized controlled studies considered high quality, five RCTs considered low quality, and 10 clinical outcome studies. Most studies (n=14) compared the speech perception in children with ANSD and cochlear implants with the speech perception in children with sensorineural hearing loss and cochlear implants. Most of these studies concluded that children with ANSD and cochlear implants developed hearing skills similar to those with sensorineural hearing loss and cochlear implants; however, these types of studies do not allow comparisons of outcomes between ANSD patients treated with cochlear implants and those treated with usual care.

In a 2014 systematic review, Lammers summarized the evidence on the effectiveness of bilateral cochlear implantation compared with unilateral implantation among children with
The authors identified 21 studies that evaluated bilateral cochlear implantation in children, with no RCTs identified. Due to the limited number of studies, heterogeneity in outcomes and comparison groups, and high risk for bias in the studies, the authors were unable to perform pooled statistical analyses, so a best-evidence synthesis was performed. The best-evidence synthesis demonstrated that there was consistent evidence indicating the benefit of bilateral implantation for sound localization. One study demonstrated improvements in language development, although other studies found no significant improvements. The authors noted that the currently available evidence consisted solely of cohort studies that compared a bilaterally implanted group with a unilaterally implanted control group, with only one study providing a clear description of matching techniques to reduce bias.

In 2013, Eze published a systematic review comparing outcomes for cochlear implantation for children with developmental disability with those without developmental disability. The authors noted that while approximately 30% to 40% of children who receive cochlear implants have developmental disability and that evidence about outcomes in this group was limited. Their review included 13 studies that compared receptive or expressive language outcomes in children with cochlear implants with and without developmental disability. The included studies were heterogeneous in terms of comparator groups and outcome measures, precluding data pooling and meta-analysis. In a structured systematic review, the authors reported that seven of the eligible studies demonstrated a significantly poor cochlear implant outcome in children with developmental disability, while the remaining studies reported no significant difference in outcomes between the groups.

Humphriss (2013) published a systematic review evaluating outcomes after cochlear implantation among pediatric patients with auditory neuropathy spectrum disorder (ANSD), a sensorineural hearing disorder characterized by abnormal auditory brainstem response with preserved cochlear hair cell function as measured by otoacoustic emissions testing. The authors identified 27 studies that included an evaluation of cochlear implantation in patients with ANSD, including 15 noncomparative studies, one that compared children with ANSD who received a cochlear implant with children with ANSD with hearing aids, and 12 that compared children with ANSD who received a cochlear implant with children with severe sensorineural hearing loss who received a cochlear implant. Noncomparative studies were limited in that most (11/15) did not include a measure of speech recognition before cochlear implantation. Among the comparative studies, those comparing cochlear implantation to “usual care”, typically a hearing aid, provided the most information about effectiveness of cochlear implantation among patients with ANSD; the one small study that used this design found no significant differences between the groups. Overall, the authors suggested that further RCT evidence is needed.

Randomized Trials

In 2016, Smulder conducted a small prospective multi-center randomized trial to evaluate the benefits of bilateral implants compared to unilateral implants in adults with postlingual deafness, including 38 patients. At one-year follow-up, there were no significant differences between groups on the speech-in-noise or the consonant-vowel-consonant test. The bilaterally implanted group performed significantly better when noise came from different directions (p <0.001) and was better able to localize sounds (p <0.001) compared to the unilaterally implanted group. These results were consistent with the patients' self-reported hearing capabilities. The results were consistent at a two year follow up, reported in 2017.
Nonrandomized Studies

Adults

Numerous case series have been published on adult patients with bilateral cochlear implants.[45-53] Most but not all studies report slight to modest improvements in sound localization and speech intelligibility with bilateral cochlear implants especially with noisy backgrounds but not necessarily in quiet environments. In addition, depression scores improved in cochlear implant patients from pre-implantation to 12 months post-treatment (geriatric depression scale improvement: 31%, 95% CI 10% to 47%) in a prospective observational study including 113 patients with postlingual hearing loss, of whom 50 were treated with cochlear implants and 63 with hearing aids.[54]

When reported, the combined use of binaural stimulation improved hearing in the range of one to four decibels or 1 to 2%. While this improvement seems slight, any improvement in hearing can be considered beneficial in the deaf. However, this improvement may not outweigh the significant risks of a second implantation. In addition, similar binaural results can be achieved with a contralateral hearing aid, assuming the contralateral ear has speech recognition ability. A number of studies have reported benefits for patients with a unilateral cochlear implant with hearing aid (HA) in the opposite ear.

Children

Several recent publications have evaluated bilateral cochlear implants in children.[55-57] These studies, ranging in size from 91 to 961 patients, generally report improved speech outcomes with bilateral implantation, compared with unilateral implantation. In a retrospective case series of 73 children and adolescents who underwent sequential bilateral cochlear implantation with a long (>five year) interval between implants, performance on the second implanted side was worse than the primary implanted side, with outcomes significantly associated with the interimplant interval.[48, 52, 58-64]

Adults and Children

Ching (2006) subsequently reported on 29 children and 21 adults with unilateral cochlear implant and a contralateral hearing aid.[46] They noted that both children and adults localized sound better with bilateral inputs.

UNILATERAL HEARING LOSS WITH OR WITHOUT TINNITUS

The use of cochlear implants in patients with unilateral hearing loss is an off-label use of these devices. As noted in the 2011 AHRQ technology assessment, a number of narrative literature reviews[65-67] and small (n<30) observational studies (described below) conducted primarily in adult patients have been published. However, these studies have included small numbers of patients (n<30) and had risk of reporting bias.

Systematic Reviews

Oh (2022) reported on a systematic review and meta-analysis of cochlear implantation in adults with single-sided deafness.[68] A total of 50 studies with 674 patients (3 to 45 patients meeting inclusion criteria per study) were included. Of these, 41 were prospective cohort studies, seven were retrospective cohort studies, and two were case series. A meta-analysis of speech perception outcomes, which included five studies, found a standardized mean
difference (SMD) post- versus pre-implantation of 2.8 (95% CI 2.16 to 3.43), with some evidence of publication bias. A meta-analysis of QoL, which included eight studies, found a significant improvement, with an SMD of 0.68 (95% CI 0.45 to 0.91), and no evidence of publication bias. Meta-analysis of sound localization (seven studies; SMD, -1.13 [95% CI -1.68 to -0.57]), and tinnitus score reduction (seven studies; SMD -1.32 [95% CI -1.85 to -0.80]) also reported significant improvements. Limitations include the small sample sizes of included studies, imprecise definitions of single-sided deafness used across studies, and heterogeneity in outcomes measured, follow-up time frames, and etiology of single-sided deafness.

Assouly (2021) published a systematic review of cochlear implantation for tinnitus. A total of seven prospective cohort studies, with 105 total subjects (range 10 to 26) met inclusion criteria. Two studies had a moderate risk of bias and five had serious risk of bias. Due to considerable methodological and statistical heterogeneity (I²>75%), no meta-analysis was performed. Each included study reported a statistically significant improvement in tinnitus distress (measured via questionnaire). The only reported adverse event was worsening of tinnitus loudness following implantation in one participant.

Benchetrit (2021) published a systematic review and meta-analysis evaluating audiological and patient-reported outcomes in children <18 years with single-sided deafness (SSD). Twelve observational studies evaluating 119 children (mean age [standard deviation], 6.6 [4.0] years) were included. Clinically meaningful improvements in speech perception in noise (39/49 [79.6%]) and in quiet (34/42 [81.0%]) were reported. Sound localization improved significantly following implantation (mean difference [MD], -24.78°; 95% CI, -34.16° to -15.40°; I² = 10%). Compared to patients with congenital SSD, patients with acquired SSD and shorter duration of deafness reported greater improvements in speech and hearing quality. Patients with longer duration of deafness were also more likely to be device nonusers (MD, 6.84; 95% CI, 4.02 to 9.58).

Levy (2020) published a systematic review of cochlear implantation for tinnitus in SSD. A total of 17 studies including 247 patients met inclusion criteria. The mean age was 50.2 years (range 23 to 71). Tinnitus outcomes were measured using the Tinnitus Handicap Inventory (THI). Based on six studies, an improvement of 35.4 points (95% CI -55.8 to -15.0, p<0.001) was reported. Based on 13 studies reporting on subjective improvement, with proportions weighted based on patients per study, 14.9% (CI 6.4 to 26.1) of patients reported complete resolution of tinnitus, 74.5% (CI 63.1 to 84.5) reported partial improvement; 7.6% (CI 4.1 to 12.6) of patients had no change in severity, and 3.0% (CI 1.0 to 6.7) reported worsening of their tinnitus.

A 2019 SR published by Peter identified 13 studies that met inclusion criteria and evaluated the influence of cochlear implantation on tinnitus in patients with single-sided deafness. All identified studies were cohort studies. They mainly reported tinnitus questionnaire scores using the THI. Overall, of the 153 included patients, 34.2% demonstrated complete suppression, 53.7% demonstrated an improvement, 7.3% demonstrated a stable value, and 4.9% showed an increase of tinnitus. No patients reported an induction of tinnitus.

In 2015, van Zon published a systematic review of studies evaluating cochlear implantation for single-sided deafness or asymmetric hearing loss. The authors reviewed 15 studies, nine of which (n=112 patients) were considered high enough quality to be included in data review. The authors identified no high-quality studies of cochlear implantation in this population. Data were not able to be pooled for meta-analysis due to high between-study heterogeneity, but the
authors conclude that studies generally report improvements in sound localization, quality of life scores, and tinnitus after cochlear implantation, with varying results for speech perception in noise.

In 2014, Vlastarakos published a systematic review of the evidence related to cochlear implantation for single-sided deafness.\cite{Vlastarakos2014} The authors included 17 studies, including prospective and retrospective comparative studies, case series and case reports that included 108 patients. The authors report that sound localization is improved after cochlear implantation, although statistical analysis was not included in some of the relevant studies. In most patients (95%), unilateral tinnitus improved. The authors note that most of the studies included had short follow-up times, and evaluation protocols and outcome measurements were heterogeneous.

In 2014, Blasco and Redleaf published a systematic review and meta-analysis of studies evaluating cochlear implantation for unilateral sudden deafness.\cite{Blasco2014} The review included nine studies with a total of 36 patients. In pooled analysis, subjective improvement in tinnitus occurred in 96% of patients (of 27 assessed), subjective improvement in speech understanding occurred in 100% of patients (of 16 assessed), and subjective improvement in sound localization occurred in 87% of patients (of 16 assessed). However, the small number of patients in which each outcome was assessed limits any conclusions that may be drawn.

Randomized Trials

Marx (2021) conducted a small open-label, multicenter RCT of cochlear implantation \((n=25)\) versus initial observation and treatment abstention \((n=26)\) in adult patients with single-sided deafness or asymmetric hearing loss following failure of prior treatment with contralateral routing of the signal (CROS) hearing aids or bone-conduction devices.\cite{Marx2021} Primary outcomes included HRQOL, auditory-specific quality of life, and tinnitus severity as assessed after six months of treatment. Both EQ-5D visual analog scale and auditory-specific quality of life indices significantly improved in the cochlear implant arm. However, no significant difference in overall EQ-5D descriptive component scores were noted between groups. Mean improvement was most pronounced in subjects with associated severe tinnitus. A clinical rationale for the minimum clinical improvement in quality of life \((0.8 SD)\) was not reported. No significant difference for speech recognition in noise or horizontal localization was noted between groups at six months, indicating no significant effect on binaural hearing within this timeframe.

Peters (2021) randomized 120 adults with single-sided deafness \((median\ duration, 1.8\ years)\) into three treatment groups for the "Cochlear Implantation for siNGLE-sided deafness" (CINGLE) trial: cochlear implant \((n=29)\); first bone-conduction devices, then CROS \((n=45)\); and first CROS, then bone-conduction devices \((n=46)\).\cite{Peters2021} Patients with a maximum 30 dB hearing loss in the best ear and a minimum 70 dB hearing loss in the poor ear with duration of single-sided deafness between 3 months and 10 years were eligible for inclusion. After the initial cross-over period, 25 patients were allocated to bone-conduction devices, 34 patients were allocated to CROS, and 26 patients preferred no treatment. Seven patients did not receive their allocated treatment. For the primary outcome, speech perception in noise from the front, a statistically significant improvement was noted for the cochlear implant group at three and six months compared to baseline. At three months follow-up, the cochlear implant group performed significantly better than all other groups. At six months, the cochlear implant group performed significantly better than the bone-conduction devices and no treatment groups but no significant difference was observed between the cochlear implant group and the CROS
group. Sound localization improved in the cochlear implant group only. All treatment groups improved on disease-specific quality of life compared to baseline. The study is limited by small sample size, device heterogeneity, loss to follow-up, and lack of allocation concealment. Study follow-up through five years is ongoing.

Nonrandomized Studies

Dillon (2020) conducted a prospective clinical trial evaluating 20 subjects with asymmetric hearing loss (AHL), defined as a hearing loss of ≥ 70 dB HL in the ear to be implanted and between 35 and 55 dB HL in the contralateral ear. Patients were required to fail initial treatment with traditional or bone-conduction hearing aids. Subjects underwent cochlear implantation with the MED-EL Synchrony Standard electrode array. Significant subjective benefit was reported by patients within one month of implantation. At the 12-month interval, spatial hearing localization was significantly improved (p<0.001). Masked sentence recognition was found to improve at the 12-month interval in the SoNcontra configuration (p<0.001), but there was no significant difference in the SoNo or SoNci spatial configurations. Subjects demonstrated a significant improvement in CNC word recognition between one and six months (p=0.002) and 6 and 12 months (p=0.010). Findings were compared with previously published data for patients in the unilateral hearing loss cohort of this study. Significant main effects of cohort were found for localization performance and spatial configuration in masked sentence recognition, indicating that the magnitude of benefit for these outcomes was reduced for subjects with AHL.

In 2019, Dillon published a clinical update reporting on the prevalence of low-frequency hearing preservation with the use of standard long electrode arrays (MED-EL Corporation) in a subset of 25 patients (12 with unilateral hearing loss) from earlier cohorts. Unaided hearing thresholds at 125 Hz were compared between the preoperative and initial activation intervals in 24 participants to assess the change in low-frequency hearing. At activation, a significant elevation in the unaided hearing thresholds at 125 Hz was noted (p<0.001), with the majority of subjects (n=16) demonstrating no response to stimulus. The remaining nine participants maintained an unaided low-frequency hearing threshold of ≤ 95 dB, and 5/9 participants met the fitting criterion of ≤ 80 dB for electric-acoustic stimulation (EAS) at initial activation. An additional three participants demonstrated improvement in unaided low-frequency hearing thresholds at latter monitoring intervals. It is uncertain whether identifying patients with preservation of low-frequency hearing can help predict individuals that may benefit from EAS vs standard cochlear implants.

Galvin III (2019) reported data from on FDA-approved study of cochlear implantation in 10 patients with SSD. Patients were implanted with the MED-EL Concerto Flex 28 device. Speech perception in quiet and noise, localization, and tinnitus severity were measured prior to implantation at one, three, and six months postactivation. Performance was assessed with both ears (binaural), with the implanted ear alone, and the normal hearing alone. No patient had previous experience with a contralateral routing of signal (CROS) or bone conduction device (BCD) system. Mean improvement for consonant-nucleus-consonant (CNC) word recognition vs baseline was 66.8%, 76.0%, and 84.0% at one, three, and six months postactivation, respectively. The normal hearing ear performed significantly better compared to the implanted ear for all outcome measures at all intervals (p<0.05). Audiological performance of the implanted ear at one, three, and six months postactivation was significantly better compared to baseline (p<0.05), with no significant difference across postactivation intervals (p>0.05). The change in root mean square error (RMSE) in localization with binaural listening
postactivation reduced by 6.7, 7.6, and 11.5 degrees at one, three, and six months postactivation. Binaural performance was significantly improved compared to the normal hearing ear alone at all postactivation time intervals (p<0.05). Tinnitus visual analog scale (VAS) scores significantly decreased with the implant on at all postactivation time intervals (p<0.05). Significant improvements on SSQ scores were reported for the Speech (p=0.003), Spatial (p<0.001), and Quality (p=0.034) subtests. Global scores were not reported. Adverse events were reported in 5/10 participants, including facial nerve stimulation, periorbital edema, mild postoperative balance disturbance, postauricular pain, and unresolved taste disturbance. The study is limited by small sample size.

Peter (2019) published the results of a Swiss multicenter study assessing cochlear implantation for use in adult patients in post-lingual single-sided deafness, defined as a hearing loss of 70 dB hearing level (HL) in the mean thresholds of 0.5, 1, 2, and 4 kHz in the affected ear, and 25 dB HL or better in the frequencies from 125 to 2 kHz and 35 dB HL or better from 4 to 8 kHz in the normally hearing contralateral ear. A total of 10 patients were evaluated. Two years post-implantation, 90% of patients used their implant regularly for an average of more than 11 hours per day. Twelve months postactivation, speech from the front and noise at the healthy ear achieved a 2.7 dB improvement (p=0.0029). Speech to the implanted ear and noise from the front achieved a 1.5 dB improvement (p=0.018). The mean sound localization error of all participants was improved by 10.2 degrees (p=0.030) at 12 months postactivation. One participant experienced a loss in low-frequency residual hearing from surgery, resulting in poorer localization performance after surgery with an increased error of 11.3 degrees. Tinnitus severity decreased significantly 12 months postactivation from 41.2 points (SD 26.5) preoperatively to 23.0 points (SD 17.5; p=0.004) on the Tinnitus Handicap Inventory (THI). Quality of life measures showed a significant improvement on the global subscale of the WHO Quality of Life questionnaire (p=0.007). The Speech, Spatial, and Qualities of Hearing Scale questionnaire (SSQ) indicated a significant improvement from 4.2 to 6 (p=0.004) in speech comprehension and from 3 to 5.3 (p=0.009) in spatial hearing. No significant difference was noted in the subscale qualities of hearing (6.2 to 6.9; p=0.13). The scores of the patients on the three subscales were significantly lower than for the normal hearing control group, with an average speech comprehension score of 8.7 (p=0.001), an average spatial hearing of 8.6 (p<0.001), and an average qualities of hearing score of 9.1 (p=0.005). Adverse events were not reported.

In July 2019, the FDA approved to expand the indication for the MED-EL Cochlear Implant System to include individuals aged five years and older with single-sided deafness (SSD) or asymmetric hearing loss (AHL). According to the FDA's summary of safety and effectiveness data, approval was based on supporting evidence from a comprehensive literature review and a clinical feasibility study conducted at the University of North Carolina at Chapel Hill under IDE# G140050 in patients treated between 2014 and 2019. In this prospective, non-blinded, repeated measures study, 40 subjects were implanted with the MED-EL CONCERT or SYNCHRONY Cochlear Implant System. Twenty patients each were enrolled into the SSD and AHL groups. All 20 patients completed testing in the SSD group. One patient withdrew from the AHL group and one patient had not yet completed follow-up at the time of data analysis. Patients were required to have previous experience of at least one month in duration with a conventional hearing aid, bone conduction device, or CROS device. Exclusion criteria included Meniere's disease with intractable vertigo, tinnitus as the primary concern for cochlear implantation, and severe or catastrophic score on the THI. Aided word recognition in the ear to be implanted was required to be 60% or less as measured with a 50-word CNC word list. Speech perception and localization were evaluated at baseline and at 1, 3, 6, 9, and 12
months post-operatively utilizing CNC word recognition and AzBio sentence tests. For patients in the AHL group, soundfield testing was completed with a hearing aid in the contralateral ear. Quality of life measures included the SSQ, THI, and Abbreviated Profile of Hearing Aid Benefit (APHAB) scales. Primary effectiveness measures were comparisons of speech perception and localization performance between the bilateral, preoperative, unaided/best-aided condition and the bilateral, 12-month post-operative cochlear implant (CI) + normal hearing (NH) or hearing aid (HA) condition. Study results are summarized in Table 1. Nine device- or procedure-related adverse events were reported. Most frequently reported adverse events included vertigo/dizziness/imbalance (22.5%) and unrelated infection (7.5%). The data from the is limited by its small sample size in adult subjects only. Effectiveness endpoints were not prespecified.

Table 1. Feasibility Study Results for MED-EL Cochlear Implant System for SSD and AHL

<table>
<thead>
<tr>
<th>Outcome</th>
<th>SSD (n=20)</th>
<th>AHL (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline, unaided</td>
<td>Baseline, unaided</td>
</tr>
<tr>
<td></td>
<td>12-mo, unaided</td>
<td>12-mo, CI-on</td>
</tr>
<tr>
<td></td>
<td>12-mo, CI-on</td>
<td>12-mo, CI-on</td>
</tr>
<tr>
<td>Implant Ear CNC, Mean (SD) Range</td>
<td>3.5 (-6.68) 0 to 22</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>54.6 (-18.15) 10 to 84</td>
<td>6.3 (-7.98) 0 to 22</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>56.2 (-18.41) 28 to 86</td>
<td></td>
</tr>
<tr>
<td>Contralateral Ear CNC, Mean (SD) Range</td>
<td>99.3 (-2.27) 90 to 100</td>
<td>99.8 (-0.62) 98 to 100</td>
</tr>
<tr>
<td></td>
<td>92.7 (8.68) 78 to 100</td>
<td>92.7 (8.68) 72 to 100</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>94.3 (8.38) 72 to 100</td>
<td></td>
</tr>
<tr>
<td>Soundfield, Binaural AzBio, Mean (SD) Range</td>
<td>99.0 (1.56) 95 to 100</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>94.3 (8.38) 72 to 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome</th>
<th>SSD (n=20)</th>
<th>AHL (n=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline, Unaided</td>
<td>Baseline, Unaided</td>
</tr>
<tr>
<td></td>
<td>Baseline, Best-Aided (BCHA)</td>
<td>Baseline, Best-Aided (BCHA)</td>
</tr>
<tr>
<td></td>
<td>12-mo, CI-on</td>
<td>12-mo, CI-on</td>
</tr>
<tr>
<td>Noise Front AzBio, Mean (SD) Range</td>
<td>37.5 (10.98) 20 to 64</td>
<td>31.5 (16.56) 0 to 59</td>
</tr>
<tr>
<td></td>
<td>47.2 (10.72) 29 to 68</td>
<td>22.7 (13.95) 0 to 47</td>
</tr>
<tr>
<td></td>
<td>20.5 (12.86) 0 to 47</td>
<td>33.5 (22.10) 3 to 85</td>
</tr>
<tr>
<td>Noise at CI AzBio, Mean (SD) Range</td>
<td>83.4 (9.51) 59 to 94</td>
<td>61.25 (27.92) 0 to 98</td>
</tr>
<tr>
<td></td>
<td>85.0 (11.04) 60 to 97</td>
<td>44.2 (17.70) 9 to 78</td>
</tr>
<tr>
<td></td>
<td>30.5 (18.23) 1 to 70</td>
<td>44.6 (24.74) 5 to 94</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Noise at Contralateral AzBio, Mean (SD) Range</th>
<th>SSD (N=20)</th>
<th>AHL (N=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean RMS Error (SD) Range</td>
<td>Baseline, Unaided</td>
<td>Baseline, Best-Aided (BCHA)</td>
</tr>
<tr>
<td>Mean RMS Error (SD) Range</td>
<td>66.5 (20.47)</td>
<td>69.6 (18.71)</td>
</tr>
<tr>
<td>Range</td>
<td>42.9 to 109.1</td>
<td>45.3 to 166.1</td>
</tr>
<tr>
<td>Quality of Life</td>
<td>SSQ (Speech)</td>
<td>SSQ (Spatial)</td>
</tr>
<tr>
<td>SSD (N=20) Baseline: Mean (SD); Range</td>
<td>3.7 (1.34); 0.6 to 7.2</td>
<td>2.4 (1.2); 0.5 to 4.5</td>
</tr>
<tr>
<td>Range</td>
<td>0.99; 5.4 to 8.9</td>
<td>6.5 (1.86); 2.8 to 8.9</td>
</tr>
<tr>
<td>12-mo: Mean (SD); Range</td>
<td>70.1 (17.32); 39.3 to 95.0; 25.2 (11.95); 10.2 to 56.2</td>
<td>70.1 (17.32); 39.3 to 95.0</td>
</tr>
<tr>
<td>Range</td>
<td>26.7 (24.83); 1.0 to 91.0</td>
<td>26.7 (24.83); 1.0 to 91.0</td>
</tr>
</tbody>
</table>
AHL (N=18)
Baseline: Mean (SD); Range
12-mo: Mean (SD); Range

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD)</th>
<th>Range</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.2 (1.48); 0.4 to 6.0</td>
<td>5.8 (1.50); 3.6 to 8.9</td>
<td>2.6 (1.26); 0.3 to 4.7</td>
<td>6.0 (1.62); 3.1 to 8.5</td>
<td>4.6 (1.77); 0.2 to 8.3</td>
<td>6.8 (1.20); 4.4 to 8.7</td>
<td>54.1 (16.21); 20.0 to 92.3</td>
<td>28.1 (10.49); 11.3 to 54.1</td>
</tr>
<tr>
<td>EC: NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.9 (24.67); 10.2 to 91.0</td>
<td>16.6 (13.01); 1.0 to 54.0</td>
<td>63.5 (16.84); 14.5 to 95.0</td>
<td>39.3 (17.10); 14.5 to 66.3</td>
<td>56.0 (18.30); 14.2 to 97.0</td>
<td>28.3 (11.96); 12.0 to 54.2</td>
<td>43.1 (35.04); 1.0 to 99.0</td>
<td>42.4 (29.21); 1.0 to 97.0</td>
</tr>
</tbody>
</table>

AHL: asymmetric hearing loss; APHAB: Abbreviated Profile of Hearing Aid Benefit; AV: Aversiveness subscale; BCHA: bone conduction hearing aid; BKB-SIN: Bench-Kowal-Banford Speech in Noise Test; BN: Background Noise subscale; CI: cochlear implant; CNC: consonant-nucleus-consonant; EC: Ease of Communication subscale; NA: not applicable; NR: not reported; RMS: root mean square; RV: Reverberation subscale; SD: standard deviation; SSD: single-sided deafness; SSQ: Speech, Spatial, and Qualities of Hearing Scale; THI: Tinnitus Handicap Inventory.

The FDA decision was further supported by a literature search yielding six publications comprising a total of 58 adults with SSD (n=50 of which implanted with MED-EL devices) and a total of 52 adults with AHL (n=37 of which implanted with MED-EL devices). The candidacy criterion of ages five and older was based on a literature search yielding five publications comprising a total of 26 children with SSD (n=5 of which implanted with a MED-EL device) and a total of nine children with AHL. While the overall benefits of CI in children with SSD and AHL included improved performance in speech perception in quiet and noise, sound localization, and subjective measures of quality of life – these results are limited to primarily case series with small sample sizes, heterogeneous in methodology and outcome assessment, and at high risk of bias in self-reported measures. The FDA has required MED-EL to conduct a post-marketing study to continue to assess the safety and efficacy of the implant in a new enrollment cohort of adults and children.
Buss (2018) published the results of an FDA clinical trial that investigated the potential benefit of cochlear implant (CI) for use in adult patients with moderate-to-profound unilateral sensorineural hearing loss and normal to near-normal hearing on the other side.[79] The study population was 20 CI recipients with one normal or near-normal ear (NH) and the other met criterion for implantation (CI). All subjects received a MED-EL standard electrode array, with a full insertion based on surgeon report. They were fitted with an OPUS 2 speech processor. This group was compared to 20 normal hearing persons (control group) that were age-matched. Outcome measures included: sound localization on the horizontal plane; word recognition in quiet with the CI alone, and masked sentence recognition when the masker was presented to the front or the side of normal or near-normal hearing. The follow-up period was 12-months. While the majority of CI recipients had at least one threshold ≤ 80dB prior to implantation, only three subjects had these thresholds after surgery. For CI recipients, scores on consonant-nucleus-consonant (CNC) words in quiet in the impaired ear rose an average of 4% (0 to 24%) at the postoperative test to a mean of 55% correct (10 to 84%) with the CI alone at the 12-month test interval.

A 2016 study from Sladen reported on a retrospective review of prospectively-collected data of short-term (six-month) follow-up for 23 adults and children with single-sided deafness from a variety of mechanisms who received a cochlear implant.[85] In the implanted ear, CNC word recognition improved significantly from pre-implantation to three months post-activation (P=0.001). However, for AzBio sentence understanding in noise (+5 dB signal-to-noise [SNR]), there was no significant improvement from pre-implantation to six months post-activation.

Also in 2016, Rahne reported on a retrospective review of four children and 17 adults with single-sided deafness treated with cochlear implants and followed for 12 months.[86] Sound localization with aided hearing improved from pre-implantation to aided hearing for all individuals. The Speech recognition threshold in noise (signal-to-noise) ratio improved from -1.95 dB (CI off, SD: 2.7 dB) to -4.0 dB after three months (SD 1.3 dB, P<0.05), with continued improvements through six months.

In 2016, Mertens reported a case series including 23 individuals who received cochlear implants for single-sided deafness with tinnitus.[87] Eligible patients had either single-sided deafness or asymmetric hearing loss and ipsilateral tinnitus. Subjects had a mean eight years of experience with their cochlear implant (range, 3 to 10 years). Patients demonstrated improvements in VAS from baseline (mean score, 8) to one month (mean score: 4; p<0.01 vs baseline) and three months (mean score: 3; p<0.01 vs baseline) after the first fitting. Tinnitus scores improved from baseline to three months post fitting (55 vs 31, p<0.05) and were stable for the remainder of follow-up.

In 2015, Ramos Macias reported results of a prospective multicenter study with repeated measures related to tinnitus, hearing, and quality of life, among 16 individuals with unilateral hearing loss and severe tinnitus who underwent cochlear implantation.[88] All patients had a severe tinnitus handicap (THI score ≥ 58%). Eight (62%) of the 13 patients who completed the six-month follow-up visit reported a lower tinnitus handicap on the THI score. Perceived loudness/annoyingness of the tinnitus was evaluated with a 10-point VAS. When the CI was on, tinnitus loudness decreased from 8.4 preoperatively to 2.6 at the six-month follow-up; 11 of 13 patients reported a change in score of three or more.

In 2015, Arndt reported outcomes for 20 children who underwent cochlear implantation for single-sided deafness, which represented a portion of their center’s cohort of 32 pediatric
patients with single-sided deafness who qualified for cochlear implants. Repeated-measure analyses of hearing data sets were available for 13 implanted children, excluding five who had undergone surgery too recently to be evaluated and two children who were too young to be evaluated for binaural hearing benefit. There was variability in the change in localization ability across the tested children. Self- (or child-) reported hearing benefit was measured with the Speech, Spatial and Qualities of Hearing Scale (SSQ). Significant improvements were reported on the child and parent evaluations for the scale’s three subcategories: speech hearing, spatial hearing, hearing quality, and total hearing.

In 2013, Hansen reported results of a prospective study of cochlear implantation for severe-to-profound single-sided sensorineural hearing loss in 29 patients, 10 of whom had single-sided deafness due to Meniere’s disease. Performance was compared pre- to post-implant within each subject; outcomes were measured at three-, six-, and 12-months postoperatively. Patients showed significant improvements in CNC word and AzBio sentence scores showed improvement in the implanted ear pre- and post-implant. For the 19 patients with pre- and post-operative data available, the average improvement on CNC word score was 28% (range: -26% to 64%). The average AzBio score improvement was 40% (range: -57% to 92%).

Tavora-Vieira (2013) reported results of a prospective case series that included nine post-lingually deaf subjects with unilateral hearing loss, with or without tinnitus in the ipsilateral ear, with functional hearing in the contralateral ear, who underwent cochlear implantation. Speech perception was improved for all subjects in the “cochlear implant on” state compared with the “cochlear implant off” state, and subjects with tinnitus generally reported improvement.

Section Summary

The available evidence for the use of cochlear implants in improving outcomes for patients with unilateral hearing loss, with or without tinnitus, is limited by small sample sizes, and heterogeneity in evaluation protocols and outcome measurements. A small feasibility study in adults with SSD or AHL demonstrated improvements in sound perception, sound localization, and subjective measures of quality of life compared to baseline conditions. However, studies assessing outcomes compared to best-aided hearing controls beyond six months are lacking.

COCHLEAR RESTORATION

The optimal timing of cochlear implantation in children is of particular interest given the strong associations between hearing and language development. While there is current research investigating the ability to restore hearing by stimulating cochlear hair cell regrowth, cochlear implantation damages the cochlea and eliminates the possibility of cochlear restoration. However, the potential to restore cochlear function is not foreseeable in the near future; therefore, if implantation of cochlear implants is felt to be most beneficial at a younger age when the nervous system is “plastic”, this potential development seems too far in the future to benefit young children who are current candidates for a cochlear implant.

HYBRID COCHLEAR IMPLANTATION

Systematic Review

Santa Maria (2014) conducted a systematic review and meta-analysis of hearing outcomes after various types of hearing-preservation cochlear implantation, including implantation hybrid devices, cochlear implantation with surgical techniques designed to preserve hearing, and the use of post-operative systemic steroids. The study included 24 studies, but only two studies...
focused specifically on a hybrid cochlear implant system, and no specific benefit from a hybrid system was reported.

Nonrandomized Studies

The pivotal trial for the Med-EL EAS system was a prospective, multi-center, non-randomized, non-blinded, repeated measures clinical study of 73 subjects at 14 U.S. sites, implanted with either SONATA FLEX24 or a PULSAR FLEX24. Final outcomes were reported in 2018 by Pillsbury. Sixty-seven of 73 subjects (92%) completed outcome measures at 3, 6, and 12 months postactivation. A 30 dB or less low-frequency pure-tone average shift was experience by 79% and 97% were able to use the acoustic unit at 12 months postactivation. In the EAS condition, 94% of subjects performed similarly or demonstrated improvement (85%) compared to preoperative performance on City University of New York sentences in noise at 12 months. Ninety-seven percent of subject performed similarly or improved (85%) on CNC words in quiet. Improvements in speech perception scores were statistically significant (p<0.001). The Abbreviated Profile of Hearing Aid Benefit (APHAB) was administered preoperatively and at 12 months postactivation; 60 subjects completed the APHAB assessment at each time point. The mean score on the APHAB Global Scale improved by 30.2%, demonstrating a significant reduction in perceived disability (p<0.001). Thirty-five device-related adverse events were reported for 29 of 73 subjects (39.7%). The most frequently observed adverse event was profound/total loss of residual hearing, which occurred in 8 of 73 subjects (11.0%).

The pivotal trial for the Nucleus® Hybrid™ L24 Cochlear Implant System, published by Roland in 2016, was a prospective, multi-center, one-arm, non-randomized, non-blinded, repeated-measures clinical study of 50 subjects at 10 U.S. sites. Performance was compared pre- to post-implant within each subject; outcomes were measured at three-, six-, and 12-months postoperatively. Post-operatively, patients’ hearing was evaluated in three states: Hybrid (simultaneous electric and acoustic stimulation in the implanted ear via the Hybrid L24 including the acoustic component), Bimodal (electric stimulation only using the Hybrid L24 minus the acoustic component with contralateral acoustic stimulation), and Combined (electric and acoustic stimulation via the Hybrid L24 and contralateral acoustic stimulation). Results from the Bimodal and Combined conditions were grouped into an “Everyday Listening” category, which was not prospectively defined by the manufacturer. All 50 subjects enrolled underwent device implantation and activation. One subject had the device explanted and replaced with a standard cochlear implant between the three- and six-month follow up visit due to profound loss of low frequency hearing; an additional subject was explanted before the 12-month follow up visit and two additional subjects were explanted after 12 months. For the two primary effectiveness endpoints, CNC word-recognition score and AzBio sentence-in-noise score, a measure of sentence understanding in noisy environments, there were significant within-subject improvements from baseline to six-month follow up. The mean improvement in CNC word score was 35.7% (95% confidence interval [CI] 27.8% to 43.6%); for AzBio score, the mean improvement was 32.0% (95% CI 23.6% to 40.4%) For safety outcomes, 71 adverse events were reported, most commonly profound/total loss of hearing (occurring in 44% of subjects) with at least one adverse event occurring in 34 subjects (68%).

Five-year outcomes for the pivotal trial were reported by Roland in 2018. Thirty-two out of 50 subjects (64%) enrolled in the postapproval study. Out of the 18 subjects who did not participate, six had been explanted and reimplanted with a long electrode array, two discontinued for unrelated medical reasons, two withdrew for other reasons, four declined to continue follow-up evaluations, and four chose not to participate in the postapproval study. At
five years postactivation, 94% of subjects had measurable hearing and 72% continued to use electric-acoustic stimulation with functional hearing in the implanted ear, and 6% had a total loss. Changes from pre-operate hearing to six months were statistically significant (p<0.001), but changes six months through five years postactivation were not statistically different (p>0.05). Acoustic component amplification was utilized by 84% and 81% of patients at 12 and three years postactivation, respectively. Mean CNC word recognition in quiet scores were significantly improved over the preoperative condition at each postactivation interval (p<0.001). However, mean scores did not significantly differ after 12 months postactivation. At five years postactivation, 94% performed the same or better in unilateral CNC word scores, whereas 6% demonstrated a decline in performance. For bilateral CNC word scores, 97% performed the same or better, whereas one subject showed a decline in performance. The Speech, Spatial, and Qualities of Hearing Questionnaire (SSQ) was implemented to measure subjective implant satisfaction and benefit. Scores significantly improved and remained stable through all postactivation intervals (p<0.001).

In 2016, Gantz published outcomes from a multicenter, longitudinal study evaluating outcomes with the Nucleus Hybrid S8 featuring a shorter cochlear array. Eighty-seven subjects received an implant. At 12 months postactivation, five subjects had total hearing loss, whereas functional hearing was maintained by 80%. CNC word scores demonstrated 82.5% of subjects had experience a significant improvement in the hybrid condition. Improvement in speech understanding in noise were demonstrated in 55% of subjects. Fourteen patients requested implant explantation due to various reasons of dissatisfaction with the device. These patients were re-implanted with a standard-length Nucleus Freedom cochlear implant. CNC scores prior to loss of residual hearing were missing for six subjects. CNC scores following re-implantation were missing for two additional subjects. Similar or better CNC scores following re-implantation were observed in five of the six remaining subjects.

In 2015, Friedmann conducted a retrospective review that included 22 subjects implanted with a cochlear implant with either a standard electrode (n=12) or the Nucleus Hybrid L24 electrode (n=10). At one year post-implant, 30% patients with the Hybrid-L and 58% patients with the standard electrode lost residual acoustic hearing resulting in a profound hearing loss in the implanted ear. The authors reported that while hearing preservation rates with the hybrid electrode tended to be better, among recipients who lost residual hearing, speech perception was better in those with the longer standard electrode.

Lenarz (2013) reported results of a prospective multi-center European study evaluating the Nucleus Hybrid™ L24 system. The study enrolled 66 adults with bilateral severe-to-profound high frequency hearing loss. At one year post-operatively, 65% of subjects had significant gains in speech recognition in quiet and 73% had significant gains in noisy environments. Compared with the cochlear implant hearing alone, residual hearing significantly increased speech recognition scores.

Gifford (2013) compared hearing outcomes pre- and post-implantation for 44 adult cochlear implant recipients with preserved low-frequency hearing in two test conditions: cochlear implant plus low-frequency hearing in the contralateral plus low-frequency hearing in the contralateral ear (bimodal condition) and cochlear implant plus low-frequency hearing in both ears (best-aided condition). The authors reported that there were small but statistically significant differences in improvements in adaptive sentence recognition and speech recognition in a noisy “restaurant” environment, suggesting that the presence of residual hearing is beneficial.
A small number of studies in a small number of patients suggest that a hybrid cochlear implant system is associated with improvements in hearing of speech in quiet and noise. However, there are currently no available studies that compare the use of a standard hearing aid with a hybrid cochlear implant, which would be an appropriate comparison to determine if a hybrid device improves outcomes for patients who currently have hearing loss, but might not be candidate for a cochlear implant. In addition, there is only limited data to suggest that the preservation of residual hearing associated with a hybrid device is associated with improved outcomes compared with a standard cochlear implant.

Section Summary

Prospective and retrospective studies using a single-arm, within-subjects comparison pre- and postintervention have suggested that a hybrid cochlear implant system is associated with improvements in hearing of speech in quiet and noise. For patients who have high-frequency hearing loss but preserved low-frequency hearing, the available evidence has suggested that a hybrid cochlear implant improves speech recognition better than a hearing aid alone. Some studies have suggested that a shorter cochlear implant insertion depth may be associated with preserved residual low-frequency hearing, although there is uncertainty about the potential need for reoperation following hybrid cochlear implantation if there is a loss of residual hearing. Studies reporting on long-term outcomes and results of re-implantation are lacking.

PRACTICE GUIDELINE SUMMARY

AMERICAN ACADEMY OF OTOLARYNGOLOGY- HEAD AND NECK SURGERY

In 2020, the American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) published a revised position statement on cochlear implants. The Academy “considers unilateral and bilateral cochlear implantation as appropriate treatment for adults and children over 9 months of age with severe to profound hearing loss who have failed a trial with appropriately fit hearing aids.”[100]

In 2020, the AAO-HNS published a position statement on pediatric cochlear implants.[101] The Academy states that “there is ample evidence that early cochlear implantation of children with sensorineural hearing loss (SNHL) for whom hearing aids provide inadequate access to sound is advantageous.” The statement goes on to say that “Children with bilateral severe to profound SNHL (4-frequency PTA > 80 dB HL or 2-frequency PTA > 85) will not receive adequate benefit from amplification and are candidates for bilateral cochlear implantation. Children with this degree of SNHL, including infants between 6 and 12 months, should receive cochlear implants as soon as practicable.”

AMERICAN ACADEMY OF AUDIOLOGY

In July 2019, the American Academy of Audiology published clinical practice guidelines on cochlear implants.[102] These guidelines include recommendations regarding cochlear implant evaluation. They recommend determining unaided air conduction and bone conduction thresholds using developmentally appropriate assessment measures. They additionally recommend determining auditory speech perception using appropriately fit amplification using developmentally appropriate assessment measures. Other recommendations are included regarding non-audiologic evaluation prior to implantation, and surgical and post-surgical roles for the audiologist.
SUMMARY

There is enough research to show that cochlear implants improve health outcomes, specifically, speech reception (especially in noise) and sound localization, for some patients who have severe to profound bilateral sensorineural hearing loss. Therefore, cochlear implants may be considered medically necessary in specific patients with bilateral hearing loss who meet the policy criteria.

The current research on cochlear implantation in patients diagnosed with enlarged vestibular aqueducts (EVA) has limitations. Despite these limitations, there is enough research to show that cochlear implants improve health outcomes, specifically, speech recognition, for patients for patients with EVA. In addition, early placement of cochlear implants avoids atrophy and preserves hearing patients with EVA with moderate hearing loss. Therefore, cochlear implants may be considered medically necessary in patients with EVA when policy criteria are met.

The current research on hybrid cochlear implant/hearing aid systems has limitations. Despite these limitations, there is enough research to show that hybrid cochlear implant/hearing aid systems improve health outcomes, specifically, speech recognition, for patients aged 18 years or older who have high frequency sensorineural hearing loss with preserved low frequency hearing. Therefore, hybrid cochlear implant/hearing aid systems may be considered medically necessary in specific patients with high frequency sensorineural hearing loss with preserved low frequency hearing who meet the policy criteria.

There are currently no cochlear implants that have approval from the U.S. Food and Drug Administration (FDA) for use in patients who are younger than 9 months of age. There is not enough research to show that cochlear implants improve health outcomes in patients younger than 9 months of age and it is unclear that the benefits of early cochlear implantation outweigh the risk of surgery and anesthesia in these very young patients. In addition, there are no clinical practice guidelines from U.S. professional societies that recommend cochlear implantation in these very young patients. Therefore, cochlear implantation in patients younger than 9 months of age is considered not medically necessary.

In all other situations, cochlear implants and hybrid cochlear implant/hearing aid systems do not improve health outcomes. Therefore, cochlear implants and hybrid cochlear implant/hearing aid systems are considered not medically necessary when the policy criteria are not met, including but not limited to unilateral hearing loss with or without tinnitus.

Implant replacement, including replacement parts or upgrades to existing cochlear implants and/or components may be considered medically necessary only in those patients whose response to the existing device is inadequate to the point of interfering with activities of daily living, including school or work. Replacement of an existing cochlear implant device is considered not medically necessary when the policy criteria are not met.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

12. HR Powell, CS Birman. Large vestibular aqueduct syndrome: Impedance changes over time with different cochlear implant electrode arrays. Cochlear Implants Int. 2015;16(6):326-30. PMID: 26098963

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>69930</td>
<td>Cochlear device implantation, with or without mastoidectomy</td>
</tr>
<tr>
<td></td>
<td>92601</td>
<td>Diagnostic analysis of cochlear implant, patient younger than 7 years of age; with programming</td>
</tr>
<tr>
<td></td>
<td>92602</td>
<td>subsequent reprogramming</td>
</tr>
<tr>
<td></td>
<td>92603</td>
<td>Diagnostic analysis of cochlear implant, age 7 years or older; with programming</td>
</tr>
<tr>
<td></td>
<td>92604</td>
<td>subsequent reprogramming</td>
</tr>
<tr>
<td></td>
<td>92630</td>
<td>Auditory rehabilitation; pre-lingual hearing loss</td>
</tr>
<tr>
<td></td>
<td>92633</td>
<td>Auditory rehabilitation; post-lingual hearing loss</td>
</tr>
<tr>
<td>HCPCS</td>
<td>L8614</td>
<td>Cochlear device, includes all internal and external components</td>
</tr>
<tr>
<td></td>
<td>L8615</td>
<td>Headset/earpiece for use with cochlear implant device, replacement</td>
</tr>
<tr>
<td></td>
<td>L8616</td>
<td>Microphone for use with cochlear implant device, replacement</td>
</tr>
<tr>
<td></td>
<td>L8617</td>
<td>Transmitting coil for use with cochlear implant device, replacement</td>
</tr>
<tr>
<td></td>
<td>L8618</td>
<td>Transmitter cable for use with cochlear implant device or auditory osseointegrated device, replacement</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>L8619</td>
<td>Cochlear implant external speech processor and controller, integrated system, replacement</td>
<td></td>
</tr>
<tr>
<td>L8621</td>
<td>Zinc air battery for use with cochlear implant device and auditory osseointegrated sound processors, replacement, each</td>
<td></td>
</tr>
<tr>
<td>L8622</td>
<td>Alkaline battery for use with cochlear implant device, any size, replacement, each</td>
<td></td>
</tr>
<tr>
<td>L8623</td>
<td>Lithium ion battery for use with cochlear implant device speech processor</td>
<td></td>
</tr>
<tr>
<td>L8624</td>
<td>Lithium ion battery for use with cochlear implant or auditory osseointegrated device speech processor, ear level, replacement, each</td>
<td></td>
</tr>
<tr>
<td>L8625</td>
<td>External recharging system for battery for use with cochlear implant or auditory osseointegrated device, replacement only, each</td>
<td></td>
</tr>
<tr>
<td>L8627</td>
<td>Cochlear implant, external speech processor, component, replacement</td>
<td></td>
</tr>
<tr>
<td>L8628</td>
<td>Cochlear implant, external controller component, replacement</td>
<td></td>
</tr>
<tr>
<td>L8629</td>
<td>Transmitting coil and cable, integrated, for use with cochlear implant device, replacement</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: January 1996
Cosmetic and Reconstructive Surgery

Effective: August 1, 2022

Next Review: May 2023
Last Review: June 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Cosmetic surgery is performed to reshape normal body structures in order to improve appearance.

Reconstructive surgery is primarily performed to improve or correct a functional impairment.

NOTE: This policy is not intended to address treatment of gender dysphoria which is addressed in the Gender Affirming Interventions for Gender Dysphoria medical policy, Medicine, Policy No. 153, which may be applicable.

MEDICAL POLICY CRITERIA

Notes:

- Many member contracts have very specific language regarding covered reconstructive services and excluded cosmetic procedures. Specific member contract language has precedence over medical policy, and requests for coverage of potentially cosmetic services should be reviewed by applicable member contract language.
- Specific services may be addressed in separate medical policies. Please see cross references below.
I. The following criteria may be applied when member contract language is not specific:

A. If the intervention is intended to treat a functional impairment and if no other contract exclusions apply, it may be considered medically necessary.

B. If the intervention is not intended to treat a functional impairment, the cause of the condition must be determined, for example, accident/injury/trauma, post-treatment, congenital anomaly, disease. If the cause is included in the definition of reconstructive services in the benefits contract language, then the treatment may be covered.

C. If the intervention is not intended to treat a functional impairment, the cause of the condition must be determined, for example, accident/injury/trauma, post-treatment, congenital anomaly, disease. If the cause is not included in the definition of reconstructive services in the benefits contract language, then the treatment is considered cosmetic.

The following flow chart may be used as a guide to interpreting benefits language.

CROSS REFERENCES

1. Gender Affirming Interventions for Gender Dysphoria, Medicine, Policy No. 153
2. Endometrial Ablation, Surgery, Policy No. 01
3. Panniculectomy, Surgery, Policy No. 12.01
4. Pectus Excavatum, Surgery, Policy No. 12.02
5. Ventral Hernia Repair, Surgery, Policy No. 12.03
6. Dermabrasion or Microdermabrasion, Surgery, Policy No. 12.04
7. Blepharoplasty and Brow Ptosis Repair, Surgery, Policy No. 12.05

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
REFERENCES

None

CODES

NOTE: CPT codes 17106-17108 are used for the destruction of vascular proliferative lesions only. If the treatment does not destroy the lesion, or if a lesion is not considered a “vascular proliferative lesion” (e.g., hypervascular, hypertrophic, or keloid scars), then the treatment should not be reported using these codes. Unlisted code 17999 (Unlisted procedure, skin, mucous membrane and subcutaneous tissue) should be reported instead.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>11920</td>
<td>Tattooing, intradermal introduction of insoluble opaque pigments to correct color defects of skin, including micropigmentation; 6.0 sq cm or less</td>
</tr>
<tr>
<td></td>
<td>11921</td>
<td>Tattooing, intradermal introduction of insoluble opaque pigments to correct color defects of skin, including micropigmentation; 6.1 to 20.0 sq cm</td>
</tr>
<tr>
<td></td>
<td>11922</td>
<td>Tattooing, intradermal introduction of insoluble opaque pigments to correct color defects of skin, including micropigmentation; each additional 20.0 sq cm, or part thereof</td>
</tr>
<tr>
<td></td>
<td>11950</td>
<td>Subcutaneous injection of filling material (eg, collagen); 1 cc or less</td>
</tr>
<tr>
<td></td>
<td>11951</td>
<td>Subcutaneous injection of filling material (eg, collagen); 1.1 to 5.0 cc</td>
</tr>
<tr>
<td></td>
<td>11952</td>
<td>Subcutaneous injection of filling material (eg, collagen); 5.1 to 10.0 cc</td>
</tr>
<tr>
<td></td>
<td>11954</td>
<td>Subcutaneous injection of filling material (eg, collagen); over 10.0 cc</td>
</tr>
<tr>
<td></td>
<td>15769</td>
<td>Grafting of autologous soft tissue, other, harvested by direct excision (eg, fat, dermis, fascia)</td>
</tr>
<tr>
<td></td>
<td>15771</td>
<td>Grafting of autologous fat harvested by liposuction technique to trunk, breasts, scalp, arms, and/or legs; 50 cc or less injectate</td>
</tr>
<tr>
<td></td>
<td>15772</td>
<td>Grafting of autologous fat harvested by liposuction technique to trunk, breasts, scalp, arms, and/or legs; each additional 50 cc injectate, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15773</td>
<td>Grafting of autologous fat harvested by liposuction technique to face, eyelids, mouth, neck, ears, orbits, genitalia, hands, and/or feet; 25 cc or less injectate</td>
</tr>
<tr>
<td></td>
<td>15774</td>
<td>Grafting of autologous fat harvested by liposuction technique to face, eyelids, mouth, neck, ears, orbits, genitalia, hands, and/or feet; each additional 25 cc injectate, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15775</td>
<td>Punch graft for hair transplant; 1 to 15 punch grafts</td>
</tr>
<tr>
<td></td>
<td>15776</td>
<td>Punch graft for hair transplant; more than 15 punch grafts</td>
</tr>
<tr>
<td></td>
<td>15819</td>
<td>Cervicoplasty</td>
</tr>
<tr>
<td></td>
<td>15824</td>
<td>Rhytidectomy; forehead</td>
</tr>
<tr>
<td></td>
<td>15825</td>
<td>Rhytidectomy; neck with platysmal tightening (platysmal flap, P-flap)</td>
</tr>
<tr>
<td></td>
<td>15826</td>
<td>Rhytidectomy; glabellar frown lines</td>
</tr>
<tr>
<td></td>
<td>15828</td>
<td>Rhytidectomy; cheek, chin and neck</td>
</tr>
<tr>
<td></td>
<td>15829</td>
<td>Rhytidectomy; superficial musculoaponeurotic system (SMAS) flap</td>
</tr>
<tr>
<td>Code</td>
<td>Procedure Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>15832</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); thigh</td>
<td></td>
</tr>
<tr>
<td>15833</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); leg</td>
<td></td>
</tr>
<tr>
<td>15835</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); hip</td>
<td></td>
</tr>
<tr>
<td>15837</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); arm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); forearm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or hand</td>
<td></td>
</tr>
<tr>
<td>15876</td>
<td>Suction assisted lipectomy; head and neck</td>
<td></td>
</tr>
<tr>
<td>15878</td>
<td>Suction assisted lipectomy; upper extremity</td>
<td></td>
</tr>
<tr>
<td>17106</td>
<td>Destruction of cutaneous vascular proliferative lesions (eg, laser technique);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>less than 10 sq cm</td>
<td></td>
</tr>
<tr>
<td>17107</td>
<td>Destruction of cutaneous vascular proliferative lesions (eg, laser technique);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0 to 50.0 sq cm</td>
<td></td>
</tr>
<tr>
<td>17108</td>
<td>Destruction of cutaneous vascular proliferative lesions (eg, laser technique);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>over 50.0 sq cm</td>
<td></td>
</tr>
<tr>
<td>17999</td>
<td>Unlisted procedure, skin, mucous membrane and subcutaneous tissue</td>
<td></td>
</tr>
<tr>
<td>21137</td>
<td>Reduction forehead; contouring only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction forehead; contouring and application of contouring material or bone</td>
<td></td>
</tr>
<tr>
<td>21139</td>
<td>Reduction forehead; contouring and setback of anterior frontal sinus wall</td>
<td></td>
</tr>
<tr>
<td>21245</td>
<td>Reconstruction of mandible, or maxilla, subperiosteal implant; partial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconstruction of mandible, or maxilla, subperiosteal implant; complete</td>
<td></td>
</tr>
<tr>
<td>21248</td>
<td>Reconstruction of mandible or maxilla, endosteal implant (eg, blade, cylinder);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>partial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malar augmentation, prosthetic material</td>
<td></td>
</tr>
<tr>
<td>21282</td>
<td>Lateral canthopexy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of masseter muscle and bone (eg, for treatment of benign masseteric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hypertrophy); intraoral approach</td>
<td></td>
</tr>
<tr>
<td>31830</td>
<td>Revision of tracheostomy scar</td>
<td></td>
</tr>
<tr>
<td>49250</td>
<td>Suture of tongue to lip for micrornathia (Douglas type procedure)</td>
<td></td>
</tr>
<tr>
<td>67950</td>
<td>Umbilicectomy, omphalectomy, excision of umbilicus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plastic operation on penis to correct angulation</td>
<td></td>
</tr>
<tr>
<td>69090</td>
<td>Ear piercing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otoplasty, protruding ear, with or without size reduction</td>
<td></td>
</tr>
<tr>
<td>54360</td>
<td>Plastic operation on penis to correct angulation</td>
<td></td>
</tr>
<tr>
<td>69300</td>
<td>Ear piercing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otoplasty, protruding ear, with or without size reduction</td>
<td></td>
</tr>
<tr>
<td>69300</td>
<td>Medial canthopexy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateral canthopexy</td>
<td></td>
</tr>
<tr>
<td>70591</td>
<td>Reducing masseter muscle and bone (eg, for treatment of benign masseteric hypertrophy;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intraoral approach</td>
<td></td>
</tr>
<tr>
<td>31830</td>
<td>Revision of tracheostomy scar</td>
<td></td>
</tr>
<tr>
<td>49250</td>
<td>Suture of tongue to lip for micrornathia (Douglas type procedure)</td>
<td></td>
</tr>
<tr>
<td>67950</td>
<td>Umbilicectomy, omphalectomy, excision of umbilicus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plastic operation on penis to correct angulation</td>
<td></td>
</tr>
<tr>
<td>69090</td>
<td>Ear piercing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otoplasty, protruding ear, with or without size reduction</td>
<td></td>
</tr>
<tr>
<td>J0591</td>
<td>Injection, deoxycholic acid, 1 mg</td>
<td></td>
</tr>
</tbody>
</table>

HCPCS

<table>
<thead>
<tr>
<th>Code</th>
<th>Procedure Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0429</td>
<td>Dermal filler injection(s) for the treatment of facial lipodystrophy syndrome (LDS)</td>
</tr>
<tr>
<td></td>
<td>(e.g., as a result of highly active antiretroviral therapy)</td>
</tr>
<tr>
<td>J0591</td>
<td>Injection, deoxycholic acid, 1 mg</td>
</tr>
<tr>
<td>Code</td>
<td>Procedure, Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Q2026</td>
<td>Injection, Radiesse, 0.1 ML</td>
</tr>
<tr>
<td>Q2028</td>
<td>Injection, Sculptra, 0.5 mg</td>
</tr>
</tbody>
</table>

Date of Origin: January 1996
Panniculectomy

Effective: July 1, 2022

Next Review: May 2023
Last Review: May 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Panniculectomy refers to the removal of excess skin and subcutaneous tissue typically from the abdominal area.

MEDICAL POLICY CRITERIA

Note: Member contract language takes precedent over medical policy. Member contracts for covered services vary and may exclude weight loss surgery and all associated, services, supplies, and/or complications.

I. Panniculectomy may be considered medically necessary when all of the following Criteria (A.-D.) are met:
 A. Submission of photographs documenting significant pannus which hangs below the level of the pubis; and
 B. The pannus causes a chronic and persistent skin condition (e.g., intertriginous dermatitis, panniculitis, cellulitis or skin ulcerations) that is refractory to at least 3 months of medical treatment and associated with at least one episode of cellulitis requiring systemic antibiotics (oral and/or intravenous). In addition to good
hygiene practices, treatment should also include topical antifungals, topical and/or systemic corticosteroids; and

C. The pannus causes functional physical impairment documented to interfere with activities of daily living (see Policy Guidelines); and

D. Clinical documentation of stable weight for at least six months or at least 18 months after bariatric surgery.

II. Panniculectomy which does not meet the above Criteria I. is considered **cosmetic**.

III. Abdominoplasty with or without panniculectomy is considered **cosmetic**.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

Activities of Daily Living (ADLs) Definition: Instrumental ADLs are defined as feeding, bathing, dressing, grooming, meal preparation, household chores, and occupational tasks that are required as a daily part of job functioning.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine whether the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- The specific functional physical impairment caused by the pannus
- Front and lateral view photographs demonstrating redundant/excessive skin and the size of the pannus
- Clinical documentation about the nature and extent of the chronic and persistent skin condition that is refractory to at least three months of medical treatment [at least one episode of cellulitis requiring systemic antibiotics (oral and/or intravenous) and good hygiene practices including topical antifungals, topical and/or systemic corticosteroids]
- Any bariatric surgery procedure performed within the past three years, including date of procedure
- Clinical documentation of stable weight for at least six months or at least 18 months after bariatric surgery

CROSS REFERENCES

1. [Cosmetic and Reconstructive Surgery](#), Surgery, Policy No. 12

BACKGROUND

This procedure is often performed after substantial weight loss as a result of bariatric surgery or diet. According to the American Society of Plastic Surgeons, “abdominoplasty, typically performed for cosmetic purposes, involves the removal of excess skin and fat from the pubis to the umbilicus or above, and may include fascial plication of the rectus muscle diastasis and a neoumbilicoplasty. Panniculectomy involves the removal of hanging excess skin/fat in a transverse or vertical wedge but does not include muscle plication, neoumbilicoplasty or flap elevation.”

There is limited evidence and clinical practice guidelines which indicate when
panniculectomy may be appropriate due to functional impairment.[2, 3] Typically no functional impairment is associated with pannus development.

REFERENCES

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>15830</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); abdomen, infraumbilical panniculectomy</td>
</tr>
<tr>
<td></td>
<td>15838</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); submental fat pad</td>
</tr>
<tr>
<td></td>
<td>15847</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy), abdomen (eg, abdominoplasty) (includes umbilical transposition and fascial plication) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>17999</td>
<td>Unlisted procedure, skin, mucous membrane and subcutaneous tissue</td>
</tr>
</tbody>
</table>

HCPCS None

Date of Origin: August 2018
Pectus Excavatum

Effective: July 1, 2021

Next Review: May 2022
Last Review: May 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Pectus excavatum, commonly referred to as "funnel chest," is a chest wall malformation in which the sternum is depressed inward, causing midline narrowing of the thoracic cavity.

MEDICAL POLICY CRITERIA

I. Surgical repair of pectus excavatum may be considered **medically necessary** in children or adults when at least two of the following medical necessity criteria are met:
 A. Documented progression of the deformity with associated symptoms.
 B. Pulmonary function studies indicate components of restrictive airway disease.
 C. Haller index greater than 3.25 at end-inspiration. This Haller index is the ratio derived from a chest CT or magnetic resonance imaging (MRI) scan by dividing the transverse diameter by the anterior-posterior diameter.
 D. Cardiac evaluation (electrocardiogram [EKG], chest CT, and/or echocardiogram) demonstrates compression-caused mitral valve prolapse, abnormal rhythm, conduction abnormalities, or significant cardiac deformity.

II. Surgical repair of pectus excavatum that does not meet at least two of the criteria in I.A. – I. D. above is considered **not medically necessary**.
 NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES

BACKGROUND

Although pectus excavatum may be visually prominent, in most cases the loss of volume is not significant and does not interfere with ventilation. Pectus excavatum is occasionally associated with upper or lower airway obstruction; however, when this condition is successfully treated or resolves spontaneously, the pectus deformity may lessen or disappear. Pectus excavatum may also be associated with segmental bronchomalacia, and in some patients, cardiac function may be adversely affected. In many children, the heart is shifted leftward, and in the rare patient, cardiac function may be adversely affected.

Surgical correction of pectus excavatum is not physiologically beneficial for the vast majority of patients; surgery is most often sought due to psychological and cosmetic concerns. However, for some patients with extreme deformity, operative interventions may be indicated for functional reasons.

SUMMARY

There is enough research to show that surgical repair of pectus excavatum may improve health outcomes for individuals with the severity and functional impairment outlined in the policy criteria. Therefore, surgical repair of pectus excavatum may be considered medically necessary when policy criteria are met.

Surgical repair of pectus excavatum is not clinically needed when the severity and functional impairment outlined in the policy criteria are not demonstrated. Therefore, when policy criteria are not met, surgical repair of pectus excavatum is considered not medically necessary.

REFERENCES

None

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>21740</td>
<td>Reconstructive repair of pectus excavatum or carinatum; open</td>
</tr>
<tr>
<td></td>
<td>21742</td>
<td>Reconstructive repair of pectus excavatum or carinatum; minimally invasive approach (Nuss procedure), without thoracoscopy</td>
</tr>
<tr>
<td></td>
<td>21743</td>
<td>Reconstructive repair of pectus excavatum or carinatum; minimally invasive approach (Nuss procedure), with thoracoscopy</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: August 2018

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
NOTE: This policy has been revised. The revised policy will be effective October 1, 2022. To view the revised policy, click here.

Medical Policy Manual

Surgery, Policy No. 12.03

Ventral Hernia Repair

Effective: December 1, 2021

Next Review: May 2022
Last Review: October 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Ventral hernias occur in the abdomen and develop when a portion of the lining of the peritoneum pushes through a weak area of the abdominal wall fascia. This results in a protrusion which can be filled with intra-abdominal fat or intestine.

MEDICAL POLICY CRITERIA

Notes:

- CPT states, “select the name of the procedure or service that accurately identifies the service performed”; therefore, an abdominal wall hernia with a specific CPT code (i.e. epigastric, umbilical, spigelian, or lumbar hernia repair) should not be coded as a ventral hernia repair.

- A ventral hernia at the site of a prior surgery is considered an incisional hernia.

I. Surgical repair of a ventral hernia may be considered medically necessary in symptomatic patients when there is documentation that one or more of the following Criteria are met:

A. Hernia associated pain; or
B. Bowel obstruction or strangulation; or
C. Incarceration; or
D. Thinning of the overlying skin; or
E. Loss of abdominal domain (see Policy Guidelines).

II. Surgical repair using the component separation technique (CST) may be considered **medically necessary** for a large (defined as width greater than or equal to 10 cm) midline ventral hernia (see Policy Guidelines).

III. Surgical repair of ventral hernias is considered **not medically necessary** when Criterion I. is not met.

IV. Surgical repair of an abdominal wall defect, including but not limited to ventral hernias, using the component separation technique (CST) is considered **not medically necessary** when Criterion II. is not met.

V. Surgical repair of asymptomatic ventral hernias, including ventral hernias found incidentally during surgery, is considered **not medically necessary**.

VI. Surgical repair of diastasis recti is considered **cosmetic**.

VII. Abdominoplasty, and related procedures, including but not limited to fascial plication, surgical imbrication, and tightening of lax fascia, are considered **cosmetic**.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

- Loss of abdominal domain is defined as 50% of the abdominal viscera reside outside the abdominal cavity.[1]
- The component separation technique (CST) is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20 cm-wide defects in the midline area.

LIST OF INFORMATION NEEDED FOR REVIEW

SUBMISSION OF DOCUMENTATION

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Current symptomology and description of associated functional physical impairment if applicable
- Diagnostic testing results as applicable to request and associated policy criteria
- Photographs as applicable to request and associated policy criteria
- If the component separation technique is being performed, indicate the location and size of the hernia in centimeters.
Ventral hernias are usually acquired when pressure is applied to an area of the abdomen which is weakened. They can occur spontaneously, known as a primary hernia, or at the site of a previous surgical incision, known as an incisional hernia.

Abdominal wall hernias (Epigastric, Umbilical, Lumbar and Spigelian) are defined by their anatomical location. Patients who are obese, older, under-weight, pregnant, have ascites or other factors which increase intra-abdominal pressure may be predisposed to developing abdominal hernias. Most hernias are acquired; however, the occurrence of umbilical hernias in infants is considered a congenital defect which usually resolves before the age of two. Children with persistent symptoms may require surgical repair.

Diastasis recti is defined as increased distance between the right and left rectus abdominis muscles that is created by the stretching of the collagen sheath (the linea alba) connecting the two rectus abdominis muscles. Diastasis recti is not considered a hernia as there is no fascial defect.

In general, small, asymptomatic hernias do not require surgical repair. Adults with larger symptomatic hernias should be considered for ventral hernia repair. Over time, hernia symptoms may develop and include pain, bowel obstruction, incarceration, thinning of the overlying skin, strangulation and displacement of abdominal contents into the hernia itself, known as loss of abdominal domain.

LOSS OF ABDOMINAL DOMAIN

Loss of abdominal domain is defined as 50% of the abdominal viscera reside outside the abdominal cavity.[1]

COMPONENT SEPARATION TECHNIQUE

The component separation technique (CST) is a surgical method that may be used to repair large, complicated ventral hernias using a rectus abdominis muscle advancement flap. A defect width greater than or equal to 10 cm is classified as a large hernia by the European Hernia Society.[2] This surgical technique is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20 cm-wide defects in the midline area. Mesh reinforcement is often used in recurrent repairs where the abdominal defect is too large and there is a large amount of tension on the CST repair. CST is not typically used as an initial surgical approach for small primary ventral hernia repairs.

SUMMARY

There is enough evidence to show that the surgical repair of a ventral hernia improves health outcomes for symptomatic patients meeting criteria. Therefore, surgical repair of a ventral hernia is recommended for patients who meet the specified criteria.
hernia may be considered medically necessary in symptomatic patients when policy criteria are met.

The component separation technique is a method that may be used to repair large (greater than 10 centimeters) midline ventral hernias. Therefore, surgical repair of large (greater than or equal to 10 centimeters in width) midline ventral or incisional hernias using the component separation technique may be considered medically necessary. Surgical repair of an abdominal wall defect, including but not limited to ventral or incisional hernias that are less than 10 centimeters in width using the component separation technique is considered not medically necessary.

There is not sufficient evidence that surgical repair of asymptomatic ventral hernias improves health outcomes. Therefore, surgical repair of asymptomatic ventral hernias is considered not medically necessary. Surgical repair of diastasis recti, abdominoplasty, and related procedures, including but not limited to fascial plication, surgical imbrication, and tightening of lax fascia, are considered cosmetic.

REFERENCES

CODES

NOTE: Laparoscopic ventral hernia repair (with or without robotic assistance) is reported with CPT codes 49654 or 49656. The separation component is reported with CPT code 15734. More complicated laparoscopic hernia repair procedures that may include separation of components may use CPT code 49659, Unlisted laparoscopy procedure, hernioplasty, herniorrhaphy, herniotomy, instead, but the use of this code would include both the hernia repair and the component separation elements.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>15734</td>
<td>Muscle, myocutaneous, or fasciocutaneous flap; trunk</td>
</tr>
<tr>
<td></td>
<td>49560</td>
<td>Repair initial incisional or ventral hernia; reducible</td>
</tr>
<tr>
<td></td>
<td>49565</td>
<td>Repair recurrent incisional or ventral hernia; reducible</td>
</tr>
<tr>
<td></td>
<td>49562</td>
<td>Laparoscopy, surgical, repair, ventral, umbilical, spigelian or epigastric hernia (includes mesh insertion, when performed); reducible</td>
</tr>
<tr>
<td></td>
<td>49654</td>
<td>Laparoscopy, surgical, repair, incisional hernia (includes mesh insertion, when performed); reducible</td>
</tr>
<tr>
<td></td>
<td>49656</td>
<td>Laparoscopy, surgical, repair, recurrent incisional hernia (includes mesh insertion, when performed); reducible</td>
</tr>
<tr>
<td></td>
<td>49659</td>
<td>Unlisted laparoscopy procedure, hernioplasty, herniorrhaphy, herniotomy</td>
</tr>
</tbody>
</table>

Date of Origin: May 2010
Blepharoplasty, Repair of Blepharoptosis, and Brow Ptosis Repair

Effective: July 1, 2022

Next Review: May 2023
Last Review: May 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Blepharoplasty is a surgical procedure performed on the upper and/or lower eyelids to remove or repair excess tissue that obstructs the field of vision. Blepharoptosis repair involves repair of drooping of the eyelid and can include shortening or advancement of the elevator muscle of the eyelid. These procedures may also be performed for cosmetic purposes in the absence of visual field obstruction.

MEDICAL POLICY CRITERIA

Note: Blepharoplasty CPT codes and policy criteria do not apply to eyelid retraction.

I. One surgical session for either unilateral or bilateral blepharoplasty, repair of blepharoptosis, and/or brow ptosis repair may be considered medically necessary when one or more of the following Criteria is met.

A. Blepharoplasty and repair of blepharoptosis may be considered medically necessary when one or more of the following Criteria (1. or 2.) is met:

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
1. Trichiasis, ectropion or entropion for an affected upper or lower lid when documented by lateral and full-face photographs clearly showing the affected lid(s); or

2. Anophthalmia when there is clinical documentation that the upper eyelid position interferes with the fit of a prosthesis in the socket.

B. Unilateral or bilateral upper lid blepharoplasty or repair of blepharoptosis may be considered medically necessary for reconstructive purposes when all of the following Criteria (1.- 4.) are met:

1. Documentation of clinically decreased vision with functional impairment due to visual field loss; and

2. Prior to manual elevation of redundant upper eyelid skin (taping), the superior visual field, in at least one eye is less than or equal to 20 degrees. Examinations may be either automated or hand drawn, but need to clearly document multiple (including central axis) specific visual points not seen; and

3. With taping of the eyelids, in at least one eye, superior visual fields improve by at least 12 degrees; and

4. Photographs taken in the pupillary plane with a primary gaze (looking straight ahead) that demonstrate pupillary obstruction in at least one eye.

C. Brow ptosis repair including open and endoscopic procedures may be considered medically necessary for reconstructive purposes when both of the following Criteria (1. and 2.) are met:

1. At least one eye meets either Criterion I.A. or I.B. above; and

2. Frontal and lateral facial photographs demonstrate the eyebrow is below the supraorbital rim.

II. Surgical session(s) in excess of one, for unilateral or bilateral blepharoplasty, repair of blepharoptosis, and/or brow ptosis repair is considered not medically necessary.

III. Unilateral or bilateral upper lid blepharoplasty, repair of blepharoptosis, and brow ptosis repair is considered not medically necessary in either of the following scenarios:

A. Criterion I. above is not met; or

B. There is documentation of unstable related disease process, such as myasthenia gravis or a thyroid condition.

IV. Blepharoplasty of the lower lids for excessive skin is considered not medically necessary.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine whether the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

Trichiasis, ectropion or entropion
• Any congenital or anatomical issue causing issues with vision
• Lateral and full-face photographs

Anophthalmia

• Clinical documentation that the upper eyelid position interferes with the fit of a prosthesis in the socket

Blepharoplasty for all other reasons

• Any disease process that can affect vision (e.g. myasthenia gravis or thyroid condition) or documentation to support absence of such disease process
• Clinical documentation of functional impairment due to vision loss
• Clinical documentation of visual field testing and examinations including 0-20 degrees as well as above 20 degrees, documenting:
 o Points of vision seen and not seen (optimal), or points not seen as long as clearly identified and including points on the central axis, and
 o Proof that taping improves vision enough to meet criteria guidelines
• Clear direct frontal and lateral photographs in the pupillary plane with gaze in the primary position (looking straight ahead) that are consistent with the above visual fields and examinations
• Clinical documentation that surgical repair will be completed in one session (surgery)
• Clinical documentation to support the procedure is for the upper lid only

Brow Ptosis

• Photographs demonstrate the eyebrow is below the supraorbital rim

CROSS REFERENCES

BACKGROUND

Functional visual impairment occurs when excess upper eyelid tissue overhangs the upper eyelid margin and results in significant superior visual field obstruction. Visual field studies (VF) are used to determine the degree of obstruction. VF should be measured both with and without elevation of the excess tissue to determine the extent of visual field defect at rest and the amount of improvement that may be obtained from blepharoplasty. VF with points of vision seen and not seen is optimal; however, the plan will accept VF with only points not seen as long as clearly identified and must include points on the central axis.

Cahill (2011) published a report by the American Academy of Ophthalmology, on functional indications for upper eyelid ptosis and blepharoplasty surgery. Thirteen studies were included. The authors stated that there are certain indicators that predict surgery outcomes, including margin reflex distance of 1 (MRD(1)) of 2mm or less and superior visual field loss of at least 12 degrees or 24%

REFERENCES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>15820</td>
<td>Blepharoplasty, lower eyelid;</td>
</tr>
<tr>
<td></td>
<td>15821</td>
<td>Blepharoplasty, lower eyelid; with extensive herniated fat pad</td>
</tr>
<tr>
<td></td>
<td>15822</td>
<td>Blepharoplasty, upper eyelid;</td>
</tr>
<tr>
<td></td>
<td>15823</td>
<td>Blepharoplasty, upper eyelid; with excessive skin weighting down lid</td>
</tr>
<tr>
<td></td>
<td>67900</td>
<td>Repair of brow ptosis (supraciliary, mid-forehead or coronal approach)</td>
</tr>
<tr>
<td></td>
<td>67901</td>
<td>Repair of blepharoptosis; frontalis muscle technique with suture or other material (eg, banked fascia)</td>
</tr>
<tr>
<td></td>
<td>67902</td>
<td>Repair of blepharoptosis; frontalis muscle technique with autologous fascial sling (includes obtaining fascia)</td>
</tr>
<tr>
<td></td>
<td>67903</td>
<td>Repair of blepharoptosis; (tarso) levator resection or advancement, internal approach</td>
</tr>
<tr>
<td></td>
<td>67904</td>
<td>Repair of blepharoptosis; (tarso) levator resection or advancement, external approach</td>
</tr>
<tr>
<td></td>
<td>67906</td>
<td>Repair of blepharoptosis; superior rectus technique with fascial sling (includes obtaining fascia)</td>
</tr>
<tr>
<td></td>
<td>67908</td>
<td>Repair of blepharoptosis; conjunctivo-tarso-Muller's muscle-levator resection (eg, Fasanella-Servat type)</td>
</tr>
<tr>
<td></td>
<td>67909</td>
<td>Reduction of overcorrection of ptosis</td>
</tr>
<tr>
<td></td>
<td>67999</td>
<td>Unlisted procedure, eyelids</td>
</tr>
<tr>
<td></td>
<td>67911</td>
<td>Correction of lid retraction</td>
</tr>
<tr>
<td></td>
<td>67916</td>
<td>Repair of ectropion; excision tarsal wedge</td>
</tr>
<tr>
<td></td>
<td>67917</td>
<td>Repair of ectropion; extensive (eg, tarsal strip operations)</td>
</tr>
<tr>
<td></td>
<td>67923</td>
<td>Repair of entropion; excision tarsal wedge</td>
</tr>
<tr>
<td></td>
<td>67924</td>
<td>Repair of entropion; extensive (eg, tarsal strip or capsulopalpebral fascia repairs operation)</td>
</tr>
<tr>
<td></td>
<td>67950</td>
<td>Canthoplasty (reconstruction of canthus)</td>
</tr>
</tbody>
</table>

Date of Origin: August 2018
Rhinoplasty

Effective: July 1, 2022

Next Review: May 2023
Last Review: May 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Rhinoplasty surgery reshapes the nose and is usually considered cosmetic. Reconstructive rhinoplasty may be performed to improve nasal respiratory function and/or to correct anatomic abnormalities caused by birth defects, disease or trauma.

MEDICAL POLICY CRITERIA

Notes:
- Member contracts for covered services vary. Member contracts may have specific language defining congenital and developmental anomalies. Member contract language takes precedence over medical policy.
 - A congenital anomaly is defined as an anomaly that is present at birth (e.g., cleft palate).
 - Developmental anomalies are conditions that develop some time after birth.

I. Initial or revision rhinoplasty may be considered medically necessary for reconstruction of a nasal deformity in only one or more of the following circumstances:
 A. Secondary to a congenital anomaly, including but not limited to facial cleft; or
 B. After tumor resection; or
C. After trauma which causes significant functional impairment, including but not limited to displaced nasal bone fracture severe enough to cause symptomatic nasal airway obstruction; or

D. Symptomatic nasal airway obstruction (i.e., difficulty breathing related to nasal passage obstruction) when all of the following Criteria (1. – 3.) are met:

1. There is significant bony obstruction of one or both nares documented by an advanced imaging modality such as computed tomography (CT) or magnetic resonance imaging (MRI); and

2. Septoplasty, vestibular stenosis, alar collapse, and/or turbinectomy surgeries are not expected to resolve the bony deformity; and

3. Nasal airway obstruction is poorly responsive to a documented six-week trial of conservative medical management (e.g., topical/nasal corticosteroids, antihistamines).

II. Initial or revision rhinoplasty is considered a cosmetic procedure unless Criterion I. is met.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine whether the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- Condition causing the need for rhinoplasty
- If not caused by congenital anomaly, including but not limited to facial cleft or tumor:
 - Computed tomography (CT), magnetic resonance imaging (MRI) or other advanced imaging documenting significant obstruction of one or both nares
 - Conservative medical management provided, timeline and outcomes
 - Any surgeries performed, with outcomes or documentation of why septoplasty, vestibular stenosis, alar collapse, and/or turbinectomy surgeries alone are not expected to resolve the nasal deformity.

CROSS REFERENCES

2. Absorbable Nasal Implant for Treatment of Nasal Valve Collapse, Surgery, Policy No. 209
3. Cryoablation for Chronic Rhinitis, Surgery, Policy No. 224

REFERENCES

None

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>30120</td>
<td>Excision or surgical planing of skin of nose for rhinophyma</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30400</td>
<td></td>
<td>Rhinoplasty, primary; lateral and alar cartilages and/or elevation of nasal tip</td>
</tr>
<tr>
<td>30410</td>
<td></td>
<td>Rhinoplasty, primary; complete, external parts including bony pyramid, lateral and alar cartilages, and/or elevation of nasal tip</td>
</tr>
<tr>
<td>30420</td>
<td></td>
<td>Rhinoplasty, primary; including major septal repair</td>
</tr>
<tr>
<td>30430</td>
<td></td>
<td>Rhinoplasty secondary; minor revision (small amount of nasal tip work)</td>
</tr>
<tr>
<td>30435</td>
<td></td>
<td>Rhinoplasty secondary; intermediate revision (bony work with osteotomies)</td>
</tr>
<tr>
<td>30450</td>
<td></td>
<td>Rhinoplasty secondary; major revision (nasal tip work and osteotomies)</td>
</tr>
<tr>
<td>30460</td>
<td></td>
<td>Rhinoplasty for nasal deformity secondary to congenital cleft lip and/or palate, including columellar lengthening; tip only</td>
</tr>
<tr>
<td>30462</td>
<td></td>
<td>Rhinoplasty for nasal deformity secondary to congenital cleft lip and/or palate, including columellar lengthening; tip, septum, osteotomies</td>
</tr>
</tbody>
</table>

Date of Origin: August 2018
Laser Treatment for Port Wine Stains

Effective: August 1, 2022

Next Review: May 2023
Last Review: June 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Port wine stain (PWS) is a capillary malformation that begins as a pale pink flat area (macular lesion) in childhood and grows as the patient ages.

MEDICAL POLICY CRITERIA

I. Laser treatment may be considered medically necessary for port wine stains.
II. Destruction of cutaneous vascular lesions for removal of telangiectasias (spider veins) is considered cosmetic.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could our impact review and decision outcome:

Medical records related to history and physical/chart notes documenting presence of port wine stain.
BACKGROUND

Common areas for port wine stains (PWS) to appear are on the face over the areas of the first and second trigeminal nerves and the eyes or mouth. It is common to see a PWS overlying an arteriovenous, arterial or venous malformation. The abnormal blood vessels within the PWS become progressively more dilated in size, which results in the lesion becoming dark purple and elevated in some instances. Nodules and hypertrophy may develop in the soft tissue underlying the PWS. Nodules may continue to grow and can bleed easily if traumatized. PWS persists into adult life and is associated with systemic abnormalities such as glaucoma.

Treatment of a PWS in its macular stage will prevent the development of the hypertrophic component of the lesion. Laser treatment of a PWS diminishes the existing blood vessels making them smaller, fewer in number, and less likely to progress in size.

REFERENCES

None

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>17106</td>
<td>Destruction of cutaneous vascular proliferative lesions (eg, laser technique); less than 10 sq cm</td>
</tr>
<tr>
<td></td>
<td>17107</td>
<td>Destruction of cutaneous vascular proliferative lesions (eg, laser technique); 10.0 to 50.0 sq cm</td>
</tr>
<tr>
<td></td>
<td>17108</td>
<td>Destruction of cutaneous vascular proliferative lesions (eg, laser technique); over 50.0 sq cm</td>
</tr>
</tbody>
</table>

HCPCS None

Date of Origin: August 2018
Medical Policy Manual

Chemical Peels

Effective: September 1, 2022

Next Review: May 2023

Last Review: July 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

A chemical peel refers to a controlled removal of varying layers of the epidermis and superficial dermis with the use of a ‘wounding’ agent, such as phenol or trichloroacetic acid (TCA).

MEDICAL POLICY CRITERIA

EPIDERMAL CHEMICAL PEELS

I. Epidermal chemical peels with 50 - 70% alpha hydroxy acids may be considered **medically necessary** as a treatment of active acne that has failed to respond to a trial of topical and/or oral antibiotic acne therapy.

II. Epidermal chemical peels with 50 - 70% alpha hydroxy acids are considered **not medically necessary** as a first-line treatment of active acne.

III. Epidermal chemical peels for the treatment of photoaged skin, wrinkles, or acne scarring are considered **cosmetic**.

DERMAL CHEMICAL PEELS

I. Dermal chemical peels may be considered **medically necessary** to treat numerous (>10) actinic keratoses or other premalignant skin lesions, when treatment of the individual lesions becomes impractical.
II. Dermal chemical peels are considered **not medically necessary** to treat less than 10 actinic keratoses or other premalignant skin lesions.

III. Dermal chemical peels as treatments of end-stage acne scarring are considered **cosmetic**.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES

1. [Cosmetic and Reconstructive Surgery](#), Surgery, Policy No. 12

BACKGROUND

The most common indication for chemical peeling is as a treatment of photoaged skin, correcting pigmentation abnormalities, solar elastosis, and wrinkles. However, chemical peeling has also been used as a treatment for various stages of acne and multiple actinic keratoses when treatment of individual lesions is not feasible.

An epidermal peel may be used to remove fine, subtle lines, soften the appearance of enlarged pores, improve the skin texture and lighten hyper-pigmentary disorders. Multiple epidermal peels (also referred to as chemical exfoliation) may also be used in patients with active acne.

Dermal peels may be used to treat deep wrinkling, actinic damage, or actinic keratoses. Acne scarring has also been treated with dermal peels.

REFERENCES

None

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>15788</td>
<td>Chemical peel, facial; epidermal</td>
</tr>
<tr>
<td></td>
<td>15789</td>
<td>Chemical peel; facial; dermal</td>
</tr>
<tr>
<td></td>
<td>15792</td>
<td>Chemical peel; nonfacial; epidermal</td>
</tr>
<tr>
<td></td>
<td>15793</td>
<td>Chemical peel; nonfacial; dermal</td>
</tr>
<tr>
<td></td>
<td>17360</td>
<td>Chemical exfoliation for acne (eg, acne paste, acid)</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Date of Origin: August 2018

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Implantable Cardioverter Defibrillator

Effective: August 1, 2022

Next Review: April 2023
Last Review: June 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

The automatic implantable cardioverter defibrillator (ICD) is a device designed to monitor a patient’s heart rate, recognize ventricular fibrillation (VF) or ventricular tachycardia (VT), and deliver an electric shock to terminate these arrhythmias to reduce the risk of sudden cardiac death. Indications for ICD implantation can be broadly subdivided into 1) primary prevention, i.e., their use in patients who are considered at high risk for sudden cardiac death but who have not yet experienced life-threatening VT or VF; and 2) secondary prevention, i.e., their use in patients who have experienced a potentially life-threatening episode of VT (near sudden cardiac death).

MEDICAL POLICY CRITERIA

I. Transvenous or subcutaneous implantable cardioverter defibrillator (ICD) implantation in pediatric patients (less than 18 years of age) may be considered **medically necessary**.

II. The use of a transvenous automatic implantable cardioverter defibrillator (ICD) may be considered **medically necessary** in adult patients (age 18 and older) who are not candidates for a cardiac revascularization procedure (coronary artery bypass graft...
[CABG] or percutaneous transluminal coronary angioplasty [PTCA]) and who meet one of the following criteria (A. or B.):

A. For **primary** prevention when one or more of the following criteria are met:

1. Ischemic cardiomyopathy with New York Heart Association (NYHA) functional Class I symptoms (See Policy Guidelines) when both of the following criteria (a. and b.) are met:
 a. History of myocardial infarction at least 40 days before ICD treatment; and
 b. Left ventricular ejection fraction of 30% or less.

2. Ischemic cardiomyopathy with NYHA functional Class II or Class III symptoms (See Policy Guidelines) when both of the following criteria (a. and b.) are met:
 a. History of myocardial infarction at least 40 days before ICD treatment; and
 b. Left ventricular ejection fraction of 35% or less.

3. Nonischemic cardiomyopathy, including arrhythmogenic right ventricular cardiomyopathy, or neuromuscular disorders when one or more of the following criteria are met:
 a. Syncope presumed due to ventricular arrhythmia; or
 b. All of the following criteria are met:
 i. Left ventricular ejection fraction of 35% or less; and
 ii. Reversible causes have been excluded; and
 iii. Response to optimal medical therapy has been adequately determined.

4. Heart failure with left ventricular ejection fraction of 40% or less, who are awaiting heart transplantation and will be discharged home

5. Nonhospitalized heart failure patients with NYHA Class IV symptoms (see Policy Guidelines) that are candidates for a left ventricular assist device (LVAD) or cardiac transplantation

6. Hypertrophic cardiomyopathy (HCM) at high risk for sudden cardiac death with at least one of the following major risk factors:
 a. History of premature HCM-related sudden death in one or more first-degree relatives younger than 50 years; or
 b. Left ventricular hypertrophy greater than 30 mm; or
 c. One or more runs of nonsustained ventricular tachycardia at heart rates of 120 beats per minute or greater on 24-hour Holter monitoring; or
 d. Prior unexplained syncope inconsistent with neurocardiogenic origin
 e. Abnormal blood pressure response to exercise.

7. Documented **LMNA** gene mutations (lamin A/C deficiency) in patients with at least one of the following conditions:

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
a. Cardiomyopathy; or
b. Symptomatic cardiac arrhythmias; or
c. Left ventricular ejection fraction less than 45%; or
d. Nonsustained ventricular tachycardia; or
e. Nonsense \textit{LMNA} variant.

8. Diagnosis of long QT syndrome (LQTS) with at least one of the following:
a. Prior cardiac arrest; or
b. Recurrent syncopal events while on beta blocker therapy.

9. Diagnosis of Brugada syndrome (BrS) with at least one of the following:
a. Prior cardiac arrest; or
b. Spontaneous sustained ventricular tachycardia (VT) with or without syncope; or
c. Spontaneous diagnostic type 1 ECG with a history of syncope, seizure, or nocturnal agonal respiration after noncardiac causes have been excluded; or
d. Development of ventricular fibrillation (VF) during programmed electrical stimulation.

10. Diagnosis of catecholaminergic polymorphic ventricular tachycardia (CPVT) with at least one of the following:
a. Prior cardiac arrest; or
b. Recurrent syncope; or
c. Polymorphic/bidirectional VT that is nonresponsive to medical management, or left cardiac sympathetic denervation.

11. Diagnosis of short QT syndrome (SQTS) with at least one of the following:
a. Prior cardiac arrest; or
b. Symptomatic and have documented spontaneous VT with or without syncope; or
c. Family history of sudden cardiac death.

12. Diagnosis of cardiac sarcoidosis with at least one of the following:
a. Prior cardiac arrest; or
b. Sustained VT; or
c. Left ventricular ejection fraction of 35% or less.

13. Diagnosis of adult congenital heart disease with hemodynamically unstable VT or VF.

14. Patients with a left ventricular assist device (LVAD) and sustained ventricular arrhythmia

B. For secondary prevention in patients who meet one or more of the following:
1. History of a life-threatening clinical event associated with ventricular arrhythmic events such as sustained ventricular tachyarrhythmia, after reversible causes (e.g., acute ischemia) have been excluded; or

2. Diagnosis of nonischemic cardiomyopathy or ischemic heart diseases with at least one of the following:
 a. Hemodynamically unstable ventricular tachycardia; or
 b. Stable ventricular tachycardia not due to reversible causes (e.g., acute ischemia).

III. The use of the transvenous ICD is considered investigational for adult patients when Criterion II. is not met and including, but not limited to, patients with one or more of the following:
 A. Have had an acute myocardial infarction (i.e., less than 40 days before ICD treatment); or
 B. Have New York Heart Association (NYHA) Class IV (See Policy Guidelines) congestive heart failure (unless patient is eligible to receive a combination cardiac resynchronization therapy ICD device); or
 C. Have had a cardiac revascularization procedure in the past 3 months (coronary artery bypass graft [CABG] or percutaneous transluminal coronary angioplasty [PTCA]) or are candidates for a cardiac revascularization procedure; or
 D. Have noncardiac disease that would be associated with life expectancy less than one year.

IV. The use of the subcutaneous ICD may be considered medically necessary in adult patients (age 18 years and older) who meet all of the following criteria (A.-C.):
 A. Applicable medical necessity criteria for transvenous ICD is met (Criterion II.); and
 B. Have no indication for antibradycardia pacing; and
 C. Do not have ventricular arrhythmias that are known or anticipated to respond to antitachycardia pacing.

V. The use of the subcutaneous ICD is considered investigational for adult patients when Criteria IV. are not met.

VI. Revision(s) or replacement(s) of a transvenous or subcutaneous ICD may be considered medically necessary after the device has been placed.

VII. The use of ICDs with an ST-segment monitoring feature in patients is considered investigational for all indications.

VIII. The use of extravascular (substernal lead) ICDs is considered investigational for all indications.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

New York Heart Association Classes
• NYHA Class I = No limitation of physical activity. Ordinary physical activity does not cause undue fatigue, palpitation, or dyspnea (shortness of breath).
• NYHA Class II = Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in fatigue, palpitation, or dyspnea.
• NYHA Class III = Marked limitation of physical activity; less than ordinary activity leads to symptoms
• NYHA Class IV = Inability to carry on any activity without symptoms; symptoms may be present at rest

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Documentation of symptoms, associated diagnoses and treatments
- Type of ICD being requested

CROSS REFERENCES

1. Intracardiac Ischemia Monitoring, Surgery, Policy No. 208
2. Leadless Cardiac Pacemakers, Surgery, Policy No. 217

BACKGROUND

The standard ICD involves placement of a generator in the subcutaneous tissue of the chest wall. Transvenous leads are attached to the generator and threaded intravenously into the endocardium. The leads sense and transmit information on cardiac rhythm to the generator which analyzes the rhythm information and produces an electrical shock when a malignant arrhythmia is recognized.

A totally subcutaneous ICD (S-ICD®) has also been developed. This device does not employ transvenous leads, and thus avoids the need for venous access and complications associated with the venous leads. Rather, a subcutaneous electrode is implanted adjacent to the left sternum. The electrodes sense the cardiac rhythm and deliver countershocks through the subcutaneous tissue of the chest wall.

ICDs with a built-in ST-segment monitoring feature, also called ICD-based ischemia monitors, are currently being studied. ST segment monitoring may also be referred to as intracardiac ischemia monitoring. The continuous ST-segment monitoring provided by this added feature is intended to detect changes in the patient’s ST-segment as a possible indicator of an ischemic cardiac event. If an ST segment shift meets or exceeds a preprogrammed threshold, the device stores the event data (e.g., date, time, heart rate, maximum ST shift, duration of the event). The device has a patient notifier feature that vibrates to alert the patient that an ST episode has occurred.

Extravascular (EV) ICDs have been developed, which have lead placement under the sternum. These devices are designed to provide the benefits of transvenous ICDs while avoiding the complications associated with intravascular lead placement.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
REGULATORY STATUS

The U.S. Food and Drug Administration (FDA) has approved a number of ICDs through the premarket approval (PMA) process. The FDA-labeled indications generally include patients who have experienced life-threatening ventricular tachyarrhythmia associated with cardiac arrest or ventricular tachyarrhythmia associated with hemodynamic compromise and resistance to pharmacologic treatment.

The following are examples of FDA-approved transvenous ICDs:

- Devices manufactured by Boston Scientific include Dynagen, Inogen, Origen, and Teligen.
- Medtronic produces the Evera Family of devices (originally: Virtuosos/Entrust/Maximo/Intrinsic/Marquis family).
- St. Jude Medical, Inc. devices include the Ellipse / Fortify Assura Family and the Current Plus ICD (originally: Cadence Tiered Therapy Defibrillation System).
- Other devices with similar approval language include devices from Biotronik, Boston Scientific, and Sorin CRM USA.

The following are examples of FDA-approved subcutaneous ICDs:

- The Subcutaneous Implantable Defibrillator (S-ICD®) System (Cameron Health, Inc., acquired by Boston Scientific, Inc.) received FDA approval on September 28, 2012 for “defibrillation therapy for the treatment of life-threatening ventricular tachyarrhythmias in patients who do not have symptomatic bradycardia, incessant ventricular tachycardia, or spontaneous frequently recurring ventricular tachycardia that is reliably terminated with antitachycardia pacing.” The electrode is called the Q-TRAK® and the electrode insertion tool is called the Q-Guide™.
- The Emblem S-ICD™ (Boston Scientific, Inc.), which is smaller and longer-lasting than the original S-ICD, was cleared for marketing through a PMA supplement.

Currently, there are no FDA-approved EV ICDs.

Note: This policy addresses only initial ICD implantation; it does not address ICD removal or replacement.

EVIDENCE SUMMARY

TRANSVENOUS IMPLANTABLE CARDIAC DEFIBRILLATOR (ICD)

The scientific evidence evaluating the use of automatic ICDs on health outcomes consists of several technology assessments and clinical trials. Evidence from well-conducted randomized controlled trials (RCTs) shows consistent associations between use of ICDs and improved health outcomes among specific groups of patients with symptomatic ischemic or nonischemic dilated cardiomyopathy and those with history of prior arrhythmogenic events.

ICDS FOR PRIMARY PREVENTION

Systematic Reviews

In 2016, results from the Danish Study were published. This was a multi-center RCT comparing ICD to standard management in patients with non-ischemic heart failure, described in more detail below. While the trial demonstrated a significantly lower risk of sudden cardiac
death (SCD) with ICD, there was no difference seen in overall mortality. After this article was published, several systematic reviews evaluated the evidence from RCTs on ICD use in patients with nonischemic cardiomyopathy. The majority of the reviews concluded that there was a statistically significant overall reduction in mortality for ICD versus medical therapy, ranging from 20% to 23%, even with the inclusion of the null DANISH results.

A 2018 Cochrane review included six RCTs (n=3,128) and reported that ICD use plus optimal medical therapy had a survival benefit compared with optimal medical therapy alone (hazard ratio [HR] 0.78, 95% confidence interval [CI] 0.66 to 0.92), but the authors noted that ICD use likely increases the risk of adverse events.

A 2013 technology assessment from the Agency for Healthcare Research and Quality (AHRQ) assessed the evidence published through December 4, 2012 for ICDs for primary prevention of sudden cardiac death. Included studies were RCTs or comparative cohort studies comparing ICD to no ICD or to different ICD interventions, a minimum of 10 participants per study group, and concurrent controls in the cohort studies. Patients in the ICD groups must have been followed from the time of ICD implantation. Key questions were well defined and focused on the following:

- Outcomes of 1) ICD vs. no ICD, 2) ICD with antitachycardia pacing (ATP) vs. ICD alone, and 3) ICD with cardiac resynchronization therapy (CRT) vs. ICD alone
- Variations in outcomes and adverse events among subgroups of participants, ICD devices, clinicians, and facilities
- Eligibility criteria and methods for evaluation of participants in comparative trials
- Likelihood of SCD or ventricular tachyarrhythmia (VT) as measured by total shocks in patients with ICDs or SCD episodes in patients without ICDs.

Ten RCTs (18 articles) and four cohort studies of adults met inclusion criteria; no studies of ICDs in children met inclusion criteria. All included studies conducted intention-to-treat analyses. In studies comparing ICD to no ICD the strength of evidence for all-cause mortality and SCD was rated as high. These studies found reduced risk of all-cause mortality three to seven years after ICD implantation and SCD two to six years after implantation (HR 0.69 and 0.37, respectively). There was indirect evidence across studies that ICD provided no benefit for patients with recent myocardial infarction (MI), defined as <30-40 days. No significant difference was found for all-cause mortality or SCD across subgroups by patient sex or age or by the facilities in which the ICDs were placed. The evidence for quality of life in these studies was rated as low and failed to show consistent effects of ICD placement. No studies reported the effect of adding ATP in ICD patients. Four RCTs that compared ICD alone to ICD with CRT (CRT-D) met inclusion criteria, but the strength of evidence was rated as insufficient due to discordant findings.

Eligibility criteria for ICD implantation in 13 of the 14 studies included both ischemic or nonischemic dilated cardiomyopathy (DCM) and left ventricular ejection fraction (LVEF) ≤35%. Most of the studies excluded adults over 70 to 80 years of age. Heart failure (HF) class varied between studies. While most RCTs tested ICD patients for nonsustained VT, different diagnostic tools were used. Only one RCT used electrophysiology studies (EPS) in all participants. Coronary angiography or exercise testing for coronary stenosis was tested in four of the RCTs. Limitations of the included studies were high attrition rates (>20%), differential attrition and/or crossover rates between study groups, and between-group differences in concurrent beta blocker use and control treatments. In addition, outcome assessors were not
blinded. The authors concluded that there was high strength evidence in favor of ICD therapy compared to no ICD therapy for primary prevention of SCD in certain patients with reduced LVEF and ischemic or non-ischemic cardiomyopathy (NICM).

Randomized Controlled Trials (RCTs)

Danish Study

Kober (2013) reported results from the Danish Study in 2016,[1] which was included in several of the recent systematic reviews described above. This unblinded trial included 556 patients with NICM, enrolled between 2008 and 2014 from multiple centers in Denmark, to compare ICD therapy to usual clinical care. As many patients with heart failure are not treated with CRT, the randomization of patients was stratified such that both ICD and control groups had a similar proportion of CRT patients (58%). The primary outcome of the study was death from any cause, and secondary outcomes included sudden cardiac death, cardiovascular death and non-fatal MIs. The median follow-up time was 67.6 months (interquartile range, 49-85 months). There were 120 patients (21.6%) in the ICD group and 131 patients in the control group that died during follow-up (4.4 and 5.0 deaths/100 person-years, respectively), which was not significantly different. Subgroup analysis showed no difference in ICD effect between patients receiving CRT and those who did not, but younger patients (< age 59) did demonstrate a survival benefit with ICD (HR 0.51, 95% CI 0.29 to 0.92). The risk for cardiovascular death was also not significantly different between groups (HR for ICD group vs. control, 0.77, 95% CI 0.57 to 1.05, p=0.10). However, sudden cardiac death was far less frequent in the ICD group than in controls (HR 0.50, 95% CI 0.31 to 0.82). The lack of benefit with IDC therapy for overall survival seen in this study differs from previous findings. The authors concluded that recent advances in heart failure treatment, including CRT, have reduced the potential benefit from ICD therapy, except in select patients.

Additional Trials

A study by Biton (2018) evaluated the impact NYHA class on long-term survival with ICD therapy in patients from the Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II).[34] There were 1,164 patients in the study, 442 were NYHA I, 425 were NYHA II, and 297 were NYHA III. All had a documented prior MI. After eight years of follow-up, mortality was lower for the ICD treatment group compared with non-ICD therapy, regardless of HF symptoms (NYHA I HR 0.63, 95% CI 0.46 to 0.85, p=0.003; NYHA II HR 0.68, 95% CI 0.50 to 0.93, p=0.017; NYHA III HR 0.68, 95% CI 0.50 to 0.94, p=0.018).

Non-randomized Studies

Several key registry and multi-center studies on transvenous ICD are described below.

Ischemic or Dilated Cardiomyopathy

Zabel (2020) published results of the EUropean Comparative Effectiveness Research to Assess the Use of Primary Prophylactic Implantable Cardioverter-Defibrillators (EU-CERT-ICD) study, a multicenter controlled cohort study evaluating ICD use for primary prevention in patients with ischemic or dilated cardiomyopathy.[35] Of the 2,327 patients that were recruited for the study, 2,247 had sufficient data for analysis: 1,516 who had ICD implantation and 731 controls who did not have ICD implantation. After a mean follow-up of 2.4 years, mortality was significantly lower in the ICD group after adjustment for other mortality predictors, such as age
and LVEF (HR 0.731, 95% CI 0.569 to 0.938, \(p=0.014 \)). ICDs did not appear to benefit patients with diabetes or those above age 75.

Nonischemic Cardiomyopathy

A multi-center study using data from the German Device Registry was published by Frommeyer (2019).[36] This registry includes 5,451 patients with one year of follow-up who had a device implanted. Of these, 779 were patients with NICM and a LVEF of 35% or less. Among these 779 patients, 56% received a cardiac resynchronization therapy defibrillator system, 33% received a single-chamber ICD, and 11% received a dual-chamber ICD. After a median follow-up of 16.1 months, 9.3% of the patients had died. Mortality was significantly higher in patients aged 68 years and above (7.9%) compared with patients aged 59 to 68 years (2.5%) or below age 59 (3.8%, \(p<0.015 \)).

Amara (2017) compared ICD therapy for the prevention of sudden cardiac death in patients with NICM and ischemic cardiomyopathy (ICM) enrolled in the multicenter Défibrillateur Automatique Implantable-Prévention Primaire (DAI-PP) study.[37] A total of 5,485 patients participated in the study: 2,181 (39.8%) with NICM and 3,304 (60.2%) with ICM. The mean follow-up was 3.1 ± 2.2 years. Patients with ICM were significantly older (63.7 ±10.3 vs. 60.6 ± 12.2 years, \(p<0.0001 \)) and had a higher prevalence of sinus rhythm (77.3% vs. 74.0%, \(p=0.009 \)), a higher ejection fraction (27% vs. 25%, \(p<0.0001 \)), and a narrower QRS (37.3% vs. 21.4% with QRS <120, \(p<0.0001 \)) than those with NICM. Mortality during follow-up was significantly higher in ICM patients, at 52.3 events/1000 person-years vs. 48.6 events/1000 person-years for NICM patients (\(p=0.008 \)). This difference was primarily due to increased non-cardiovascular mortality, as cardiovascular mortality rates were similar between groups. The authors noted that inappropriate therapies were more frequent in those with NICM (7.94 vs. 5.96%, \(p=0.005 \)).

Results from subjects with nonischemic dilated cardiomyopathy (NIDCM) included in SCD-HeFT and DEFINITE studies suggested a mortality benefit from ICD therapy, although statistical significance that was not achieved in these studies was likely related to insufficient power.

Hypertrophic Cardiomyopathy

Magnusson (2015) reported outcomes for 321 patients with HCM treated with an ICD enrolled in a Swedish registry.[38] Over a mean 5.4 years of follow-up, appropriate ICD discharges in response to ventricular tachycardia or fibrillation occurred in 77 patients (24%), corresponding to an annual rate of appropriate discharges of 5.3%. At least one inappropriate shock occurred in 46 patients (14.3%), corresponding to an annualized event rate of 3.0%. Ninety-two patients (28.7%) required at least one surgical intervention for an ICD-related complication, with a total of 150 ICD-related reinterventions. Most reinterventions (n=105, 70%) were related to lead dysfunction.

ICDs FOR SECONDARY PREVENTION

At least five trials comparing ICD plus medical therapy with medical therapy alone have been conducted in the secondary prevention setting: the Antiarrhythmics Versus Implantable Defibrillators (AVID) trial[39] (n=1,016), Cardiac Arrest Survival in Hamburg (CASH) trial[40] (n=288), Canadian Implantable Defibrillator Study (CIDS)[41] (n=659), Defibrillator Versus Beta-Blockers for Unexplained Death in Thailand (DEBUT)[42] (n=66, pilot n=20,
main study n=46), and Wever (1995)[43] (n=60). The mean length of follow-up varied from 18 to 57 months across trials. Lee (2003) combined the AVID, CASH, CIDS, and Wever (1995) trials in a meta-analysis of secondary prevention trials.[44] The mortality analysis included 2,023 participants and 518 events. In combined estimates, the ICD group had a significant reduction in both mortality (HR 0.75, 95% CI 0.64 to 0.87) and SCD (HR 0.50, 95% CI 0.34 to 0.62) compared with the group receiving medical therapy alone. To support National Institute for Health and Care Excellence guidance on the use of ICDs, AVID, CASH, CIDS, and the pilot DEBUT participants were combined in a meta-analysis.[45] The results were similar, indicating a reduction in mortality for ICDs compared with medical therapy alone (relative risk 0.75, 95% CI 0.61 to 0.93). Two other meta-analyses that included AVID, CIDS, and CASH reached similar conclusions.[46, 47]

ICDS IN PATIENTS WITH LMNA GENE MUTATION

In a systematic review for GeneReviews®, Hershberger (2016) concluded, “Because risk for sudden cardiac death in LMNA-related DCM accompanies heart block and bradyarrhythmias, ICD use (rather than just pacemaker use) has been recommended for all indications.”[48]

Pasotti (2008) conducted a retrospective longitudinal study with 94 individuals with mutations in the LMNA gene.[49] Subjects were observed for a median follow-up time of 57 months. During follow-up, 20 patients received a pacemaker and 16 received an ICD implantation. Twelve appropriate ICD interventions detected by the device (eight ventricular fibrillation and four sustained VT). None of the subjects with ICDs died from sudden cardiac death, whereas the pacemaker did not appear to protect from SCD.

ICDS IN PATIENTS WITH CARDIAC ION CHANNELOPATHIES

ICDs have been used for both primary and secondary prevention in patients with a number of disorders that predispose to ventricular arrhythmias and sudden cardiac death, including long QT syndrome (LQTS), Brugada syndrome (BrS), short QT syndrome (SQTS), and catecholaminergic polymorphic ventricular tachycardia (CPVT). Some of these conditions are extremely rare, but the use of ICDs has been described in small cohorts of patients with BrS, LQTS, and SQTS. These small cohort studies are listed below:

Long QT Syndrome

Horner (2010) reported on outcomes for 51 patients with genetically confirmed LQTS treated with an ICD from 2000 to 2010 who were included in a single-center retrospective analysis of 459 patients with genetically confirmed LQTS.[50] Of the patients treated with ICDs, 43 (84%) received the device as primary prevention. Twelve patients (24%) received appropriate ventricular fibrillation or torsades de pointes- terminated ICD shocks. Factors associated with appropriate shocks included secondary prevention indications (p=0.008), QT corrected (QTc) duration greater than 500 ms (p=0.0008), non-LQT3 genotype (p=0.02), documented syncope (p=0.05), documented torsades de pointes (p=0.003), and a negative sudden family death history (p=0.0001). Inappropriate shocks were delivered in 15 patients (29%). Patients with the LQT3 genotype had only received inappropriate shocks.

Brugada Syndrome

A systematic review by Kusumoto (2018) compared ICD outcomes for asymptomatic Brugada syndrome (BrS) patients with and without inducible ventricular arrhythmia on electrophysiology study.[51] A meta-analysis of five studies reported OR of 2.3 (95% CI 063 to 8.66, p=0.2) for
major arrhythmic events in those with inducible ventricular arrhythmia compared to those without. The authors noted that there was a low overall event rate in this asymptomatic population.

Hernandez-Ojeda (2017) reported on results from a single-center registry of 104 patients with BrS who were treated with ICDs. Ten (9.6%) patients received an ICD for secondary prevention and in 94 (90.4%) patients received an ICD for primary prevention. During the average 9.3-year follow-up, 21 (20.2%) patients received a total of 81 appropriate shocks. In multivariate analysis, type 1 electrocardiogram with syncope and secondary prevention indication were significant predictors of appropriate therapy. Nine (8.7%) patients received 37 inappropriate shocks. Twenty-one (20.2%) patients had other ICD-related complications.

Conte (2015) described outcomes for a cohort of 176 patients with spontaneous or drug-induced Brugada type 1 electrocardiographic findings who received an ICD at a single institution and were followed for at least six months. Before ICD implantation, 14.2% of subjects had a history of aborted SCD due to sustained spontaneous ventricular arrhythmias, 59.7% had at least one episode of syncope, and 25.1% were asymptomatic. Over a mean follow up of 83.8 months, 30 patients (17%) had spontaneous sustained ventricular arrhythmias detected. Sustained ventricular arrhythmias were terminated by ICD shocks or antitachycardia pacing in 28 patients (15.9%) and two patients (1.1%), respectively. However, 33 patients (18.7%) experienced inappropriate shocks. Eight patients (4.5%) died during follow up, three of whom died of cardiac causes.

Dores (2015) reported results of a Portuguese registry that included 55 patients with BrS, 36 of whom were treated with ICDs for either primary or secondary prevention. Before ICD implantation, 52.8% of subjects were asymptomatic, 30.6% had a history of syncope with suspected arrhythmic cause, and 16.7% had a history of aborted SCD. Over a mean follow up of 74 months, seven patients experienced appropriate shocks, corresponding to an incidence of 19.4% and an annual event rate of 2.8%. In multivariate analysis, predictors of appropriate shocks were a history of aborted SCD (HR 7.87, 95% CI 1.27 to 49.6, p=0.027) and nonsustained ventricular tachycardia during follow up (HR 6.73, 95% CI 1.27 to 35.7, p=0.025).

In data from a US cohort of 33 patients with BrS treated with ICDs, Steven (2011) reported that two of three patients with a prior history of aborted SCD received appropriate shocks over a mean 7.9 years of follow up, while none of the 30 patients without a history of aborted SCD had an arrhythmia detected. In a smaller registry that included 25 patients with BrS treated with ICDs, over an average follow up of 41.2 months, appropriate shocks were delivered in three patients, all of whom had prior cardiac arrest.

Catecholaminergic Polymorphic Ventricular Tachycardia

A systematic review by Roston (2018) assessed the use of ICDs in patients with CPVT and included 53 studies (total n=1,429). There were 503 patients that received an ICD in these studies, with 47.3% of the patients receiving the device for primary prevention. Only 12.8% were prescribed optimal antiarrhythmic therapy. More than 40% of the ICD patients had at least one appropriate shock during follow-up, while 20.8% had at least one inappropriate shock, 19.6% had electrical storm, and seven patients died (four due to an ICD-associated electrical storm). Other ICD complications were seen in 32.4% of the patients.

Roston (2015) published the results of a multicenter retrospective cohort study that included 226 patients with catecholaminergic polymorphic ventricular tachycardia. Implantable
Cardioverter defibrillators were placed in 121 (54%) most often for history of cardiac arrest (67 patients [55%]). One or more treatment failure events while on beta blockers were documented in 42 patients (35%). Appropriate shocks were experienced by 56 patients (46%) and inappropriate shocks occurred in 21 patients (22%). Arrhythmia was terminated after appropriate shock in 31 patients (55%), but nine (16%) had poor response to appropriate shocks. Electrical storm occurred in 22 patients (18%). ICD-related complications occurred in 28 patients (23%), usually manifesting as lead problems in 16 (57%). There were no differences in number of appropriate shocks, success of shocks, or incidence of electrical storm between patients with and without history of cardiac arrest. Death occurred in three patients (2%) despite ICD placement, one of which was associated with electrical storm. Fifty-eight patients (48%) were asymptomatic after ICD placement; however, 30 (25%) had persistent ventricular ectopy, 13 (11%) experienced syncope, and 13 (11%) had subsequent cardiac arrest.

Roses-Noguer (2014) reported results of a small retrospective study of 13 patients with CPVT who received an ICD. The indication for ICD therapy was syncope despite maximal beta-blocker therapy in 6 patients (46%) and aborted SCD in seven patients (54%). Over a median follow-up of 4.0 years, 10 patients (77%) received a median four shocks. For 96 shocks, 87 electrocardiograms (ECGs) were available for review; of those, 63 (72%) were appropriate and 24 (28%) were inappropriate. Among appropriate shocks, 20 (32%) were effective in restoring sinus rhythm.

ICDS AND ADVERSE EVENTS

Ezzat (2015) published a systematic review and meta-analysis of adverse events (AEs) following ICD implantation, comparing rates of AEs reported in clinical trials of ICDs with those reported in the U.S. National Cardiovascular Data Registry. The review included 18 RCTs with a total of 6,796 patients. In pooled analysis, the overall AE rate was 9.1% (95% CI 6.4 to 12.6%). Rates of access-related complications, lead-related complications, generator-related complications, and infection were 2.1% (95% CI 1.3 to 3.3%), 5.8% (95% CI 3.3 to 9.8%), 2.7% (95% CI 1.3 to 5.7%), and 1.5% (95% CI 0.8 to 2.6%), respectively. Complication rates in the RCTs were higher than those in the U.S. registry, which reports only in-hospital complications (9.1% in the RCTs vs. 3.08%, p<0.01). The overall complication rate was similar to that reported by Kirkfelt (2014) in a population-based cohort study including all Danish patients who underwent a cardiac implantable electronic device procedure from 2010 to 2011 (562/5918 patients [9.5%] with at least one complication).

Persson (2014) published a systematic review and meta-analysis of AEs following ICD implantation. The authors included data from 35 cohort studies, reported in 53 articles. In-hospital serious AE rates ranged from 1.2% to 1.4%, most frequently pneumothorax (0.4%-0.5%) and cardiac arrest (0.3%). Posthospitalization complication rates were variable: device-related complications occurred in 0.1% to 6.4%; lead-related complications in 0.1% to 3.9%; infection in 0.2% to 3.7%; thrombosis in 0.2% to 2.9%; and inappropriate shock in 3% to 21%.

The 2013 AHRQ technology assessment summarized above identified 14, 33, and 22 studies that reported early (up to 30 days after ICD implantation) AEs, late AEs, and inappropriate ICD shock, respectively. The rate of early adverse events was 2.8% to 3.6% during hospitalization, of which 1.2% to 1.35% were considered serious events (strength of evidence high). The most common early AEs were lead dislodgement and hematoma. Higher early AE rates with found with dual chamber ICDs, in older patients, in women, and in patients with end-
stage renal disease (ESRD). The most common late AEs were device-related AEs that occurred in <0.1% to 6.4% of ICD patients during follow-up ranging from 2 to 49 months (strength of evidence low). Lead malfunction, infection, and thrombosis were also reported. Inappropriate shocks at one to five years follow-up occurred in 3% to 21% of patients, with more occurring in younger patients. There was inconsistent evidence related to the rate of inappropriate shocks for single and dual chamber ICDs.

A systematic review and meta-analysis by Auricchio (2017) focused on inappropriate shocks from both single chamber ICDs (VR-ICDs) and subcutaneous ICDs (S-ICDs).[62] The review included 16 articles, which showed that an average of 6.4% (95% CI 5.1 to 7.9%) of patients with these ICDs received an inappropriate shock per year. There was evidence that this proportion was lower in more recent studies and in studies with longer follow-up.

In contrast to patients requiring ICDs for secondary prevention or for primary prevention after acute MI, patients with hereditary arrhythmia syndromes are more likely to potentially require ICDs for primary prevention. Olde Nordkamp (2016) reported on a systematic review and meta-analysis of studies reporting on ICD complications in individuals with inherited arrhythmia syndromes.[63] The review included 63 cohort studies with a total of 4,916 patients (710 [10%] with arrhythmogenic right ventricular tachycardia; 1,037 [21%] with BrS; 28 [0.6%] with CPVT; 2,466 [50%] with hypertrophic cardiomyopathy; 162 [3.3%] with lamin A/C gene mutations; 462 [9.4%] with LQTS; and 51 [1.0%] with SQTS). Overall, inappropriate shocks occurred in 20% over a mean follow up of 51 months, corresponding to an inappropriate shock rate of 4.7% per year (95% CI 4.2 to 5.3%). Over a mean follow up of 55 months, ICD-related complications occurred in 22%, most commonly lead malfunction (10.3% of patients). The pooled rate of ICD-related complications was 4.4% per year (95% CI 3.6 to 5.2%).

SUBCUTANEOUS ICDs

Totally subcutaneous ICDs (S-ICDs) are a less invasive alternative to the conventional transvenous ICD, and are intended for patients who do have standard indications for an ICD, but who do not require pacing for bradycardia or antitachycardia overdrive pacing for VT. The S-ICD has also been proposed to be of particular benefit for patients with limited vascular access, including patients undergoing renal dialysis or children; or those who have had complications with transvenous ICDs. Evaluating the safety and efficacy of S-ICDs requires comparisons with transvenous ICDs in large, long-term, randomized, controlled trials. These comparisons are necessary to determine whether any benefits of S-ICDs outweigh risks and whether they offer advantages over transvenous ICDs with respect to the rate of adverse effects, successful termination of life-threatening arrhythmias, and unnecessary shocks.

RANDOMIZED CONTROLLED TRIALS

The Prospective, Randomized Comparison of Subcutaneous and Transvenous Implantable Cardioverter Defibrillator Therapy (PRAETORIAN) trial was a noninferiority RCT that compared S-ICD to transvenous ICD in 849 patients with an indication for ICD but no indication for pacing.[64] The trial is the only RCT on the effect of an S-ICD with health outcomes. Patients were eligible if they were 18 years and older with a class I or IIa indication for ICD therapy for primary or secondary prevention, according to professional society guidelines, and no indication for pacing. The median age of enrolled patients was 63 years (interquartile range, 55 to 70). Most enrolled patients were diagnosed with ischemic and nonischemic cardiomyopathy and 19.7% were women. The median left ventricular ejection fraction was 30%.
The primary end point in PRAETORIAN was the composite of device-related complications and inappropriate shocks. The trial was designed to test the hypothesis of noninferiority of the S-ICD as compared with the transvenous ICD with respect to the time from device implantation to the first occurrence of a primary end point event. The primary analysis was the modified intention-to-treat cohort (i.e., patients were analyzed in accordance with the treatment group to which they were originally assigned, regardless of withdrawals, losses to follow-up or crossovers). Patients who did not receive a device and patients who proved ineligible for one of the treatments due to incomplete or inadequate screening were excluded from this analysis. In the as-treated cohort, patients were analyzed in the group of the specific ICD type which they received at initial implantation regardless of randomization result, withdrawals, losses to follow-up or crossovers. The noninferiority margin for the upper boundary of the 95% confidence interval for the HR was set at 1.45.

The trial results indicated that S-ICD was noninferior to the transvenous ICD on the composite endpoint of device-related complications and inappropriate shocks. The HR for the primary end point was 0.99 (95% CI 0.71 to 1.39, p=0.01 for noninferiority; p=0.95 for superiority). Results for the modified intention-to-treat analysis and as-treated analysis did not differ. There were more device related complications in the transvenous ICD group and more inappropriate shocks in the S-ICD group, but the trial was not powered for these endpoints. A number of secondary cardiac outcomes were also reported. There were more deaths from any cause in the S-ICD group than in the transvenous ICD group (16.4% vs. 13.1%, HR 1.23, 95% CI 0.89 to 1.70), but the number of sudden cardiac deaths did not differ between groups (18 in each group). There were more appropriate shocks in the S-ICD group (19.2% vs. 11.5%, HR 1.52, 95% CI 1.08 to 2.12). Other secondary endpoints did not differ between the groups.

While the rate of sudden cardiac death in the PRAETORIAN trial was low (18 patients in each group), the number of overall deaths was 151, and actually occurred more frequently than the composite outcome. The HR for all-cause mortality was 1.23 (95% CI 0.89 to 1.70). The PRAETORIAN trial investigators conducted competing risks analyses to account for discontinuation of follow-up before the primary end point had occurred in (1) the modified ITT population with competing risk of death, and (2) the true ITT population with competing risk of death and discontinuation of follow-up. These analyses led to consistent estimates of the HR (and 95% CI) for the primary end point. Device and lead complications occurred more frequently in the transvenous ICD group.

The choice of a composite primary endpoint poses several challenges to interpreting the results of PRAETORIAN. In this trial, the components of the composite endpoint were discordant; device-related complications were expected to favor S-ICD and inappropriate shocks were expected to favor transvenous ICD. The timing of the components of the composite outcome assessment is important in interpreting the study results and explaining expected treatment results to patients. Early benefit could favor one treatment over another, and results could change with longer follow-up. This is an important point to consider when assessing complications such as lead failure, which continue to increase over the life of the device. Additionally, because the composite was not used in earlier trials of the active comparator, there is no historical data on which to derive the expected performance of the active control. The inappropriate shock rate was based on results from the MADIT-RT trial, which compared programmed high-rate or delayed T-ICD therapy, and the expected rate of complications was based on results from MADIT-RT and the SCD-HeFT trial, which compared amiodarone to transvenous ICD. To estimate the expected event rate in PRAETORIAN, the researchers combined these two endpoints to arrive at the expected 17.2% event rate for the
composite primary outcome. The study authors do not cite any previous RCTs that used the composite endpoint of complications and inappropriate shocks. All-cause mortality was a primary endpoint in several previous RCTs of transvenous ICD. However, the PRAETORIAN trial protocol (2012) noted that all-cause mortality was not chosen as the primary endpoint because “mortality event rates in both groups are presumed to be low, leading to an extremely large trial size if this would serve as a primary endpoint.” The protocol also states that safety and efficacy of the S-ICD have been demonstrated in earlier trials and that the composite endpoint was “preferred above all-cause mortality, as practical, reasonably achievable, and pertinent to most cardiologists.”

Another major limitation of PRAETORIAN was that the median 48-month follow-up was not long enough to determine complications over the life of the device. In fact, the PRAETORIAN study authors note in their discussion, “longer-term follow-up of this cohort will be important because the incidence of lead-related complications increases over time with the transvenous ICD and because battery longevity is a limiting factor for the subcutaneous ICD.” Five-year data from the S-ICD PAS should provide more information on longer-term adverse events such as lead failure and need for device replacement.

Quality of life data from PRAETORIAN was collected but has not yet been published. This data could shed light on the relative importance to patients of adverse events such as inappropriate shocks and device replacement, especially if quality of life data were reported by subgroups of patients who experienced shocks. For example, these data might indicate that inappropriate shocks are so distressing to patients that they outweigh any potential benefits of S-ICDs.

Finally, the under-enrollment of women in the trial (19.7%) potentially limits the applicability of its results, although a subgroup analysis by sex was consistent with the primary analysis on the composite endpoint (HR in women 0.65, 95% CI 0.28 to 1.47).

NONRANDOMIZED STUDIES

Comparative Studies

Kobe (2013) published a prospective study that followed 69 patients who received S-ICD.[65] These were compared with a group of 69 sex- and age-matched patients with conventional ICD who were randomly selected from an ICD database. Fifty-four patients were followed-up over a minimum of two years. The successful conversion rate was 89.5% for S-ICD and 90.8% for transvenous ICD (p=0.81). The rate of perioperative AEs was similar for the two groups, as were the rate of inappropriate shocks (p=0.745) during short-term follow-up.

The Subcutaneous versus Transvenous Arrhythmia Recognition Testing (START) study compared the performance of a subcutaneous ICD with a transvenous ICD for detecting arrhythmias in the electrophysiology lab.[66] The patient population included 64 patients who were scheduled for ICD implantation. All patients had a transvenous ICD placed as well as subcutaneous electrodes attached to a subcutaneous ICD. Arrhythmias were induced and the sensitivity and specificity of detection by each device was compared. For ventricular arrhythmias, sensitivity of detection was 100% for the subcutaneous ICD and 99% for the transvenous ICD. Specificity was 98.0% for the subcutaneous ICD device compared to 76.7% for the transvenous device (p<0.001).

Non-comparative Studies
Gold (2021) reported 18-month data from the UNTOUCHED study, a multinational, prospective trial designed to assess the performance of the S-ICD in primary prevention patients with a low LVEF and New York Heart Association II/III heart failure or coronary artery disease. \[67\] At 18 months, the complication-free rate was 92.7% and the inappropriate shock-free rate was 95.9%. One-year data from the S-ICD Post Approval Study and 18-month data from the UNTOUCHED study have been published; these studies are ongoing.

The S-ICD System Post-Approval Study (PAS) is a nonrandomized, standard-of-care registry in the United States that has prospectively enrolled and followed S-ICD recipients. \[68\] During the first year after implantation, complications were observed in 119 patients, with a complication-free rate at one year of 92.5%. The most common complication was device system infection in 44 of 1,637 patients. This five-year study is expected to be completed in October 2021, with a total of 1,766 participants. Five-year data from the PAS should provide more information on longer-term adverse events such as lead failure and need for device replacement.

Lambiase (2016) evaluated the use of the S-ICD in patients with hypertrophic cardiomyopathy in the S-ICD System Clinical Investigation (S-ICD IDE Study) and the EFFORTLESS registry (both described below), reporting on 99 patients with hypertrophic cardiomyopathy, who were compared with 773 non-hypertrophic cardiomyopathy patients. \[69\] At the time of reporting, three episodes of ventricular arrhythmias had been identified in the hypertrophic cardiomyopathy cohort, all of which were successfully terminated. In the hypertrophic cardiomyopathy group, 12.5% of subjects had experienced an inappropriate shock at a mean follow up of 22.0 months, which did not differ significantly from the rate in non-hypertrophic cardiomyopathy patients (10.7%, p=NS).

A follow-up publication by Boersma (2017) reported five-year outcomes for the EFFORTLESS S-ICD study. There were 82 patients that completed the five-year visit, with mean follow-up for the group of 3.1 ± 1.5 years. The rate of inappropriate shock 8.1% at one year, and 11.7% at 3.1 years, while the rate of appropriate shock was 5.8% at one year and 13.5% at five years. \[70\]

Boersma (2016) reported outcomes for patients in the S-ICD IDE study and the EFFORTLESS registry stratified by whether patients had been previously treated with a transvenous ICD. \[71\] At the time of analysis, 866 patients were available for inclusion. Of those, 75 (8.7%) were implanted with an S-ICD following transvenous ICD extraction for a system-related infection and 44 (5.1%) were implanted following transvenous ICD extraction for reasons other than a system-related infection, while the remaining 747 (86.3%) were de novo implants. Patients explanted for infection were older than patients whose transvenous ICD was explanted for non-infection related events and the de novo implant patients (55.5, 47.8, and 49.9 years, respectively, \(p=0.01\)), were more likely to have an ICD for secondary prevention (42.7%, 37.2%, and 25.6%, respectively, \(p<0.0001\)), and had a higher incidence of comorbidities. There were no significant differences in the rates of system- or procedure-related complications between patients whose transvenous ICDs were explanted for infection, those whose transvenous ICDs were explanted for non-infectious reasons, and the de novo S-ICD patients (10.7%, 6.8%, and 9.6%, respectively, \(p=0.078\)).

Another subanalysis of the pooled S-ICD IDE study and EFFORTLESS registry data, which included 882 patients at the time of analysis, evaluated the effect of learning curves on implant time, procedure complications, and inappropriate shocks. \[72\] Rates of complications were

SUR17 | 16

September 1, 2022

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
significantly lower in patients treated by the least experienced providers than those treated with the most experienced (9.8% vs 5.4%, p=0.02).

Theuns (2015) reported long term follow up of a cohort study. Over a median follow up of 5.8 years, 26 devices (47%) were replaced and five (9%) were explanted. Four patients (7%) required S-ICD explantation and replacement with a transvenous system, two due to a requirement for cardiac resynchronization therapy, one due to a requirement for bradycardia pacing, and one due to ineffective defibrillation testing. Most devices (81%) were replaced due to an elective replacement indication, at a median time to replacement of 5.0 years. Event-free rates for device replacement after 2, 4, and 6 years were 94%, 89%, and 30%, respectively. A total of 119 delivered shocks in 16 patients (29%) were recorded.

El-Chami (2015) reported on a single-center study of outcomes after S-ICD placement in patients with endstage renal disease (ESRD) undergoing chronic dialysis, which included 79 patients who underwent S-ICD placement, 27 of whom were on chronic dialysis. This research was prompted by prior studies that suggested higher mortality rates for ESRD patients implanted with transvenous ICDs. The composite outcome (frequency of death, heart failure hospitalization, or appropriate S-ICD shocks) was nonsignificantly higher in the ESRD group (23.8%/year vs 10.9%/year, p=0.317), a difference that was primarily driven by a significantly higher incidence of appropriate S-ICD shocks in the ESRD group (17.9%/year vs 1.4%/year, p=0.021).

Burke (2015) published a pooled analysis of patients from the S-ICD IDE study and the EFFORTLESS registry, which included 882 patients. The poolability of data across the two studies was assessed by analysis of complications, appropriate and inappropriate shocks, conversion efficacy, and mortality by study, with additional analyses for outcomes that differed by study. Patients were followed for a mean of 651 (±345) days. Most patients (63%) presented with a history of previous transvenous ICDs that required extraction due to infection. Within 30 days of the procedure, 4.5% of subjects experienced a complication, while 11.1% of subjects experienced a complication within three years of the procedure. The most common complication was infection requiring device removal/revision (17 events in 14 patients [1.7%]). Mortality was low: the annual mortality rate was 1.6% and the two-year mortality rate was 3.2%. The Kaplan-Meier incidence of time to first therapy for VT or VF was 5.3% at one year, 7.9% at two years, and 10.5% at three years. Excluding VT/VF storms, 111 discrete VT/VF events were treated, with 100 (90.1%) terminated with the first shock, and 109 (98.2%) terminated within the five shocks available. The Kaplan-Meier incidence of time to first inappropriate shock was 13.1% at three years. In patients with dual zone programming at the index procedure, the Kaplan-Meier incidence of inappropriate shock at three years was 11.7% compared with 20.5% with single-zone programming. A significant study effect was observed for inappropriate shocks (p=0.0209), with a smaller proportion of inappropriate shocks in the EFFORTLESS group, but this effect was negated after correction for initially-programmed number of zones, shock zone rate, and conditional zone rate.

Gold (2014) published a subanalysis of patients in the S-ICD IDE study to evaluate a discrimination algorithm to reduce inappropriate shocks. Patients in the study could receive one of two shock detection algorithms, a single- or double-zone configuration. In the single-zone configuration, shocks are delivered for detected heart rates above the programmed rate threshold. In the dual-zone configuration, arrhythmia discrimination algorithms are active in a lower rate zone up to a shockable heart rate threshold. At hospital discharge, dual-zone programming was used in 226 subjects (72%) and single-zone programming was used in the...
remaining 88 subjects (28%). Inappropriate shocks occurred on 23 of 226 (10.2%) subjects with dual-zone programming and 23 of 88 (26.1%, p<0.001) subjects with single-zone programming. Freedom from appropriate shocks did not differ between groups.

Lambiase (2014) described patients in the EFFORTLESS-ICD registry, a multicenter European registry to report outcomes for patients treated with S-ICD.[77] At the time of analysis, the registry included 472 patients, 241 of whom (51%) were enrolled prospectively, at a median follow-up time of 498 days. Nine patients (2%) died during the reported period, none of the deaths, which were known to occur in the perioperative period, although the cause of death was unknown for one patient. A total of 317 spontaneous episodes in 85 patients were recorded during the follow-up, of which 169 episodes received therapy in 59 patients. Of the 145 classified untreated episodes, 93 were adjudicated as inappropriate sensing, 37 were nonsustained VT/VF, 12 were nonsustained SVT above discrimination zone, and three were unclassified. Of the VT/VF episodes, the first shock conversion efficacy was 88%, with 100% overall successful clinical conversion after a maximum of five shocks. A total of 73 inappropriate shocks were recorded in 32 patients over an average follow-up of 18 months (360-day inappropriate shock rate of 7%).

The S-ICD IDE Study was a multicenter series of 330 patients from several countries.[78] The S-ICD was successfully implanted in 314 of 330 patients (95.1%). Laboratory-induced VF was successfully terminated in more than 90% of patients, which was one of the primary outcomes of the study. The second primary outcome, greater than 99% freedom from complications at 180 days, was also met. Patients were followed for a mean duration of 11 months. There were 38 spontaneous episodes of VT in 21 patients (6.7%), and all were successfully terminated. Inappropriate shocks were received by 41 patients (13.1%).

A series of 118 patients from four centers in the Netherlands was published in 2013. Patients were followed for a mean of 18±7 months.[79] Device-related complications occurred in 14% of patients, including infection (5.9%), dislodgement of the device or leads (3.3%), skin erosion (1.7%), and battery failure (1.7%). In one patient, the S-ICD was replaced with a transvenous ICD because of the need for antitachycardia pacing. Over the entire follow-up period, eight patients experienced 45 appropriate shocks, with a first-shock conversion efficacy of 98%. Fifteen patients (13%) received a total of 33 inappropriate shocks. Two patients died, one due to cancer and one to progressive heart failure.

Bardy (2010) described the development and testing of the device, including empiric evidence for the optimal placement of the subcutaneous electrode.[80] A total of 55 patients were tested in the electrophysiology lab for termination of induced arrhythmias and subsequently followed for a mean of 10.1 months for successful termination of detected arrhythmias and clinical outcomes. In the electrophysiology lab study, intraoperative VF was induced in 53 of 55. All episodes were correctly detected by the S-ICD. In 52 of 53 patients, two consecutive episodes of ventricular arrhythmia were successfully terminated. In the final patient, the arrhythmia was terminated on one occasion but not on the other. In the cohort portion of this study, 54 of 55 patients were alive at last follow-up. The one death was due to renal failure, and this patient requested removal of the S-ICD before death. An infection at the generator site occurred in two patients, necessitating a revision procedure. Another three patients had lead dislodgement requiring repositioning. There were a total of 12 episodes of VT that were detected by the S-ICD; all 12 episodes were successfully terminated by countershock.
Additional observational studies have directly compared T-ICD to S-ICD in patients without a contraindication for T-ICD. All studies were performed in the U.S. and/or Europe. Nonrandomized controlled studies have reported success rates in terminating laboratory-induced VF that are similar to T-ICD. However, there is scant evidence on comparative clinical outcomes of both types of ICD over longer periods. Adverse event rates are uncertain, with variable rates reported.

S-ICDS AND ADVERSE EVENTS

A meta-analysis by Fong (2022) evaluated the complication rate in S-ICDs compared to T-ICDs in randomized controlled trials or propensity score–matched studies. The PRAETORIAN trial, described above, was included along with four propensity score-matched studies. The overall device-related complication rate, ICD shock rates (both appropriate and inappropriate), mortality rates, and infection rates were not significantly different between groups. The T-ICD group had a higher lead-related complication rate, but this was counterbalanced by a higher non-lead-related complication rate in the S-ICD group.

The systematic review and meta-analysis by Auricchio (2017), described previously, evaluated inappropriate shocks in patients with single-chamber ICDs (VR-ICDs) and S-ICDs using data from 16 articles. They found an overall rate of 6.4% of patients per year received an inappropriate shock, and this risk was no significant difference associated with the use of S-ICDs or ventricular tachycardia zone programming. The authors noted that one of the included studies had an anomalously low reported rate of inappropriate shocks (1.9%), which was not explained by the study design or covariates.

Olde Nordkamp (2015) used data from the EFFORTLESS-ICD registry to evaluate rates of inappropriate shocks associated with the S-ICD. The patient population at the time of publication included 581 S-ICD recipients, 48 of whom (8.3%) experienced a total of 101 inappropriate shocks over a follow up period of 21.4 months. Most inappropriate shocks (73%) were related to T-wave oversensing.

Brisben (2015) described the development of an algorithm designed to reduce T-wave oversensing by S-ICDs. The algorithm was developed using 133 episodes of T-wave oversensing and 70 episodes of appropriately treated VT or VF collected from S-ICD log files and 174 VT/VF recordings from an ECG signal library. It was validated using 164 episodes of T-wave oversensing from S-ICD log files and 137 and 328 recorded episodes, respectively, of VT/VF and supraventricular tachycardia from an ECG signal library. The revised algorithm was associated with a reduction in T-wave oversensing of 39.8% (95% CI 28.4% to 51.2%, p=0.001 vs baseline.) Patient outcomes after the use of this algorithm have not been reported yet.

Groh (2014) evaluated an ECG screening test to determine patients who are potential S-ICD candidates who are at risk for T wave oversensing. One hundred patients who had previously undergone transvenous ICD implantation and who were not receiving bradycardia pacing and did not have an indication for pacing were included. ECGs were obtained with lead placement to mimic the sensing vectors available on the S-ICD, and a patient was considered to qualify for S-ICD if the screening ECG template passed in any same lead supine and standing, at any gain, and without significant morphologic changes in QRS complexes. Of the included subjects who were potentially eligible for S-ICD, 8% were considered to fail based the ECG screening.
Kooiman (2014) reported inappropriate shock rates among 69 patients treated at a single center with an S-ICD between February 2009 and July 2012 who were not enrolled in one of two other concurrent trials. Over a total follow-up of 1316 months (median per patient, 21 months), the annual incidence of inappropriate shocks was 10.8%. In eight patients, inappropriate shocks were related to T wave oversensing. After patients underwent adjustment of the sensing vector, no further inappropriate shocks occurred in 87.5% of patients with T wave oversensing.

ICDS WITH ST SEGMENT MONITORING

The intent of ICDs with the capability for continuous ST segment monitoring is to detect possible myocardial ischemic events. Thus, the validation of this additional feature in ICDs focuses on evidence demonstrating the following:

- Technical performance of ICD-based ischemic monitoring compared with intermittent monitoring with conventional external ECG
- Diagnostic performance (i.e., sensitivity, specificity, and positive and negative predictive value), particularly the rate of false positive detections that could lead to unnecessary testing or invasive procedures
- Clinical utility, specifically evidence that demonstrates the ability of this monitoring to improve patient health outcomes.

There are currently no randomized controlled trials for ICD-based ischemia monitoring. Two preliminary nonrandomized comparative trials have been published. Baron (2006) compared surface ECG (SECG) with intrathoracic ECG (IT-ECG) in 22 patients undergoing PTCA. IT-ECG was reported to be significantly more sensitive than SECG in early and overall ischemia assessment, with highest sensitivity of 85%. However, this study did not indicate how these tests results were used in patient management to improve health outcomes. More recently, Forleo (2012) compared ICDs with (n=53) versus without (n=50) ST-segment monitoring capability. After at least six months follow-up, one patient in the ST monitoring group had an ST elevation myocardial infarction three weeks after implantation, but the algorithm had not yet been activated. Seven patients in the ST monitoring group had at least one episode (range 1 to 90) of false-positive ST events; the programmable features of the device helped overcome the problem in six patients. Unscheduled outpatient visits were significantly increased in ST monitored patients with a remote monitoring system (17 vs. 4, p=0.032). The authors concluded that ICD-based ST monitoring failed to provide a benefit over ICD alone and increased unscheduled evaluations in patients with remote follow-up.

EXTRAVASCULAR (EV) ICDS

Recently, EV ICDs have been developed that rely on substernal leads for pacing. Feasibility studies have been published, but these devices have not been approved by the FDA and clinical trials are underway.

PRACTICE GUIDELINE SUMMARY

The following section includes the current evidence-based clinical practice guidelines for use of ICDs. Consensus statements are not included.
In 2022, the American Heart Association (AHA), American College of Cardiology (ACC), and the Heart Failure Society of America (HFSA) released a guideline for the management of heart failure. These guidelines included recommendations on use of ICD devices, including the recommendations below, with a class of recommendation of I (strong recommendation) or IIa (moderate recommendation).

Each recommendation is further classified as either A, B, or C, based on the weight of the evidence available.

- Level A is applied when data are from multiple, high-quality randomized clinical trials;
- Level B indicates data are from a moderate-quality randomized trials (B-R) or nonrandomized trials (B-NR); and
- Level C is applied when the recommendation is based lower quality evidence - either limited data (C-LD) or expert opinion (C-EO).

Guideline recommendations:

- In patients with nonischemic DCM or ischemic heart disease at least 40 days post-MI with LVEF ≤35% and NYHA class I or II symptoms on chronic GDMT, who have reasonable expectation of meaningful survival for >1 year, ICD therapy is recommended for primary prevention of SCD to reduce total mortality. (Class I, Level of Evidence [LOE]: A)
- A transvenous ICD provides high economic value in the primary prevention of SCD particularly when the patient's risk of death caused by ventricular arrhythmia is deemed high and the risk of nonarrhythmic death (either cardiac or noncardiac) is deemed low based on the patient's burden of comorbidities and functional status. (LOE: A)
- In patients at least 40 days post-MI with LVEF ≤30% and NYHA class I symptoms while receiving GDMT, who have reasonable expectation of meaningful survival for >1 year, ICD therapy is recommended for primary prevention of SCD to reduce total mortality. (Class I, LOE: B-NR)
- In patients with genetic arrhythmogenic cardiomyopathy with high-risk features of sudden death, with EF ≤45%, implantation of ICD is reasonable to decrease sudden death. (Class 2a, LOE: B-NR)
- For patients whose comorbidities or frailty limit survival with good functional capacity to <1 year, ICD and CRT-D are not indicated. (No benefit, LOE: C-LD)

In 2017, AHA, ACC, and Heart Rhythm Society (HRS) published practice guidelines on the management ventricular arrhythmia and prevention of sudden cardiac death. The recommendations for use of an ICD were conditional upon an expected meaningful survival of greater than one year.

Transvenous ICD recommendations

For primary prevention in ischemic heart disease:

- In patients with LVEF of 35% or less that is due to ischemic heart disease who are at least 40 days’ post-MI and at least 90 days postrevascularization, and with NYHA class II or III HF despite GDMT [guideline-directed medical therapy], an ICD is recommended (Class I, LOE: A)
In patients with LVEF of 30% or less that is due to ischemic heart disease who are at least 40 days’ post-MI and at least 90 days postrevascularization, and with NYHA class I HF despite GDMT, an ICD is recommended (Class I, LOE: A)

In patients with NSVT [nonsustained ventricular tachycardia] due to prior MI, LVEF of 40% or less and inducible sustained VT or VF at electrophysiological study, an ICD is recommended (Class I/ LOE: B-R)

In nonhospitalized patients with NYHA class IV symptoms who are candidates for cardiac transplantation or an LVAD, an ICD is reasonable (Class IIa, LOE: B-NR)

For secondary prevention in ischemic heart disease:

In patients with ischemic heart disease, who either survive SCA due to VT/VF or experience hemodynamically unstable VT (Class 1, LOE: B-R) or stable VT (Class I, LOE: B-NR) not due to reversible causes, an ICD is recommended

In patients with ischemic heart disease and unexplained syncope who have inducible sustained monomorphic VT on electrophysiological study, an ICD is recommended (Class I, LOE: B-NR)

In patients resuscitated from SCA due to coronary artery spasm in whom medical therapy is ineffective or not tolerated, an ICD is reasonable (Class IIa, LOE: B-NR)

For primary prevention in NICM:

In patients with NICM, HF with NYHA class II–III symptoms and an LVEF of 35% or less, despite GDMT, an ICD is recommended (Class I, LOE: A)

In patients with NICM due to a Lamin A/C mutation who have 2 or more risk factors (NSVT, LVEF <45%, nonmissense mutation, and male sex), an ICD can be beneficial (Class IIa, LOE: B-NR)

For secondary prevention in NICM:

In patients with NICM who either survive SCA due to VT/VF or experience hemodynamically unstable VT (LOE: B-R) or stable VT (LOE: B-NR) not due to reversible causes, an ICD is recommended (Class I)

In patients with NICM who experience syncope presumed to be due to VA and who do not meet indications for a primary prevention ICD, an ICD or an electrophysiological study for risk stratification for SCD can be beneficial (Class IIa, LOE: B-NR)

For hypertrophic cardiomyopathy:

In patients with HCM who have survived an SCA due to VT or VF, or have spontaneous sustained VT causing syncope or hemodynamic compromise, an ICD is recommended (Class I, LOE: B-NR)

In patients with HCM and 1 or more of the following risk factors, an ICD is reasonable: maximum LV wall thickness ≥30 mm (LOE: B-NR), SCD in 1 or more first-degree relatives presumably caused by HCM (LOE: C-LD), and 1 or more episodes of unexplained syncope within the preceding 6 months (LOE: C-LD) (Class IIa)

In patients with HCM who have spontaneous NSVT (LOE: C-LD) or an abnormal blood pressure response with exercise (LOE: B-NR), who also have additional SCD risk modifiers or high risk features, an ICD is reasonable (Class IIa)

For cardiac sarcoidosis:

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
- In patients with cardiac sarcoidosis who have sustained VT or are survivors of SCA or have an LVEF of 35% or less, an ICD is recommended (Class I, LOE: B-NR)
- In patients with cardiac sarcoidosis and LVEF greater than 35% who have syncope and/or evidence of myocardial scar by cardiac MRI or positron emission tomographic (PET) scan, and/or have an indication for permanent pacing implantation of an ICD is reasonable (Class IIa, LOE: C-LD)
- In patients with cardiac sarcoidosis and LVEF greater than 35%, it is reasonable to perform an electrophysiological study and to implant an ICD, if sustained VA is inducible (Class IIa, LOE: C-LD)
- In patients with cardiac sarcoidosis who have an indication for permanent pacing, implantation of an ICD can be beneficial (Class IIa, LOE: C-LD)

For neuromuscular disorders:

- In patients with neuromuscular disorders, primary and secondary prevention ICDs are recommended for the same indications as for patients with NICM (Class I, LOE: B-NR)
- In patients with Emery-Dreifuss and limb-girdle type IB muscular dystrophies with progressive cardiac involvement, an ICD is reasonable (Class IIa, LOE: B-NR)

For cardiac channelopathies:

- In patients with a cardiac channelopathy and SCA, an ICD is recommended (Class I, LOE: B-NR)
- In high-risk patients with symptomatic long QT syndrome in whom a beta blocker is ineffective or not tolerated, intensification of therapy with additional medications (guided by consideration of the particular long QT syndrome type), left cardiac sympathetic denervation, and/or an ICD is recommended (Class I, LOE: B-NR)
- In patients with catecholaminergic polymorphic ventricular tachycardia and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker, flecaainide), left cardiac sympathetic denervation, and/or an ICD is recommended (Class I, LOE: B-NR)
- In patients with Brugada syndrome with spontaneous type 1 Brugada electrocardiographic pattern and cardiac arrest, sustained VA or a recent history of syncope presumed due to VA, an ICD is recommended (Class I, LOE: B-NR)
- In patients with early repolarization pattern on ECG and cardiac arrest or sustained VA, an ICD is recommended (Class I, LOE: B-NR)
- In patients with short QT syndrome who have a cardiac arrest or sustained VA, an ICD is recommended (Class I, LOE: B-NR)

For adult congenital heart disease:

- In patients with adult congenital heart disease and hemodynamically unstable VT, an ICD is recommended after evaluation and appropriate treatment for residual lesions/ventricular dysfunction (Class I, LOE: B-NR)
- In patients with adult congenital heart disease with SCA due to VT or VF in the absence of reversible causes, an ICD is recommended (Class I, LOE: B-NR)
- In adults with repaired tetralogy of Fallot physiology and inducible VT/VF or spontaneous sustained VT, implantation of an ICD is reasonable (Class IIa, LOE: B-NR)

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
In patients with repaired moderate or severe complexity adult congenital heart disease with unexplained syncope and at least moderate ventricular dysfunction or marked hypertrophy, either ICD implantation or an electrophysiological study with ICD implantation for inducible sustained VA is reasonable (Class IIa, LOE: B-NR)

For other indications:

• In patients resuscitated from SCA due to coronary artery spasm in whom medical therapy is ineffective or not tolerated, an ICD is reasonable (Class IIa, LOE: B-NR)
• In patients with arrhythmogenic right ventricular cardiomyopathy and an additional marker of increased risk of SCD (resuscitated SCA, sustained VT, significant ventricular dysfunction with RVEF or LVEF ≤35%), an ICD is recommended (Class I, LOE: B-NR)
• In patients with arrhythmogenic right ventricular cardiomyopathy and syncope presumed due to VA, an ICD can be useful (Class IIa, LOE: B-NR)
• In patients with HFREF who are awaiting heart transplant and who otherwise would not qualify for an ICD (e.g., NYHA class IV and/or use of inotropes) with a plan to discharge home, an ICD is reasonable (Class IIa, LOE: B-NR)
• In patients with an LVAD and sustained VA, an ICD can be beneficial (Class IIa, LOE: C-LD)
• In patients resuscitated from SCA due to idiopathic polymorphic VT or VF, an ICD is recommended (Class I, LOE: B-NR)

Subcutaneous ICD recommendations:

• In patients who meet criteria for an ICD who have inadequate vascular access or are at high risk for infection, and in whom pacing for bradycardia or VT termination or as part of CRT is neither needed nor anticipated, a subcutaneous implantable cardioverter-defibrillator is recommended (Class I, LOE: B-NR)
• In patients who meet indication for an ICD, implantation of a subcutaneous implantable cardioverter-defibrillator is reasonable if pacing for bradycardia or VT termination or as part of CRT is neither needed nor anticipated (Class IIa, LOE: B-NR)

AMERICAN HEART ASSOCIATION/AMERICAN COLLEGE OF CARDIOLOGY

In 2020, the American Heart Association and American College of Cardiology published a joint Guideline for the Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy, which included the following recommendations:

• For patients with HCM, and previous documented cardiac arrest or sustained ventricular tachycardia, ICD placement is recommended. (Class I, LOE: B-NR)
• For adult patients with HCM with 1 or more major risk factors for SCD, it is reasonable to offer an ICD. (Class IIa, LOE: B-NR)
• For children with HCM who have 1 or more conventional risk factors, ICD placement is reasonable after considering the relatively high complication rates of long-term ICD placement in younger patients. (Class IIa, LOE: B-NR)
• For patients 16 years and older with HCM and 1 or more major SCD risk factors, discussion of the estimated 5-year sudden death risk and mortality rates can be useful during the shared decision-making process for ICD placement. (Class IIa, LOE: B-NR)
• In patients with HCM without risk factors, ICD placement should not be performed. (Class III: Harm, LOE: B-NR)
• In patients with HCM, ICD placement for the sole purpose of participation in competitive athletics should not be performed. (Class III: Harm, LOE: B-NR)
• In patients with hypertrophic cardiomyopathy who are receiving an ICD, either a single chamber transvenous ICD or a subcutaneous ICD is recommended after a shared decision-making discussion that takes into consideration patient preferences, lifestyle, and expected potential need for pacing for bradycardia or ventricular tachycardia termination. (Class I, LOE: B-NR)

HEART RHYTHM SOCIETY (HRS)

Arrhythmogenic Cardiomyopathy

In 2019, the HRS published a consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy (ACM).[95] Recommendations related to ICD risk stratification and placement decisions include the following:

• Class I (strong) recommendations:
 o In individuals with ACM with LVEF 35% or lower and NYHA class II-III symptoms and an expected meaningful survival of greater than 1 year, an ICD is recommended. (LOE: B-R)
 o In individuals with ACM (other than ARVC) and hemodynamically tolerated VT, an ICD is recommended. (LOE: B-NR)

• Class IIa (moderate) recommendations:
 o In individuals with ARVC with hemodynamically tolerated sustained VT, an ICD is reasonable. (LOE: B-NR)
 o ICD implantation is reasonable for individuals with ARVC and three major, two major and two minor, or one major and four minor risk factors for ventricular arrhythmia. (LOE: B-NR)
 o In individuals with ACM with LVEF 35% or lower and NYHA class I symptoms and an expected meaningful survival of greater than 1 year, an ICD is reasonable. (LOE: B-R)
 o In individuals with phospholamban cardiomyopathy and LVEF <45% or NSVT, an ICD is reasonable. (LOE: B-R)
 o In individuals with lamin A/C ACM and two or more of the following: LVEF <45%, NSVT, male sex, an ICD is reasonable. (LOE: B-R)
 o In individuals with FLNC ACM and an LVEF <45%, an ICD is reasonable. (LOE: C-LD)
 o In individuals with lamin A/C ACM and an indication for pacing, an ICD with pacing capabilities is reasonable. (LOE: C-LD)

• Class IIb (weak) recommendations:
 o ICD implantation may be reasonable for individuals with ARVC and two major, one major and two minor, or four minor risk factors for ventricular arrhythmia. (B-NR)

Cardiac Sarcoid

In 2014, the HRS published a consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis, including recommendations for ICD implantation in patients with cardiac sarcoid.[96] The writing group concluded that although there are few data specific to ICD use in patients with cardiac sarcoid, data from the major
primary and secondary prevention ICD trials were relevant to this population and recommendations from the general device guideline documents apply to this population.

PEDIATRIC AND CONGENITAL ELECTROPHYSIOLOGY SOCIETY (PACES)/HRS

In 2014, PACES and HRS issued an expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease (CHD) which made the following recommendations on the use of ICD therapy in adults with CHD:[97]

- **Class I recommendations:**
 - ICD therapy is indicated in adults with CHD who are survivors of cardiac arrest due to ventricular fibrillation or hemodynamically unstable ventricular tachycardia after evaluation to define the cause of the event and exclude any completely reversible etiology (LOE: B).
 - ICD therapy is indicated in adults with CHD and spontaneous sustained ventricular tachycardia who have undergone hemodynamic and electrophysiologic evaluation (LOE: B).
 - ICD therapy is indicated in adults with CHD and a systemic left ventricular ejection fraction <35%, biventricular physiology, and New York Heart Association (NYHA) class II or III symptoms (LOE: B).

- **Class IIa recommendations:**
 - ICD therapy is reasonable in selected adults with tetralogy of Fallot and multiple risk factors for sudden cardiac death, such as left ventricular systolic or diastolic dysfunction, nonsustained ventricular tachycardia, QRS duration >180 ms, extensive right ventricular scarring, or inducible sustained ventricular tachycardia at electrophysiologic study (LOE: B).

- **Class IIb recommendations:**
 - ICD therapy may be reasonable in adults with a single or systemic right ventricular ejection fraction <35%, particularly in the presence of additional risk factors such as complex ventricular arrhythmias, unexplained syncope, NYHA functional class II or III symptoms, QRS duration >140 ms, or severe systemic AV valve regurgitation (LOE: C)
 - ICD therapy may be considered in adults with CHD and a systemic ventricular ejection fraction <35% in the absence of overt symptoms (NYHA class I) or other known risk factors (LOE of: C).
 - ICD therapy may be considered in adults with CHD and syncope of unknown origin with hemodynamically significant sustained ventricular tachycardia or fibrillation inducible at electrophysiologic study (LOE: B).
 - ICD therapy may be considered for nonhospitalized adults with CHD awaiting heart transplantation (LOE: C).
 - ICD therapy may be considered for adults with syncope and moderate or complex CHD in whom there is a high clinical suspicion of ventricular arrhythmia and in whom thorough invasive and noninvasive investigations have failed to define a cause (LOE: C).

- **Class III recommendations:**
 - These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
 - Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
- All Class III recommendations listed in current ACC/AHA/HRS guidelines apply to adults with CHD (LOE: C).
- Adults with CHD and advanced pulmonary vascular disease (Eisenmenger syndrome) are generally not considered candidates for ICD therapy (LOE: B).
- Endocardial leads are generally avoided in adults with CHD and intracardiac shunts. Risk assessment regarding hemodynamic circumstances, concomitant anticoagulation, shunt closure prior to endocardial lead placement, or alternative approaches for lead access should be individualized (LOE: B).

SUMMARY

TRANSVENOUS IMPLANTABLE CARDIOVERTER DEFIBRILLATORS (ICDS)

Pediatric Patients

There is enough research to show that implantable cardioverter defibrillators (ICDs) can improve survival for pediatric patients that are at increased risk of cardiac events. Therefore, the use of ICDs may be considered medically necessary for pediatric patients.

Patients with Prior Arrhythmogenic Events and Ischemic Cardiomyopathy

There is enough research to show that transvenous implantable cardioverter defibrillators (ICDs) can improve survival for certain patients that have had arrhythmogenic events and ischemic cardiomyopathy. A number of clinical guidelines based on research recommend these ICDs for patients meeting specific criteria. Therefore, the use of ICDs may considered medically necessary for patients that meet the policy criteria.

There is not enough research to show that transvenous implantable cardioverter defibrillators (ICDs) can improve health outcomes for patients with ischemic cardiomyopathy that do not meet the policy criteria. This includes people who have had a myocardial infarction (heart attack) in the past 40 days, people with a relatively high level of heart function. Therefore, the use of ICDs in ischemic cardiomyopathy patients that do not meet the policy criteria is considered investigational.

Heart Failure

There is enough research to show that transvenous implantable cardioverter defibrillators (ICDs) can improve survival for certain heart failure patients, including patients with a reduced ejection fraction who will be discharged home to await heart transplantation, and patients with NYHA Class IV symptoms that are candidates for a left ventricular assist device or heart transplantation. Clinical guidelines based on research recommend ICDs for patients meeting these criteria. Therefore, the use of ICDs may be considered medically necessary for heart failure patients that meet the policy criteria.

There is not enough research to show that implantable cardioverter defibrillators (ICDs) can improve health outcomes for patients with heart failure patients that do not meet the policy criteria. This includes people who have had a myocardial infarction (heart attack) in the past 40 days, people with a relatively high level of heart function, and people with NYHA Class IV symptoms that are not eligible to receive a combination cardiac resynchronization therapy.
ICD device, left ventricular assist device, or cardiac transplantation. Therefore, the use of ICDs in patients that do not meet the policy criteria is considered investigational.

Nonischemic Cardiomyopathy (NICM)

There is enough research to show that transvenous implantable cardioverter defibrillators (ICDs) can improve survival for certain patients with nonischemic cardiomyopathy (NICM) and certain neuromuscular disorders that affect heart function. Also, clinical guidelines based on research recommend ICD use for these patients. Therefore, ICD implantation among patients with NICM or neuromuscular disorders that meet the policy criteria may be considered medically necessary.

There is not enough research to show that transvenous implantable cardioverter defibrillators (ICDs) can improve survival for patients with nonischemic cardiomyopathy (NICM) or neuromuscular disorders that do not meet policy criteria, including patients that have a treatable cause for their NICM. Therefore, ICD use in these patients is considered investigational.

Hypertrophic Cardiomyopathy

There is enough research to show that implantable cardioverter defibrillators (ICDs) can improve survival in some patients with hypertrophic cardiomyopathy (HCM). There are also clinical guidelines based on research that recommend ICDs for certain patients with HCM. Therefore, ICD implantation among patients with HCM that meet policy criteria may be considered medically necessary.

There is not enough research to show that implantable cardioverter defibrillators (ICDs) can improve health outcomes for people with hypertrophic cardiomyopathy (HCM) that do not have major risk factors for sudden cardiac death. Therefore, ICD use is considered investigational for patients with HCM that do not meet the policy criteria.

LMNA-related Cardiac Arrhythmia or Cardiomyopathy

There is enough research to show that implantable cardioverter defibrillators (ICDs) can improve health outcomes compared with pacemakers or medical treatment in patients with LMNA-related cardiac arrhythmias or cardiomyopathy. Because of the high risk for sudden cardiac death, ICDs may be considered medically necessary in patients with LMNA gene mutations that have cardiomyopathy or symptomatic arrhythmias, or have certain risk factors.

There is not enough research to show that implantable cardioverter defibrillators (ICDs) can improve health outcomes in patients with LMNA gene mutations that do not have cardiomyopathy, symptomatic arrhythmias, or specific risk factors, and therefore, the use of ICDs among these patients is considered investigational.

Cardiac Ion Channelopathies

There is enough research to show that implantable cardioverter defibrillators (ICDs) can reduce sudden cardiac death in certain patients with long QT syndrome, short QT syndrome, Brugada syndrome, or catecholaminergic polymorphic ventricular tachycardia. Clinical guidelines based on research also recommend ICD therapy in patients with these conditions.
that have other cardiac risk factors. Therefore, ICDs may be considered medically necessary in select patients with cardiac ion channelopathies.

There is not enough research to show that implantable cardioverter defibrillators (ICDs) can improve health outcomes in patients with cardiac ion channelopathies that do not have certain cardiac risk factors, and therefore, the use of ICDs among these patients is considered investigational.

Cardiac Sarcoidosis

There is enough research to show that implantable cardioverter defibrillators (ICDs) can reduce sudden cardiac death in certain patients with cardiac sarcoidosis. Clinical guidelines based on research also recommend ICD therapy in patients with this condition that have other cardiac risk factors. Therefore, ICDs may be considered medically necessary in select patients with cardiac sarcoidosis.

There is not enough research to show that implantable cardioverter defibrillators (ICDs) can improve health outcomes in patients with cardiac sarcoidosis that do not have certain cardiac risk factors, and therefore, the use of ICDs among these patients is considered investigational.

ICDs for Secondary Prevention

There is enough research to show that implantable cardioverter defibrillators (ICDs) can be effective for secondary prevention in certain patients, including those that have had life-threatening ventricular arrhythmia not caused by a reversible condition. Therefore, ICD use may be considered medically necessary for secondary prevention in these patients.

There is not enough research to show that implantable cardioverter defibrillators (ICDs) can improve health outcomes in patients that have had arrhythmia events caused by reversible conditions, and ICD use is therefore considered investigational for these patients.

SUBCUTANEOUS ICDs

There is enough research to show that subcutaneous implantable cardioverter defibrillators (S-ICDs) can improve health outcomes in patients that may benefit from ICD use, and have no indications for antibradycardia or antitachycardia pacing. Therefore, the use of S-ICDs may be considered medically necessary for the same indications as transvenous ICDs.

There is not enough research to show that subcutaneous implantable cardioverter defibrillators (S-ICDs) use can improve health outcomes in people who do not meet policy criteria for transvenous ICD placement, and people with indications for antibradycardia or antitachycardia pacing. Therefore, S-ICD placement is considered investigational for patients that do not meet policy criteria for transvenous ICD placement and patients that may require antibradycardia or antitachycardia pacing.

ICDS WITH ST SEGMENT MONITORING CAPABILITY

There is not enough research to show that implantable cardioverter defibrillators (ICDs) with ST segment monitoring capability can improve health outcomes compared to traditional transvenous ICDs. Also, there are no ICDS with segment monitoring capabilities that have received U.S. Food and Drug Administration (FDA) approval for marketing in the U.S.
Therefore, the use of implantable cardioverter defibrillators with ST segment monitoring capability is considered investigational for all indications.

EXTRAVASCULAR (EV) ICDs

There is not enough research to show that extravascular implantable cardioverter defibrillators (EV ICDs), also known as substernal ICDs, improve health outcomes compared to traditional transvenous or subcutaneous ICDs. Also, there are no EV ICDs that have received U.S. Food and Drug Administration (FDA) approval for marketing in the U.S. Therefore, the use of EV ICDs is considered investigational for all indications.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

56. TM Roston, K Jones, NM Hawkins, et al. Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia: A systematic review. *Heart*

85. KY Fong, CJR Ng, Y Wang, C Yeo, VH Tan. Subcutaneous Versus Transvenous Implantable Defibrillator Therapy: A Systematic Review and Meta-Analysis of

97. P Khairy, GF Van Hare, S Balaji, et al. PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease. *Heart rhythm : the official journal of the Heart Rhythm Society.* 2014;11(11):e024756. PMID: 35656975
CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0571T</td>
<td>Insertion or replacement of permanent implantable cardioverter defibrillator system, with substernal electrode(s), including all imaging guidance defibrillation threshold evaluation, induction of arrhythmia, evaluation of sensing for arrhythmia termination, and programming or reprogramming of sensing or therapeutic parameters, when performed</td>
</tr>
<tr>
<td></td>
<td>0572T</td>
<td>Insertion of substernal implantable defibrillator electrode</td>
</tr>
<tr>
<td></td>
<td>0573T</td>
<td>Removal of substernal implantable defibrillator electrode</td>
</tr>
<tr>
<td></td>
<td>0574T</td>
<td>Repositioning of previously implanted extravascular substernal implantable defibrillator-pacing electrode</td>
</tr>
<tr>
<td></td>
<td>0575T</td>
<td>Programming device evaluation (in person) of implantable cardioverter defibrillator system with substernal electrode, with iterative adjustment of the implantable device to test the function of the device and select optimal permanent programmed values with analysis, review and report by a physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>0576T</td>
<td>Interrogation device evaluation (in person) of implantable cardioverter defibrillator system with substernal electrode, with analysis, review and report by a physician or other qualified health care professional, includes connection, recording and disconnection per patient encounter</td>
</tr>
<tr>
<td></td>
<td>0577T</td>
<td>Electrophysiologic evaluation of implantable cardioverter defibrillator system with substernal electrode (includes defibrillation threshold evaluation, induction of arrhythmia, evaluation of sensing for arrhythmia termination, and programming or reprogramming of sensing or therapeutic parameters)</td>
</tr>
<tr>
<td></td>
<td>0578T</td>
<td>Interrogation device evaluation(s) (remote), up to 90 days, substernal lead implantable cardioverter defibrillator system w/interim analysis, review(s) and report(s) by a physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>0579T</td>
<td>Interrogation device evaluation(s) (remote), up to 90 days, substernal lead implantable cardioverter defibrillator system, remote data acquisition(s), receipt of transmissions and technician review, technical support and distribution of results</td>
</tr>
<tr>
<td></td>
<td>0580T</td>
<td>Removal of substernal implantable defibrillator pulse generator only</td>
</tr>
<tr>
<td></td>
<td>0614T</td>
<td>Removal and replacement of substernal implantable defibrillator pulse generator</td>
</tr>
<tr>
<td></td>
<td>33216</td>
<td>Insertion of a single transvenous electrode, permanent pacemaker or cardioverter-defibrillator</td>
</tr>
<tr>
<td></td>
<td>33217</td>
<td>Insertion of 2 transvenous electrodes, permanent pacemaker or cardioverter-defibrillator</td>
</tr>
<tr>
<td></td>
<td>33218</td>
<td>Repair of single transvenous electrode for a single chamber, permanent pacemaker or single chamber pacing cardioverter-defibrillator</td>
</tr>
<tr>
<td></td>
<td>33220</td>
<td>Repair of 2 transvenous electrodes for a dual chamber permanent pacemaker or dual chamber pacing cardioverter-defibrillator</td>
</tr>
<tr>
<td></td>
<td>33223</td>
<td>Relocation of skin pocket for cardioverter-defibrillator</td>
</tr>
<tr>
<td></td>
<td>33230</td>
<td>Insertion of pacing cardioverter-defibrillator pulse generator only; with existing dual leads</td>
</tr>
<tr>
<td></td>
<td>33231</td>
<td>Insertion of pacing cardioverter-defibrillator pulse generator only; with existing multiple leads</td>
</tr>
<tr>
<td></td>
<td>33240</td>
<td>Insertion of single or dual chamber pacing cardioverter-defibrillator pulse generator</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33241</td>
<td></td>
<td>Removal of implantable defibrillator pulse generator only</td>
</tr>
<tr>
<td>33243</td>
<td></td>
<td>Removal of single or dual chamber implantable defibrillator electrode(s); by thoracotomy</td>
</tr>
<tr>
<td>33244</td>
<td></td>
<td>by transvenous extraction</td>
</tr>
<tr>
<td>33249</td>
<td></td>
<td>Insertion or replacement of permanent implantable defibrillator system, with transvenous lead(s), single or dual chamber</td>
</tr>
<tr>
<td>33262</td>
<td></td>
<td>Removal of implantable defibrillator pulse generator with replacement of implantable defibrillator pulse generator; single lead system</td>
</tr>
<tr>
<td>33263</td>
<td></td>
<td>;dual lead system</td>
</tr>
<tr>
<td>33264</td>
<td></td>
<td>;multiple lead system</td>
</tr>
<tr>
<td>33270</td>
<td></td>
<td>Insertion or replacement of permanent subcutaneous implantable defibrillator system, with subcutaneous electrode, including defibrillation threshold evaluation, induction of arrhythmia, evaluation of sensing for arrhythmia termination, and programming or reprogramming of sensing or therapeutic parameters, when performed</td>
</tr>
<tr>
<td>33271</td>
<td></td>
<td>Insertion of subcutaneous implantable defibrillator electrode</td>
</tr>
<tr>
<td>33272</td>
<td></td>
<td>Removal of subcutaneous implantable defibrillator electrode</td>
</tr>
<tr>
<td>33273</td>
<td></td>
<td>Repositioning of previously implanted subcutaneous implantable defibrillator electrode</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C1721</td>
<td>Cardioverter-defibrillator, dual chamber (implantable)</td>
</tr>
<tr>
<td></td>
<td>C1722</td>
<td>Cardioverter-defibrillator, single chamber (implantable)</td>
</tr>
<tr>
<td></td>
<td>C1882</td>
<td>Cardioverter-defibrillator, other than single or dual chamber (implantable)</td>
</tr>
</tbody>
</table>

Date of Origin: April 2012
Regence

Medical Policy Manual

Reconstructive Breast Surgery/Mastopexy, and Management of Breast Implants

Effective: September 1, 2022

Next Review: August 2022
Last Review: April 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Policy provides breast reconstruction and implant management criteria based on Public Law 105-277, the Women’s Health and Cancer Rights Act of 1998.

MEDICAL POLICY CRITERIA

Notes:

- Contractual limitations and exclusions may apply to both reconstructive and cosmetic procedures, to illnesses and conditions initially occurring prior to coverage, and to complications of non-covered procedures.
- For the purposes of this policy, mastectomy is defined as complete or partial, including lumpectomy.
- Some codes listed may have specific criteria to be met in other medical policies (e.g., reduction mammaplasty), or may not be considered medically necessary for any indication. See Cross References to confirm the correct policy is applied.
- This policy does not address procedures related to gender affirming interventions for gender dysphoria. See Cross References for the correct policy to be applied.
I. Reconstructive breast surgery of a diseased or injured breast may be considered medically necessary when either of the following criteria is met and the treating physician recommends it:
 A. After prophylactic or therapeutic mastectomy
 B. After accidental injury or trauma to the breast resulting in significant malformation

II. Reconstructive breast surgery of an unaffected breast to achieve symmetry with the contralateral breast may be considered medically necessary when reconstruction of the contralateral diseased or injured breast was medically necessary as defined in Criterion I. above and it is recommended by the treating physician.

III. Breast implant explantation and/or replacement may be considered medically necessary when the implant(s) was/were placed during reconstructive breast surgery that was medically necessary as defined in Criterion I. Explantation of implant(s) requires documentation of the original indication for implantation.

IV. Breast revision surgery, including breast implant explantation and/or replacement, following a cosmetic primary breast procedure is considered cosmetic when one or more of Criteria I., II., or III. is not met.

V. Mastopexy is considered cosmetic when medical necessity Criteria I., II., or III. are not met.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES
1. Gender Affirming Interventions for Gender Dysphoria, Medicine, Policy No. 153
2. Endometrial Ablation, Surgery, Policy No. 01
3. Cosmetic and Reconstructive Surgery, Surgery, Policy No. 12
4. Reduction Mammaplasty, Surgery, Policy No. 60
5. Adipose-derived Stem Cell Enrichment in Autologous Fat Grafting to the Breast, Surgery, Policy No. 182

BACKGROUND
Reconstructive breast surgery is defined as those surgical procedures which are intended to restore the normal appearance of the breast after surgery, accidental injury, or trauma. The most common indication for reconstructive breast surgery is mastectomy. In contrast, cosmetic breast surgery is defined as surgery intended to alter or enhance the appearance of a breast which does not have a significantly altered appearance due to surgery, accidental injury, or trauma. Reduction mammoplasty and surgery to alter the appearance of a congenital breast abnormality are examples of breast surgeries which may be cosmetic. (See Surgery Policy No. 60, Reduction Mammaplasty and Surgery Policy No. 12, Cosmetic and Reconstructive Surgery). The most common type of reconstructive breast surgery is insertion of a silicone gel-filled or saline-filled breast implant, either inserted immediately at the time of mastectomy or sometime afterward in conjunction with the previous use of a tissue expander. Significant local complications of breast implants, such as contracture, may require removal of the implant. Other types of reconstruction include nipple/areola reconstruction, nipple tattooing, and/or the use of autologous tissue, such as a transverse rectus abdominis myocutaneous flap (TRAM procedure) or a latissimus dorsi flap. In addition, mastopexy, reduction mammaplasty, or
implant on the contralateral breast may be performed in order to achieve symmetry with the reconstructed breast.

POSITION STATEMENT

This policy is written to assist in interpreting Public Law 105-277, the Women’s Health and Cancer Rights Act of 1998[1] which requires all health insurance carriers that cover mastectomies to also cover the following in a manner determined in consultation with the attending physician and patient:

- All stages of reconstruction of the breast on which the mastectomy was performed
- Surgery and reconstruction of the contralateral breast to produce a symmetrical appearance
- Prostheses
- Treatment of physical complications of mastectomy, including lymphedema

SUMMARY

Reconstructive breast surgery of a diseased or injured breast may be considered medically necessary after prophylactic or therapeutic mastectomy or after accidental injury or trauma to the breast resulting in significant malformation when the treating physician recommends it.

Reconstructive breast surgery of an unaffected breast to achieve symmetry with the contralateral breast may be considered medically necessary when reconstruction of the contralateral diseased or injured breast was medically necessary as defined in policy criteria and it is recommended by the treating physician.

Breast implant explantation and/or replacement may be considered medically necessary when the implant(s) was/were placed during reconstructive breast surgery that was medically necessary as defined in policy criteria.

Breast revision surgery, including breast implant explantation and/or replacement, following a cosmetic primary breast procedure is considered cosmetic when medical necessity criteria are not met.

Mastopexy is considered cosmetic when medical necessity criteria are not met.

REFERENCES

CODES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
NOTE:

- Codes 15769, 15771, and 15772 should be reported for autologous fat grafting for reconstructive breast surgery as code 20926 was deleted 1/1/2020.
- CPT codes 11950, 11951, 11952, and 11954 [subcutaneous injection of filling material (eg, collagen)], 19366 (breast flap graft other technique), 19380 (revision of reconstructed breast), and 19499 (unlisted code) are not reported for breast fat grafting.
- For autologous fat grafting **with additional** adipose-derived stem cells (aka, stem cell enrichment), see Cross References to confirm correct criteria is applied.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>11920</td>
<td>Tattooing, intradermal introduction of insoluble opaque pigments to correct color defects of skin, including micropigmentation; 6.0 sq. cm or less</td>
</tr>
<tr>
<td></td>
<td>11921</td>
<td>Tattooing, intradermal introduction of insoluble opaque pigments to correct color defects of skin, including micropigmentation; 6.1 to 20.0 sq cm</td>
</tr>
<tr>
<td></td>
<td>11970</td>
<td>Replacement of tissue expander with permanent implant</td>
</tr>
<tr>
<td></td>
<td>11971</td>
<td>Removal of tissue expander(s) without insertion of implant</td>
</tr>
<tr>
<td></td>
<td>15769</td>
<td>Grafting of autologous soft tissue, other, harvested by direct excision (eg, fat, dermis, fascia)</td>
</tr>
<tr>
<td></td>
<td>15771</td>
<td>Grafting of autologous fat harvested by liposuction technique to trunk, breasts, scalp, arms, and/or legs; 50 cc or less injectate</td>
</tr>
<tr>
<td></td>
<td>15772</td>
<td>Grafting of autologous fat harvested by liposuction technique to trunk, breasts, scalp, arms, and/or legs; each additional 50 cc injectate, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>19316</td>
<td>Mastopexy</td>
</tr>
<tr>
<td></td>
<td>19318</td>
<td>Breast reduction</td>
</tr>
<tr>
<td></td>
<td>19325</td>
<td>Breast augmentation with implant</td>
</tr>
<tr>
<td></td>
<td>19328</td>
<td>Removal of intact breast implant</td>
</tr>
<tr>
<td></td>
<td>19330</td>
<td>Removal of ruptured implant, including implant contents (eg, saline, silicone gel)</td>
</tr>
<tr>
<td></td>
<td>19340</td>
<td>Insertion of breast implant on same day of mastectomy, (ie, immediate)</td>
</tr>
<tr>
<td></td>
<td>19342</td>
<td>Insertion or replacement of breast implant on separate day from mastectomy</td>
</tr>
<tr>
<td></td>
<td>19350</td>
<td>Nipple/areola reconstruction</td>
</tr>
<tr>
<td></td>
<td>19355</td>
<td>Correction of inverted nipples</td>
</tr>
<tr>
<td></td>
<td>19357</td>
<td>Tissue expander placement in breast reconstruction, including subsequent expansion(s)</td>
</tr>
<tr>
<td></td>
<td>19361</td>
<td>Breast reconstruction; with latissimus dorsi flap</td>
</tr>
<tr>
<td></td>
<td>19364</td>
<td>Breast reconstruction; with free flap (eg, fTRAM, DIEP, SIEA, GAP flap)</td>
</tr>
<tr>
<td></td>
<td>19366</td>
<td>Breast reconstruction with other technique (Deleted 01/01/2021)</td>
</tr>
<tr>
<td></td>
<td>19367</td>
<td>Breast reconstruction; with single-pedicle transverse rectus abdominis myocutaneous (TRAM) flap</td>
</tr>
<tr>
<td></td>
<td>19368</td>
<td>; requiring separate microvascular anastomosis (supercharging)</td>
</tr>
<tr>
<td></td>
<td>19369</td>
<td>Breast reconstruction; with bipedicled transverse rectus abdominis myocutaneous (TRAM) flap</td>
</tr>
<tr>
<td></td>
<td>19370</td>
<td>Revision of peri-implant capsule, breast, including capsulotomy, capsulorrhaphy, and/or partial capsulectomy</td>
</tr>
<tr>
<td></td>
<td>19371</td>
<td>Peri-implant capsulotomy, breast, complete, including removal of all intracapsular contents</td>
</tr>
<tr>
<td></td>
<td>19380</td>
<td>Revision of reconstructed breast (eg, significant removal of tissue, re-advancement and/or re-inset of flaps in autologous reconstruction or significant capsular revision combined with soft tissue excision in implant-based reconstruction)</td>
</tr>
<tr>
<td></td>
<td>19396</td>
<td>Preparation of moulage for custom breast implant</td>
</tr>
<tr>
<td>Codes</td>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>19499</td>
<td>Unlisted procedure, breast</td>
</tr>
<tr>
<td>HCPCS</td>
<td>L8039</td>
<td>Breast prosthesis, not otherwise specified</td>
</tr>
<tr>
<td></td>
<td>L8600</td>
<td>Implantable breast prosthesis, silicone or equal</td>
</tr>
<tr>
<td>S2066</td>
<td></td>
<td>Breast reconstruction with gluteal artery perforator (GAP) flap, including harvesting of the flap, microvascular transfer, closure of donor site and shaping the flap into a breast, unilateral</td>
</tr>
<tr>
<td>S2067</td>
<td></td>
<td>Breast reconstruction of a single breast with "stacked" deep inferior epigastric perforator (DIEP) flap(s) and/or gluteal artery perforator (GAP) flap(s), including harvesting of the flap(s), microvascular transfer, closure of donor site(s) and shaping the flap into a breast, unilateral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Breast reconstruction with deep inferior epigastric perforator (DIEP) flap or superficial inferior epigastric artery (SIEA) flap, including harvesting of the flap, microvascular transfer, closure of donor site and shaping the flap into a breast, unilateral</td>
</tr>
</tbody>
</table>

Date of Origin: January 1996
Spinal Cord and Dorsal Root Ganglion Stimulation

Effective: August 1, 2022

Next Review: April 2023
Last Review: June 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Standard and high-frequency spinal cord stimulation, as well as dorsal root ganglion stimulation, delivers electrical stimulation to the spinal cord using implanted electrodes to block pain sensation. Dorsal root ganglion stimulation is different from spinal cord stimulation in terms of the placement of the electrodes.

MEDICAL POLICY CRITERIA

Notes:

- Spinal cord stimulation should be initiated with a trial period of spinal cord stimulation with a temporarily implanted lead and may be followed by permanent implantation. This policy addresses these services as one combined episode beginning with the temporary placement.
- Please see the Regulatory Status section for a list of standard (non-high frequency), high-frequency, and dorsal root ganglion devices.

I. Spinal cord stimulation (standard or high frequency) may be considered medically necessary for severe and chronic refractory neuropathic pain of the trunk or limbs, other than critical limb ischemia, when one of the following Criteria is met:
A. Other treatment modalities (pharmacological, surgical, psychological, or physical, if applicable) have been tried and failed; or
B. Other treatment modalities are judged to be unsuitable or contraindicated.

II. Revision(s) to an existing spinal cord stimulator may be considered **medically necessary** after the device has been placed.

III. The replacement of all or part of an existing spinal cord stimulator and/or generator is considered **medically necessary** when the existing spinal cord stimulator and/or generator is malfunctioning, cannot be repaired, and is no longer under warranty.

IV. Replacement of all or part of an existing spinal cord stimulator and/or generator is considered **not medically necessary** when Criterion III. is not met.

V. Spinal cord stimulation is considered **not medically necessary** for severe and chronic refractory neuropathic pain of the trunk or limbs when Criterion I. is not met.

VI. Spinal cord stimulation is considered **investigational** for all other indications, including but not limited to treatment of the following: critical limb ischemia, cancer-related pain, central deafferentation pain (related to CNS damage from a stroke or spinal cord injury), headache including chronic cluster headaches, nociceptive pain (resulting from irritation, not damage to the nerves), postherpetic neuralgia, and visceral pain.

VII. Dorsal root ganglion stimulation may be considered **medically necessary** for severe and chronic refractory pain of the trunk or limbs due to type I or type II complex regional pain syndrome, including reflex sympathetic dystrophy or causalgia, when one of the following Criteria is met:

A. Other treatment modalities (pharmacological, surgical, psychological, or physical, if applicable) have been tried and failed; or
B. Other treatment modalities are judged to be unsuitable or contraindicated.

VIII. Revision(s) to an existing dorsal root ganglion stimulator may be considered **medically necessary** after the device has been placed.

IX. The replacement of all or part of an existing dorsal root ganglion stimulator and/or generator is considered **medically necessary** when the existing dorsal root ganglion stimulator and/or generator is malfunctioning, cannot be repaired, and is no longer under warranty.

X. Replacement of all or part of an existing dorsal root ganglion stimulator and/or generator is considered **not medically necessary** when Criterion IX. is not met.

XI. Dorsal root ganglion stimulation is considered **not medically necessary** for severe and chronic refractory pain of the trunk or limbs due to type I or type II complex regional pain syndrome, including reflex sympathetic dystrophy or causalgia, when Criterion VII. is not met.

XII. Dorsal root ganglion stimulation is considered **investigational** for all other indications, including but not limited to treatment of the following: critical limb ischemia, cancer-related pain, central deafferentation pain (related to CNS damage from a stroke or spinal cord injury), headache including chronic cluster headaches, nociceptive pain (resulting from irritation, not damage to the nerves), postherpetic neuralgia, and visceral pain.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Current Symptomology
- Documentation of other treatment modalities (pharmacological, psychological, surgical, or physical if applicable) tried and failed or judged to be unsuitable or contraindicated

CROSS REFERENCES

1. Deep Brain Stimulation, Surgery, Policy No. 84
2. Occipital Nerve Stimulation, Surgery, Policy No. 174
3. Implantable Peripheral Nerve Stimulation for Chronic Pain of Peripheral Nerve Origin, Surgery, Policy No. 205

BACKGROUND

Spinal cord stimulation (SCS; also called dorsal column stimulation) involves the use of low-level epidural electrical stimulation of the spinal cord dorsal columns. The neurophysiology of pain relief after SCS is uncertain but may be related to either activation of an inhibitory system or to blockage of facilitative circuits. SCS has been used in a wide variety of chronic refractory pain conditions, including pain associated with cancer, failed back pain syndromes, arachnoiditis, and complex regional pain syndrome (i.e., chronic reflex sympathetic dystrophy). There has also been interest in SCS as a treatment of critical limb ischemia, primarily in patients who are poor candidates for revascularization and in patients with refractory chest pain.

SCS devices consist of several components: (1) the lead that delivers the electrical stimulation to the spinal cord; (2) an extension wire that conducts the electrical stimulation from the power source to the lead; and (3) a power source that generates the electrical stimulation. The lead may incorporate from 4 to 8 electrodes, with 8 electrodes more commonly used for complex pain patterns. There are two basic types of power source. One type, the power source (battery), can be surgically implanted. The other, a radiofrequency receiver, is implanted, and the power source is worn externally with an antenna over the receiver. Totally implantable systems are most commonly used.

The patient’s pain distribution pattern dictates at what level in the spinal cord the stimulation lead is placed. The pain pattern may influence the type of device used; for example, a lead with 8 electrodes may be selected for those with complex pain patterns or bilateral pain. Implantation of the spinal cord stimulator is typically a 2-step process. Initially, the electrode is temporarily implanted in the epidural space, allowing a trial period of stimulation. Once treatment effectiveness is confirmed (defined as at least 50% reduction in pain), the electrodes and radio-receiver/transducer are permanently implanted. Successful SCS may require extensive programming of the neurostimulators to identify the optimal electrode combinations and stimulation channels.

Traditional SCS devices use electrical stimulation with a frequency on the order of 100 to 1000 Hz. In 2015, an SCS device, using a higher frequency of electrical stimulation (10,000 Hz) than
predicate devices was approved by the U.S. Food and Drug Administration (FDA) through the premarket approval process. The high-frequency stimulation is proposed to be associated with fewer paresthesias, which are a recognized effect of SCS. In addition, in 2016, FDA approved a clinician programmer “app” that allows an SCS device to provide stimulation in “bursts” rather than at a constant rate. Burst stimulation is proposed to provide pain relief with fewer paresthesias. The burst stimulation device works in conjunction with standard SCS devices. With the newly approved app, stimulation is provided in five 500-Hz burst spikes at a rate of 40 Hz, with a pulse width of 1 ms.

Another variation on SCS stimulation is the wireless injectable stimulator. These miniaturized neurostimulators are transforaminally placed at the dorsal root ganglion (DRG) and are used to treat pain. DRG are located between spinal nerves and the spinal cord on the posterior root and are believed to play an important role in neuropathic pain perception. Two systems have received approval or clearance from FDA.

REGULATORY STATUS

A large number of neurostimulator devices, some used for spinal cord stimulation (SCS), have been approved by the U.S. Food and Drug Administration (FDA) through the premarket approval (PMA) process. Examples of fully implantable SCS devices approved through the PMA process include the Cordis programmable neurostimulator (Cordis Corp., Downers Grove, IL), approved in 1981, the Itrel® (Medtronic, Minneapolis, MN), approved in 1984, the Genesis and Eon devices (St Jude Medical) in 2001 and the Precision Spinal Cord Stimulator (Advanced Bionics, Switzerland), approved in 2004. FDA product code: LGW.

In May 2015, the Nevro Senza™ Spinal Cord Stimulator (Nevro Corp., Menlo Park, CA), a totally implantable neurostimulator device, was approved by FDA for the following indications: chronic intractable pain of the trunk and/or limbs, including unilateral or bilateral pain associated with the following: failed back surgery syndrome (FBSS), intractable low back pain, and leg pain. This device uses a higher frequency of electrical stimulation (10 kHz) than standard devices.

Two wireless injectable neurostimulators have been approved or cleared by FDA. In February 2016, FDA approved the Axium Neurostimulator System (Spinal Modulation, Menlo Park, CA) through the PMA process. The device is indicated as an aid to the management of moderate-to-severe intractable pain of the lower limbs in adults with complex regional pain syndrome types 1 and II. In August 2016, the Freedom Spinal Cord Stimulator (Stimwave Technologies, Fort Lauderdale, FL) was cleared by FDA through the 510(k) process for treating chronic, intractable pain of the trunk and/or lower limbs.

In October 2016, FDA approved BurstDR stimulation (St Jude Medical, Plano, TX), a clinician programmer application that provides intermittent “burst” stimulation for patients with certain St Jude SCS devices.

EVIDENCE SUMMARY

The principal outcomes for treatment of pain are symptom relief and improved functional level. Relief of pain is a subjective outcome and can be influenced by nonspecific effects, placebo response, the natural history of the disease, and regression to the mean. Therefore, randomized controlled trials (RCTs) are important to control for nonspecific effects and to determine whether any treatment effect provides a significant advantage over the
placebo/sham treatment or other treatments. Appropriate comparison groups depend on the condition being treated and may include placebo/sham stimulation, or medical or surgical management.

In the evaluation of the risks for implantable devices, observational studies can provide data on the likelihood of potential complications. The following complications for spinal cord stimulation (SCS) have been reported:[1]

- Lead migration, connection failure, generator failure, and/or lead breakage
- Superficial and deep infection with or without abscess
- Hematoma
- Nerve injury

The following evidence summary focuses on the investigational indications noted in criteria III, as listed above.

CANCER-RELATED PAIN

In 2015, Peng published an update to their 2013 systematic review, to evaluate the effectiveness of SCS for cancer-related pain compared with standard care using conventional analgesic medication.[2, 3] The literature search yielded 430 initial articles; however, just 18 were deemed relevant to include in the review. No RCTs were identified that evaluated the efficacy of SCS in adult patients with cancer-related pain. No new publications were identified, since the four case series[4-7] using a before-after design, with a total of 92 patients, included in the original review. In the absence of randomized controlled studies, the efficacy of SCS for treating cancer-related pain cannot be determined.

CHRONIC REFRACTORY ANGINA

Two populations of patients have been studied: 1) patients who were not considered candidates for a revascularization procedure due to comorbidities or other factors, where SCS was compared to continued medical management; or 2) patients who would be considered candidates for a revascularization procedure for the purpose of symptom relief only, where SCS was compared to coronary artery bypass grafting. Aggregating results across these different patient populations may yield misleading conclusions about treatment effect or patient selection criteria as these patient populations may not be interchangeable (both sets of patients may not be eligible for both procedures). Therefore, the trials included in this review for each of these distinct patient populations are discussed separately below.[8-13]

Systematic Reviews

In 2016, Pan identified 12 RCTs that evaluated SCS in patients with refractory angina pectoris.[14] Most studies had small sample sizes (ie <50 patients) and together there were a total of 476 patients. Reviewers did not report the control interventions reported in the RCTs. Pooled analyses favored the SCS group in most cases for exercise time after intervention, pain level (VAS score) and angina frequency, but there was not a significant difference between intervention and control groups on physical limitation and angina stability.

A 2015 systematic review by Tsigridas included nine RCTs evaluating SCS for refractory angina, seven of which compared SCS to low or no stimulation and two of which compared SCS to alternative medical or surgical therapy for angina.[15] Similar to the Taylor et al. review described below, the authors found that most RCTs were small and variable in quality based
on assessment with the modified Jadad score. The authors reported: “two of the RCTs were of high quality; two were of low quality and the remaining ones were of intermediate quality.” Most trials which compared SCS to low or no stimulation, found improvements in outcomes with SCS; however, given limitations in the evidence base, the authors concluded that larger multicenter RCTs are needed to assess the efficacy of SCS for angina.

In 2009 Taylor published a systematic review of five randomized controlled trials comparing active SCS with placebo (four studies) or no treatment (one study).[16] The studies included for analysis were judged to be of moderate or poor quality (based on a lack of reported treatment randomization and/or treatment blinding among cited limitations). Follow-up ranged from 48 hours to two-months and study size ranged from 22 to 30 patients. Primary outcomes identified by the review included impact on health-related quality of life, functional class and exercise capacity. Of these outcomes, active treatment was significantly associated with improvement in exercise capacity and health-related quality of life. No other differences between groups were identified. However, these results are limited by the moderate to poor quality of the reviewed studies which, because of their small sample sizes and limited follow-up duration, do not answer questions about the long-term durability of this type of treatment. In addition, the lack of distinction between placebo- and natural history-controlled groups does not allow for isolation of any treatment benefit of SCS over and beyond that conferred by placebo alone.

In 2008, a systematic review of the literature based on the Swedish Council on Technology Assessment in Health Care report on SCS in severe angina pectoris was published.[17] Seven controlled studies (five randomized), two follow-up reports, and a preliminary report, as well as two nonrandomized studies determined to be of medium-to-high quality were included in the review.

- The largest RCT[11-13] included 104 subjects and compared SCS and coronary artery bypass graft (CABG) in patients accepted for CABG and who were considered to have only symptomatic indication (i.e., no prognostic benefit) for CABG, according to the American College of Cardiology/American Heart Association guidelines, to run an increased risk of surgical complications, and to be unsuitable for percutaneous transluminal coronary angioplasty. Between-group differences on nitrate consumption, anginal attack frequency, and self-estimated treatment effect were not statistically significant at the 6-month follow-up. At the 5-year follow-up, significantly fewer patients in the CABG group were taking long-acting nitrates, and between-group differences on quality of life and mortality were not significant.
- A 2006 report by McNab compared SCS and percutaneous myocardial laser revascularization (PMR) in a study with 68 subjects.[10] Thirty subjects in each group completed a 12-month follow-up, and differences on mean total exercise time and mean time to angina were not significant. Eleven participants in the SCS group and 10 in the PMR group had no angina during exercise.
- The remaining RCTs included in the systematic review included 25 or fewer subjects.

Randomized Controlled Trials

Patient populations had failed back surgery syndrome, diabetic neuropathy, and complex regional pain syndrome. The comparators were primarily conventional medical management, although one RCT compared spinal cord stimulation with reoperation for failed back surgery syndrome, and another compared spinal cord stimulation with physical therapy. All RCTs reported results at 6 months. The most common primary outcome reported was a responder
outcome of 50% reduction in pain; Kemler (2000) reported absolute change in visual analog scale pain score.\[18\] Consistent with clinical practice, RCTs included a trial period of spinal cord stimulation, usually a few days to a week. Patients not reporting improvement in pain during the trial period did not continue receiving spinal cord stimulation during the remainder of follow-up. In most RCTs, these patients were included in the intention-to-treat analyses either as failures to respond or using imputation techniques. All RCTs with the responder primary outcomes reported clinically and statistically significant differences in the primary outcomes at 6 months, favoring spinal cord stimulation (spinal cord stimulation range, 39%-63% vs. comparator range, 5%-12%). Outcomes measuring the reduction in analgesic use were consistently numerically larger for spinal cord stimulation but not statistically significant in all studies. Four of the 5 studies did not report differences in functional, quality of life, or utility outcomes. Device-related complications ranged from 17% to 32%, with the most common being infection and discomfort or pain due to positioning or migration of electrodes or leads. However, two studies reported dural puncture headaches and Slangen (2014) reported a dural puncture headache ending in death.\[19\] Two studies reported longer-term results for both treatment groups. In each, results continued to favor spinal cord stimulation at 2 years, but for 1 with 5 years of follow-up, results were not statistically significant at 5 years.

In another small pilot RCT, conducted by Eldabe in 2016 to address uncertainties related to recruitment, outcome measures, and care standardization for a larger trial comparing SCS to usual care for refractory angina, enrollment was planned for 45 patients, but the trial failed to meet its enrollment target.\[20\] Among the 29 patients randomized to SCS (n=15) or usual care (n=14), there were no significant differences in primary or secondary outcomes between groups, but the trial was underpowered.

In 2012 Zipes published the results from a multi-center, single-blind RCT (n=68) which compared high SCS (two-hours of stimulation four times per day) versus sham SCS (one-minute of stimulation once per day) among patients with angina who were not candidates for revascularization.\[21\] The study was terminated (at 6 months) due to slow enrollment and per the Data Safety Monitoring Board recommendation that the study be terminated for futility based on an interim data analysis. The 68 subjects who underwent SCS implantation were randomized to either high stimulation (n=32) or low stimulation (control group; n=36). The low-stimulation control was designed so that patients would feel paresthesia, but the effect of stimulation would be subtherapeutic. Major adverse cardiac events (MACE) and rate of angina attacks were the primary outcomes of interest, along with total exercise time and exercise time to onset of angina. At 6 months an intention-to-treat analysis was conducted; data was available only for 58 of the 68 subjects (85%) No differences were found between groups in any of the outcomes, prompting the researchers to conclude the SCS was not more effective than placebo. However, long-term differences between groups are still not known as the study was terminated early. In addition, the small sample size may have been underpowered for assessing clinically meaningful differences.

In 2011 Lanza reported on a small RCT in which 25 patients were randomly assigned to 1 of 3 treatment groups: SCS with standard levels of stimulation (n=10), SCS with low-level stimulation (75% to 80% of the sensory threshold) (n=7), or SCS with very low intensity stimulation (n=8).\[22\] Thus, patients in groups 2 and 3 were unable to feel sensation during stimulation. After a protocol adjustment at 1 month, patients in the very low intensity group were re-randomized to one of the other groups after which there were 13 patients in the standard stimulation group and 12 patients in the low-level stimulation group. At the 3-month follow-up (2 months after re-randomization), there were statistically significant between-group
differences in 1 of 12 outcome variables. There were a median of 22 angina episodes in the standard stimulation group and 10 in the low-level stimulation group (p=0.002), indicating evidence for a significantly higher rate of angina episodes with standard SCS treatment. Non-significant variables included use of nitroglycerin, quality of life (VAS), Canadian Cardiovascular Society angina class, exercise-induced angina, and five sub-scales of the Seattle angina questionnaire. The small sample size and short-term follow-up does not permit conclusions about the long-term safety and effectiveness of SCS in these patients.

Section Summary

Numerous small RCTs have evaluated SCS as a treatment for refractory angina. While some studies have reported benefit, most have not. In two of the larger, more recent RCTs that enrolled more than 100 patients reported no benefit on the primary outcomes. Overall, this evidence is mixed and is not sufficient to allow conclusions on whether health outcomes are improved.

CRITICAL LIMB ISCHEMIA

Critical limb ischemia (CLI) is described as pain at rest or the presence of ischemic limb lesions. If the patient is not a suitable candidate for limb revascularization (typically due to insufficient distal run-off), it is estimated that amputation will be required in 60-80% of these patients within a year. Spinal cord stimulation has been investigated in this small subset of patients as a technique to relieve pain and decrease the incidence of amputation.

Systematic Reviews

In 2015, Aub Dabrh conducted a systematic review of non-revascularization-based treatments, including SCS, for patients with critical limb ischemia also included five RCTs.[23] In pooled analysis, the authors found that SCS was associated with reduced risk of amputation (odds ratio [OR], 0.53; 95% CI, 0.36 to 0.79). However, the reviewers concluded that there was "relatively low quality of the evidence mainly due to imprecision (ie, small sample size and wide CIs) and the risk of bias."

A 2013 update of a systematic review from the Cochrane group on use of SCS in non-reconstructible chronic critical leg ischemia (NR-CCLI) included 10 articles of six studies with a total of 444 patients.[24] None of the studies were blinded due to the nature of the treatment. One of the studies was non-randomized and one included only patients with ischemic ulcers. Treatment groups received SCS along with the same standard nonsurgical treatment as the control groups. At 12, 18 and 24 months follow-up individual studies showed a trend toward a better limb salvage that did not reach statistical significance. However, when results were pooled, a small but significant decrease in amputations was found for the SCS group at 12 months follow-up (pooled risk difference (RD): -0.11, 95% confidence interval: -0.20 to -0.02). The 11% difference in the rate of limb salvage means that 9 patients would need to be treated to prevent one additional amputation (number needed to treat [NNT]: 9, 95% CI: 5 to 50). Upon excluding results from the non-randomized trial from the analysis, the treatment difference for the group treated with SCS was no longer significant (pooled RD: -0.09, 95% confidence interval: -0.19 to 0.01). When results from the study with patients in Fontaine stage IV (the most severe stage of critical limb ischemia) were excluded, the direction of treatment benefit switched (from negative to positive, RD: 0.13, 95% CI 0.02 to 0.23), indicating evidence for increased risk of amputation following treatment with SCS.
Outcomes for pain relief and ulcer healing could not be pooled and the researchers reported mixed findings. Quality of life was unchanged in both control and treatment groups. The overall risk of complications or additional SCS treatment was 17%. Nevertheless, the report concluded that “There is evidence that SCS is better than conservative treatment alone to achieve amputation risk reduction, pain relief and improvement of the clinical situation” in patients with chronic critical leg ischemia. This seemingly incongruous conclusion may be explained by the authors’ conclusion that, “The benefits of SCS against the possible harm of relatively mild complications and costs must be considered.” A potential conflict of interest was noted for the principal investigator, who was part of the non-randomized study included in the analysis. Published comments by Klomp and Steyerberg strongly criticized the inclusion of this non-randomized trial, along the exclusion of data from a randomized study from the pooled analysis, stating:[25]

The same meta-analysis, performed with a different amputation data input of five randomized studies [instead of 4 RCTs and a non-randomized study], generated a risk difference of -0.07 (95% CI: -0.17 to +0.03) instead of -0.13 (95% CI: -0.22 to -0.04). The main conclusion, that spinal cord stimulation is better than conservative treatment alone in achieving a reduction in amputation risk, is not justified. If SCS is beneficial, the magnitude of the effect is very small.

In 2009, Klomp and colleagues published a meta-analysis of the same five RCTs identified in the 2013 Cochrane review.[26] The authors did not find a statistically significant difference in the rate of amputation in the treatment and control groups. There was a relative risk of amputation of 0.79 and a risk difference of -0.07 (p=0.15). They found insufficient evidence that SCS is more efficacious than best medical treatment alone. They also conducted additional analyses of data from their 1999 RCT to identify factors associated with a better or worse prognosis. They found that patients with ischemic skin lesions had a higher risk of amputation compared to patients with other risk factors. There were no significant interactions between this or any other prognostic factor. The analyses did not identify any subgroup of patients who might benefit from SCS.

In 2009, Simpson systematic review described above also reviewed studies on SCS for treatment of inoperable critical limb ischemia.[27] Four RCTs met inclusion criteria; comparators were conventional medical management (CMM)[28-31], oral analgesics[32], or prostaglandin E1 injection[33]. The authors concluded that evidence for a treatment difference was found in reduction of analgesics up to six months, but not at 18 months. However, no between-group differences were found in pain relief, limb survival, health-related quality of life, or any other outcomes.

Randomized Controlled Trials

There have been no new randomized trials published since those included in the systematic reviews summarized above.

Conclusion

A number of small RCTs of SCS versus usual care have been completed on patients with critical limb ischemia. In pooled analyses of these RCTs, SCS did not result in a significantly lower rate of amputation, although one systematic review and meta-analysis did report a significant difference. This evidence is not sufficient to conclude that SCS improves outcomes for patients with critical limb ischemia.
HEART FAILURE

Randomized Controlled Trials

In 2016, Zipes reported the results of the DEFEAT-HF trial, a prospective, multicenter, single-blind RCT trial comparing SCS with active stimulation to sham control in patients with New York Heart Association functional class III heart failure with a left ventricular ejection fraction of 35% or less. Sixty-six patients were implanted with an SCS and randomized in a 3:2 manner to SCS ON (n=42) or SCS OFF (sham; n=24). For the study’s primary end point (change in left ventricular end systolic volume index from baseline to six months), there was no significant difference between groups (p=0.30). Other end points related to heart failure hospitalization and heart failure-related QOL scores and symptoms did not differ significantly between groups. After completion of the six month randomization period, all subjects received active SCS stimulation. From baseline to 12 months of follow-up, there were no significant echocardiographic treatment effects in the overall patient population in echocardiographic parameters (p=0.36). The study was originally powered based on a planned enrollment of 195 implanted patients, but enrollment was stopped early due to enrollment futility. The nonsignificant difference between groups may have been the result of underpowering. However, the absence of any treatment effects or between-group differences are further suggestive of a lack of efficacy of SCS for heart failure.

Findings of a small pilot crossover RCT evaluating SCS for heart failure were published in 2014 by Torre-Amione. Eligibility included symptomatic heart failure despite optimal medical therapy, left ventricular ejection fraction less than 30%, hospitalization or need for intravenous inotropic support in the past year, and inability to walk more than 450 meters on a six-minute walk test. All patients had an implanted heart device. Nine patients underwent SCS implantation. The efficacy of SCS therapy was assessed by changes in patient symptoms, LV function, and BNP level. In all cases, ICD sensing, detection, and therapy delivery were unaffected by SCS. Symptoms were improved in the majority of patients with SCS, while markers of cardiac structure and function were, in aggregate, unchanged. Two patients had minor implant-related events and no reported implant-related HF exacerbations or hospitalizations. These small, preliminary pilot studies were intended to report first-in-human feasibility and safety to support further study. RCTs with large sample sizes and long-term follow-up are needed to draw conclusions on the safety and effectiveness of the therapy for this indication.

Nonrandomized Studies

In 2015 Tse performed a small, nonrandomized, prospective, multicenter pilot trial in male patients with New York Heart Association (NYHA) class III HF, left ventricular ejection fraction (LVEF) 20%-35%, and implanted defibrillator device who were prescribed stable optimal medical therapy. Seventeen patients underwent implantation of a SCS device (cases) and four patients who did not fulfill the study criteria served as nontreated controls. At six-month follow up, no deaths or device-device interactions were reported. Composite score improved by 4.2 ± 1.3 in all cases, and 11 cases (73%) showed improvement in ≥4 of 6 efficacy parameters, including NYHA class (p = 0.002); peak maximum oxygen consumption (p = 0.013); LVEF (p<0.001); and LV end-systolic volume (p = 0.002). No improvements were observed in the four controls.

DORSAL ROOT GANGLION STIMULATION

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Systematic Review

Stelter (2021) published a systematic review of 28 reports consisting of 354 patients evaluating the efficacy of dorsal root ganglion stimulation for non-complex regional pain syndromes. The authors reported that the majority of patients demonstrated at least a 50% mean pain reduction at their last follow-up time following treatment. Additional outcomes assessed including physical function, quality of life, and pain medication use also showed significant improvements.

Deer (2020) published a systematic literature review of three studies of dorsal root ganglion neurostimulation for the treatment of pain. This review concluded that dorsal root ganglion neurostimulation has level II evidence (moderate) for treating chronic focal neuropathic pain and complex regional pain syndrome based on 1 high-quality pivotal RCT (ACCURATE) and 2 lower quality studies.

Huygen (2020) reported a pooled analysis of prospective studies of dorsal root ganglion stimulation for the treatment of chronic pain. One RCT was included (ACCURATE) which is described in the following section and 6 prospective, single-arm, observational studies were included. The analysis included 217 patients with a permanent implant at 12-month follow-up. Analysis of pooled data showed an overall weighted mean pain score of 3.4, with 63% of patients reporting ≥50% pain relief. Effectiveness sub-analyses in CRPS-I, causalgia, and back pain resulted in a mean reduction in pain intensity of 4.9, 4.6, and 3.9 points, respectively. The pooled analysis showed a pain score for primary affected region ranging from 1.7 (groin) to 3.0 (buttocks) and responder rates of 80% for foot and groin, 75% for leg, and 70% for back. A substantial improvement in all PROs was observed at 12 months.

Vuka (2019) conducted a systematic review of the use of dorsal root ganglion stimulation for various pain syndromes (for example, complex regional pain syndrome, diabetic and non-diabetic peripheral neuropathy). The literature search, conducted through September 2018, identified 29 studies for inclusion, 1 RCT, (ACCURATE trial; discussed below) and the remaining were case series or case reports. The median sample size was 6 (range 1 to 152). Most of the studies reported positive results with dorsal root ganglion stimulation. No meta-analyses could be conducted.

A systematic review, published in 2013 by Pope, evaluated therapeutics for chronic pain that target the dorsal root ganglion. This review focused on ganglionectionomy, and radiofrequency treatment of the dorsal root ganglion, with discussion of electrical stimulation of the DRG as an emerging therapy. Three studies of electrical DRG stimulation were included in the review, two case reports and one nonrandomized feasibility trial. The Deer feasibility trial (described below) prospectively followed 10 patients with chronic, intractable neuropathic pain, over four weeks. Eight of the nine patients who completed the trial experienced a clinically meaningful (>30%) reduction in pain, as measured using a visual analog scale, with an average pain reduction of 70%. Seven of the nine reduced their utilization of pain medication. There were no adverse events reported. The two case studies included in the review described successful treatment of cervicogenic headache, post-herpetic neuralgia, and discogenic pain.

Randomized Controlled Trials

One RCT, the ACCURATE study, compared wireless injectable neurostimulators and standard SCS. The trial, published by Deer in 2016, was a multicenter unblinded noninferiority trial. Eligibility criteria included chronic (≥6 months) intractable (failed ≥2 drugs from different
classes) neuropathic pain of the lower limbs associated with a diagnosis of CRPS or causalgia and no previous neurostimulation. Patients were randomized to receive DRG stimulation with the Axium device or standard SCS. They first underwent a temporary trial of stimulation lasting 3 to 30 days, depending on the protocol at each site. Patients who had 50% or greater reduction in lower limb pain after the temporary trial were eligible for permanent stimulation. Those who failed temporary stimulation exited the trial but were included in the analysis as treatment failures. Implanted patients were followed for 12 months, with assessments at 3, 6, 9, and 12 months postimplant.

A total of 152 patients were randomized and 115 (n=61 DRG, n=54 SCS) had a successful temporary trial and continued to permanent implantation. Twelve-month data were available for 105 patients (55 patients in the DRG group, 50 in the SCS group). The primary outcome was a composite measure of treatment success. Success was defined as: (1) 50% or greater reduction in VAS score from baseline to the end of the trial phase; (2) VAS at 3 months that was 50% or greater lower than baseline; and (3) no stimulation-related neurologic deficits experienced during the study. The noninferiority margin was set at 10%; the trial was designed such that, if the noninferiority end point was met, a superiority analysis was also performed. Treatment success at 3 month was achieved by 55 (81.2%) of 69 patients in the DRG arm and 39 (55.7%) of 70 in the SCS arm. The noninferiority margin was met, and DRG was found to be statistically superior to SCS (p<0.001). At the 12-month follow-up, the primary end point was achieved by 49 (74.2%) of 66 in the DRG group and 35 (53%) of 66 in the SCS group and, again, DRG was considered noninferior to SCS and also superior (p<0.001). In terms of paresthesias, at 3 months and 12, SCS patients were significantly more likely to report paresthesias in nonpainful areas than DRG patients. At 3 months, 84.7% of DRG patients and 65% of SCS patients reported paresthesias only in their painful areas; at 12 months, these percentages were 94.5% and 61.2%, respectively. Twenty-one serious adverse events occurred in 19 patients (8 in the DRG group, 11 in the SCS group; difference between groups, p=NS). A limitation of the study was that it was unblinded and industry-sponsored, which could potentially bias outcome assessment and reporting.

Mekhail (2019) conducted a sub-analysis on the patients receiving DRG neurostimulation in the ACCURATE study, to evaluate the occurrence and risk factors for paresthesia. Among the 61 patients with DRG implants, the rates of paresthesia at 1 month, 3 months, 6 months, 9 months, and 12 months were 84%, 84%, 66%, 62%, and 62%, respectively. The patients who were parasthesia-free reported similar or better outcomes for pain and quality of life. Risk factors for paresthesia occurrence included higher stimulation amplitudes and frequencies, number of implanted leads, and younger age.

Nonrandomized Studies

Several case series have been published. The largest of them are summarized below. Liem (2015) reported on the outcomes of an industry-sponsored multicenter, prospective trial of DRG stimulation at six months and one year. The trial consisted of a run-in period in which 51 participants received DRG stimulation via leads connected to an external stimulator, followed by surgical placement of a fully-implanted neurostimulator in 32 of the 39 patients that achieved 50% or greater pain relief during the run-in period. More than half of the patients with fully implanted DNG stimulators reported at least 50% relief in pain, as measured by visual analog scale. Average pain ratings were 58% lower than baseline at six months and 56% lower at 12 months post-implantation. Patients also reported improved quality of life and mood by questionnaire (EQ-5D-3L and POMS). Over 12 months, there were 86 adverse events
reported in 29 patients, including temporary motor stimulation (12 events), CSF leak (seven events) and infection (seven events). Approximately half of these events were judged by the investigators to be related to the device. Seven subjects had their devices removed and were withdrawn from the study.

A subgroup analysis of the Liem study examined positional effects on paresthesia during DRG stimulation in the 32 patients with implanted neurostimulators.[49] Paresthesia and pain relief achieved with spinal cord stimulation can change as patients change position from upright to prone or supine, causing uncomfortable sensations. This study found no statistically significant difference in paresthesia intensity by body position. In order to truly determine the efficacy and safety of DRG stimulation well designed comparative studies with long-term follow-up must be performed to compare it to standard spinal cord stimulation.

Schu reported on an industry-sponsored multicenter European case series of 29 patients treated with DRG stimulation for chronic neuropathic groin pain.[46] Of the 29 patients who underwent a 30-day trial period, 25 (86.2%) underwent implantation with the Axium DRG device. Final lead placement between T12 and L4 was determined based on patient feedback during paraesthesia mapping. Data analysis was based on the results of 23 patients with a mean follow-up of 27.8 weeks. The average pain reduction was 71.4 ± 5.6%, and 82.6% (19/23) of patients experienced a > 50% reduction in their pain at the latest follow-up. Adverse events were not reported. The authors stated that paraesthesia was largely unaffected by positional changes. Limitations of this study include small sample size, lack of comparative data, and potential bias inherent in pain as a subjective outcome measure.

In 2013 Deer conducted an industry-sponsored case series to evaluate the efficacy and safety of the Axium DRG system in ten patients with chronic intractable pain of the trunk and/or limbs.[42] The study was conducted across four centers for a period of four weeks. The study protocol and lead implantation procedures were similar to those reported by Liem above; however, only results of trial DRGS over a period of three to seven days were reported. On average, there was a 70% reduction in pain following stimulation (p = 0.0007). Eight of the nine patients experienced a clinically meaningful (>30%) reduction in pain, and seven of the nine reduced their pain medication utilization. The study did not consider longer term effects with a permanently implanted device. Seventeen adverse events occurred of which 14 were considered to be device-related; none were thought to be serious.

PRACTICE GUIDELINE SUMMARY

AMERICAN SOCIETY OF INTERVENTIONAL PAIN PHYSICIANS (ASIPP)[50]

In 2013, the ASIPP updated their evidence-based guidelines for interventional techniques in the management of chronic spinal pain. The guidelines included the statement that there is fair evidence in support of SCS in managing patient with failed back surgery syndrome.

AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION AND THE AMERICAN HEART ASSOCIATION (ACCF/AHA)

Guidelines from the American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) published in 2007 with focused updates in 2011[51] and 2012[52] for the management of patients with unstable angina/non ST-Elevation myocardial infarction state:

“Transcutaneous electrical nerve stimulation and spinal cord stimulation for continued pain
Despite the implementation of Class I measures may be considered for patients with syndrome X. (Level of Evidence: B)."[53] However, the level of evidence indicates that the “treatment usefulness/ efficacy [is] less well established” and that this recommendation may be based on a single randomized controlled trial or one or more non-randomized studies.

The 2012 updated joint ACCF/AHA guidelines recommend that SCS may be considered for relief of refractory angina in patients with stable ischemia heart disease (Level of evidence: C, defined as very limited populations evaluated and/or only consensus opinion of experts, cases studies, or standard of care).[54] The guidelines conclude:

“Studies of spinal cord stimulation suggest that this technique might have some use as a method to relieve angina in patients with symptoms that are refractory to standard medical therapy and revascularization. There is a paucity of data on the mechanisms and long-term risks and benefits of this therapeutic approach, however.”

NEUROPATHIC PAIN SPECIAL INTEREST GROUP OF THE INTERNATIONAL ASSOCIATION FOR THE STUDY OF PAIN[55]

In 2013, the Neuropathic Pain Special Interest Group of the International Association for the Study of Pain (NeuPSIG) published consensus recommendations on management of neuropathic pain. The recommendations supporting the use of SCS for failed back surgery syndrome and for complex regional pain syndrome we rated as weak (quality of evidence moderate to low; strength of recommendation weak to inconclusive). The recommendation for SCS for postherpetic neuralgia was also rated as weak (quality of evidence low; strength of recommendation inconclusive).

INTERNATIONAL NEUROMODULATION SOCIETY[56]

The International Neuromodulation Society convened a Neuromodulation Appropriateness Consensus Committee (NACC) to develop best practices for the use of DRG stimulation for the treatment of chronic pain syndromes. The NACC was comprised of experts in anesthesiology, neurosurgery, and pain medicine. The NACC performed a systematic literature search through June 2017 and identified 29 publications providing evidence for the consensus recommendations. The evidence was graded using the modified Pain Physician criteria and the USPSTF criteria. The NACC report gave a strong recommendation that DRG stimulation is recommended for CRPS type I or type II.

AMERICAN SOCIETY OF PAIN AND NEUROSCIENCE

The American Society of Pain and Neuroscience issued a comprehensive guideline in 2021 on the management of cancer-related pain.[57] The guideline found that spinal cord stimulation may be considered for 1) treatment of refractory cancer pain (Level II-3-C evidence: multiple series compared over time, with or without intervention, and surprising results in noncontrolled experience; treatment is neither recommendable nor inadvisable), and 2) on a case-by-case basis for "pain that is related to cancer treatment such as chemotherapy-induced peripheral neuropathy" (level III-C evidence: clinical experiences-based opinions, descriptive studies, clinical observations, or reports of expert committee; treatment is neither recommendable nor inadvisable).
SPINAL CORD STIMULATORS

There is enough research to show that spinal cord stimulation (SCS) including high frequency SCS for the treatment of chronic trunk or limb pain, when all other treatment modalities have failed to adequately reduce symptoms may improve health outcomes. In addition, practice guidelines recommend SCS for select patients. Therefore, SCS including temporary and the potential permanent implantation may be considered medically necessary for treatment of chronic refractory pain of the trunk or limbs when policy criteria are met.

In certain situations, a spinal cord stimulator may require revision after it has been placed. In these cases, revision may be medically appropriate to allow for the proper functioning of the device. Therefore, revision(s) to an existing spinal cord stimulator may be considered medically necessary after the device has been placed.

In certain situations, a spinal cord stimulator may no longer be able to perform its basic function due to damage or wear. When a stimulator is out of its warranty period and cannot be repaired adequately to meet the patient’s medical needs, replacement of the device may be medically appropriate. Therefore, replacement of all or part of a spinal cord stimulator may be considered medically necessary when device replacement Criteria are met.

When a stimulator is in its warranty period or can be repaired or adapted adequately to meet the patient’s medical needs, replacement of the device is not medically appropriate. Therefore, replacement of all or part of a spinal cord stimulator is considered not medically necessary when device replacement Criteria are not met.

When criteria are not met, spinal cord stimulation for severe and chronic refractory neuropathic pain of the trunk or limbs is not clinically appropriate and is therefore considered not medically necessary.

There is not enough research to show that spinal cord stimulation (SCS), including standard or high frequency, in the treatment of conditions not related to severe and chronic refractory pain of the trunk or limbs improves health outcomes or is more effective than standard of care. Therefore, the use of SCS, including standard or high frequency is investigational for the treatment of all other conditions not related to severe and chronic refractory pain of the trunk or limbs.

DORSAL ROOT GANGLION STIMULATORS

There is enough research to show that dorsal root ganglion (DRG) stimulation for the treatment of chronic trunk or limb pain, when all other treatment modalities have failed to adequately reduce symptoms may improve health outcomes. In addition, practice guidelines recommend DRG stimulation for select patients. Therefore, DRG stimulation may be considered medically necessary for treatment of chronic refractory pain of the trunk or limbs when policy criteria are met.

In certain situations, a dorsal root ganglion stimulator may require revision after it has been placed. In these cases, revision may be medically appropriate to allow for the proper functioning of the device. Therefore, revision(s) to an existing spinal cord stimulator may be considered medically necessary after the device has been placed.
In certain situations, a dorsal root ganglion stimulator may no longer be able to perform its basic function due to damage or wear. When a stimulator is out of its warranty period and cannot be repaired adequately to meet the patient’s medical needs, replacement of the device may be medically appropriate. Therefore, replacement of all or part of a spinal cord stimulator may be considered medically necessary when device replacement Criteria are met.

When a stimulator is in its warranty period or can be repaired or adapted adequately to meet the patient’s medical needs, replacement of the device is not medically appropriate. Therefore, replacement of all or part of a dorsal root ganglion stimulator is considered not medically necessary when device replacement Criteria are not met.

When criteria are not met, dorsal root ganglion stimulation for severe and chronic refractory pain of the trunk or limbs due to type I or type II complex regional pain syndrome, including reflex sympathetic dystrophy or causalgia, is not clinically appropriate and is therefore considered not medically necessary.

For all other indications, there is not enough research to show that dorsal root ganglion (DRG) stimulation is safer and/or more effective than standard of care when policy criteria are not met. Therefore, the use of dorsal root ganglion stimulation is considered investigational when policy criteria are not met.

REFERENCES

CODES

NOTE: HCPCS code C1823 is NOT the correct code to use for reporting these services. Please refer to the codes listed below for guidance.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>63650</td>
<td>Percutaneous implantation of neurostimulator electrode array; epidural</td>
</tr>
<tr>
<td></td>
<td>63655</td>
<td>Laminectomy for implantation of neurostimulator electrodes, plate/paddle, epidural</td>
</tr>
<tr>
<td></td>
<td>63661</td>
<td>Removal of spinal neurostimulator electrode percutaneous array(s), including fluoroscopy, when performed</td>
</tr>
<tr>
<td></td>
<td>63662</td>
<td>Removal of spinal neurostimulator electrode plate/paddle(s) placed via laminotomy or laminectomy, including fluoroscopy, when performed</td>
</tr>
<tr>
<td></td>
<td>63663</td>
<td>Revision including replacement, when performed, of spinal neurostimulator electrode percutaneous array(s), including fluoroscopy, when performed</td>
</tr>
<tr>
<td></td>
<td>63664</td>
<td>Revision including replacement, when performed, of spinal neurostimulator electrode plate/paddle(s) placed via laminotomy or laminectomy, including fluoroscopy, when performed</td>
</tr>
<tr>
<td></td>
<td>63685</td>
<td>Insertion or replacement of spinal neurostimulator pulse generator or receiver, direct or inductive coupling</td>
</tr>
<tr>
<td></td>
<td>63688</td>
<td>Revision or removal of implanted spinal neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td>Codes</td>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>95970</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with brain, cranial nerve, spinal cord, peripheral nerve, or sacral nerve, neurostimulator pulse generator/transmitter, without programming</td>
</tr>
<tr>
<td></td>
<td>95971</td>
<td>;with simple spinal cord, or peripheral nerve (eg, sacral nerve) neurostimulator pulse generator/transmitter, programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>95972</td>
<td>;with complex spinal cord, or peripheral (eg, sacral nerve) neurostimulator pulse generator/transmitter programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C1767</td>
<td>Generator, neurostimulator (implantable), nonrechargeable</td>
</tr>
<tr>
<td></td>
<td>C1820</td>
<td>Generator, neurostimulator (implantable), with rechargeable battery and charging system</td>
</tr>
<tr>
<td></td>
<td>C1822</td>
<td>Generator, neurostimulator (implantable), high frequency, with rechargeable battery and charging system</td>
</tr>
<tr>
<td></td>
<td>L8679</td>
<td>Implantable neurostimulator, pulse generator, any type</td>
</tr>
<tr>
<td></td>
<td>L8680</td>
<td>Implantable neurostimulator electrode, each</td>
</tr>
<tr>
<td></td>
<td>L8685</td>
<td>Implantable neurostimulator pulse generator, single array, rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8686</td>
<td>Implantable neurostimulator pulse generator, single array, nonrechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8687</td>
<td>Implantable neurostimulator pulse generator, dual array, rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8688</td>
<td>Implantable neurostimulator pulse generator, dual array, nonrechargeable, includes extension</td>
</tr>
</tbody>
</table>

Date of Origin: January 1996
IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Bariatric surgery is a major surgical intervention which aims to reduce weight, eliminate or improve comorbid conditions, and maintain weight loss in morbidly obese patients who have failed to achieve weight loss through lifestyle modifications.

MEDICAL POLICY CRITERIA

Note: Member contracts for covered services vary. Member contract language takes precedence over medical policy.

I. Bariatric surgery may be considered **medically necessary** in the treatment of morbid obesity when all of the following criteria (A. and B.) are met:

 A. All of the general Criteria (1.- 4.) must be met:
 1. At the start of the medically-supervised, nonsurgical weight reduction program, one of the following must be met:
 a. BMI greater than or equal to 40 kg/(meter squared); or
 b. BMI greater than or equal to 35 kg/(meter squared) with at least one of

...
the following comorbid conditions:

i. Type II diabetes mellitus; or

ii. Poorly controlled hypertension despite optimal medical management; or

iii. Coronary artery disease; or

iv. Obstructive sleep apnea as defined by an AHI equal to or greater than 15 per hour; and

2. The patient meets one of the following age requirements:

 a. Greater than or equal to 18 years; or

 b. Less than 18 years of age and has attained Tanner 4 or 5 pubertal development and one of the following must be met:

 i. BMI greater than or equal to 140 percent of the 95th percentile for age and sex; or

 ii. BMI greater than or equal to 120 percent of the 95th percentile for age and sex with at least one of the comorbid conditions listed in Criterion I.A.1.b.

3. Documentation of active participation for a total of at least 3 consecutive months in a structured, medically supervised pre-operative training program. The program must be provided by or approved and monitored under the supervision of the bariatric program.

 Documentation from the clinical medical records must indicate that the structured medical supervision meets all of the following Criteria:

 a. Program participation occurs during a total of at least 3 consecutive months within the 12 months prior to the request for surgery; and

 b. Include at least 2 visits for medical supervision, during the 3 consecutive months of program participation. One visit must occur at the initiation, and another at least 3 months later (90 days); and

 c. Be provided by an MD, DO, NP, PA, or RD in conjunction with the bariatric program; and

 d. Include assessment and counseling concerning weight, nutrition and diet that should be related to the type of planned bariatric surgery, exercise, and behavior modification; and

4. Preoperative evaluation to include both of the following:

 a. A licensed psychologist, psychiatrist, LCSW/LICSW, licensed masters-level counselor, or NP in a behavioral health practice, documents the absence of significant psychopathology that can limit an individual’s understanding of the procedure or ability to comply with medical/surgical recommendations (e.g., active substance abuse, eating disorders, schizophrenia, borderline personality disorder, uncontrolled depression); and

 b. Clinical documentation that the patient is an appropriate candidate for the
surgery and is committed to the treatment plan; and

B. The request is for one of the following procedures:
 1. Sleeve gastrectomy as a stand-alone procedure; or
 2. Gastric bypass using a Roux-en-Y anastomosis with an alimentary limb of 150 cm or less
 3. Biliopancreatic bypass with duodenal switch in patients ages greater than or equal to 18 years with BMI greater than or equal to 50 kg/(meter squared)

II. Reoperation may be considered medically necessary when one or more of the following criteria (A. or B.) are met:

 A. Reoperation with revision of a bariatric procedure (i.e. sleeve gastrectomy, biliopancreatic bypass with duodenal switch, or gastric bypass), conversion of a sleeve gastrectomy to a gastric bypass using a Roux-en-Y anastomosis with an alimentary limb of 150 cm or less, or adjustable gastric band removal when one or more of the following documented significant complications is present:
 1. Bowel perforation, including band erosion; or
 2. Band migration (slippage), that cannot be corrected with manipulation or adjustment. Records must demonstrate that manipulation or adjustment to correct band slippage has been attempted; or
 3. Leak; or
 4. Obstruction exceeding the inherent obstruction of the original bariatric procedure, documented by imaging or endoscopic findings; or
 5. Staple-line failure (such as, Gastro-gastric fistula); or
 6. Weight loss to 90% or less of ideal body weight; or
 7. Band infection; or
 8. One or more of the following severe, clinically-objective conditions that have been unresponsive to optimal medical management for at least 4 months:
 a. Severe esophagitis (may include Barrett’s esophagus); or
 b. Cameron lesion(s); or
 c. Gastro-jejunal anastomotic ulcer(s).

 B. Removal of adjustable gastric band with conversion to a gastric bypass using a Roux-en-Y anastomosis with an alimentary limb of 150 cm or less when Criterion I. A. is met. Note: Criterion I. A. must be met during the period after placement of the adjustable gastric band.

III. Sleeve gastrectomy, biliopancreatic bypass with duodenal switch, or gastric bypass using a Roux-en-Y anastomosis with an alimentary limb of 150 cm or less is considered not medically necessary when Criterion I. above is not met including but not limited to biliopancreatic bypass with duodenal switch in patients younger than 18 years of age or in patients with BMI less than or equal to 50 kg/(meter squared).

IV. The vertical banded gastroplasty and adjustable gastric banding are no longer a standard of care and are therefore considered not medically necessary.
V. Reoperation or conversion of a prior bariatric procedure is considered not medically necessary when Criterion II. is not met, including but not limited to reoperation for early satiety, nausea, patient dissatisfaction, or gastroesophageal reflux disease (GERD).

VI. Repair of sliding or paraesophageal hiatal hernia when performed at the time of any bariatric surgery would be considered a component of and incidental to the primary bariatric surgery.

VII. The following procedures are considered investigational for the treatment of:

A. Morbid obesity including distal or partial gastrectomy (other than standard sleeve gastrectomy) performed with or without gastroduodenostomy, gastrojejunostomy, or Roux-en-Y reconstruction; and gastric restrictive procedure without gastric bypass for morbid obesity (other than sleeve gastrectomy)

B. Morbid obesity using only hiatal hernia repair including repair of sliding or paraesophageal hernia.

C. Any condition other than morbid obesity (e.g. gastroesophageal reflux disease or gastroparesis) including sleeve gastrectomy, biliopancreatic bypass with duodenal switch or gastric bypass using a Roux-en-Y anastomosis.

D. Any condition including but not limited to morbid obesity and gastroesophageal reflux disease:
 1. Mini-gastric bypass (gastric bypass using a Billroth II type of anastomosis)
 2. Distal gastric bypass (long limb gastric bypass, i.e., >150 cm)
 3. Biliopancreatic bypass (i.e., the Scopinaro procedure)
 4. Duodenal switch with single anastomosis, D-Loop surgery, or stomach intestinal pylorus sparing surgery (SIPS)
 5. Two-stage bariatric surgery procedures (e.g., sleeve gastrectomy followed by gastric bypass, sleeve gastrectomy followed by biliopancreatic diversion, removal of gastric band followed by sleeve gastrectomy or gastric bypass)
 6. Any combination of adjustable gastric banding with Roux-en-Y gastric bypass, or sleeve gastrectomy, or other bariatric surgical procedure.
 7. Parietal cell separating gastrojejunostomy
 8. Gastric plication

VIII. Endoscopic procedures are considered investigational for the following:

A. As the primary bariatric procedure

B. Secondary bariatric procedures (See Policy Guidelines) to treat complications of primary bariatric surgery including but not limited to weight gain due to a large gastric stoma or large gastric pouch and dumping syndrome.

C. Balloon dilatation of strictures when Criterion II.A.4 is not met.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.
POLICY GUIDELINES

Examples of endoscopic devices/procedures include but are not limited to the following:

1. StomaphyX (EndoGastric Solutions, Inc)
2. ROSE procedure (Restorative Obesity Surgery, Endoscopic)
3. EndoCinch (Bard)
4. EndoSurgical Operating System (EOS) (USGI Medical, Inc.)
5. Sclerotherapy of stoma
6. Endoscopic gastroplasty
7. Endoscopically placed duodenal-jejunal sleeve
8. Endoscopic stoma revision
9. Gastric balloon systems
10. AspireAssist
11. OverStitch Endoscopic Suturing System (Apollo Endosurgery, Inc.)

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could our impact review and decision outcome:

1. If patient is less than 18 years of age, documentation is provided of Tanner 4 or 5 pubertal development. For patients under 18 years of age, greater consideration should be given to psychosocial and informed consent issues.

2. Clinical documentation of a medically supervised nonsurgical pre-operative training program approved and monitored under the supervision of the healthcare practitioner providing medical oversight, that includes:
 A. BMI at the start of the program
 B. Comorbid conditions
 C. The program occurred during at least 3 consecutive months within the 12 months prior to request for surgery
 D. At least 2 visits for medical supervision during the 3 consecutive months of program participation. One visit must occur at the initiation, and another at least 3 months later.
 E. Assessment and counseling concerning weight, diet, exercise and behavior modification
 F. Documentation the program was provided by an MD, DO, NP, PA, or RD under the supervision of the bariatric program.

3. Preoperative evaluation by a licensed psychologist, psychiatrist, LCSW/LICSW, licensed masters-level counselor, or NP in behavioral health that includes:

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
A. Documentation of the absence of significant psychopathology that can limit an individual's understanding of the procedure or ability to comply with medical/surgical recommendations (e.g., active substance abuse, eating disorders, schizophrenia, borderline personality disorder, uncontrolled depression)

4. Clinical documentation that the patient is an appropriate candidate for the surgery and is committed to the treatment plan.

5. History and Physical including current medications.

6. Specific procedure being requested.

7. For Reoperation, Revision or Removal requests:
 A. Complication present
 B. Interventions attempted. NOTE: For band migration (slippage), that cannot be corrected with manipulation or adjustment. Records must demonstrate that manipulation or adjustment to correct band slippage has been attempted.
 C. Imaging or endoscopic findings. NOTE: For obstruction, records must demonstrate endoscopic findings or imaging has been performed.
 D. For severe esophagitis, Cameron lesions, or gastro-jejunal anastomotic ulcers, documentation must demonstrate medical management has been tried for at least 4 months.

CROSS REFERENCES

1. Transesophageal Endoscopic Therapies for Gastroesophageal Reflux Disease (GERD), Surgery, Policy No. 110
2. Gastric Electrical Stimulation, Surgery, Policy No. 111
3. Gastroesophageal Reflux Surgery, Surgery, Policy No. 186
4. Magnetic Esophageal Ring to Treat Gastroesophageal Reflux Disease, Surgery, Policy No. 190
5. Vagus Nerve Blocking Therapy for Obesity, Surgery, Policy No. 200

BACKGROUND

Morbid obesity is defined as a body mass index (BMI) >40 kg/m² (normal BMI range: 19-25 kg/m²)

Note: BMI may be calculated by using the [BMI calculator](#).

Individuals with morbid obesity are at high risk for developing weight-related complications such as diabetes, hypertension, obstructive sleep apnea, and various types of cancers (colon, prostate, breast, uterus, and ovaries). In addition, morbid obesity is associated with a shortened life span.[1]

The first-line treatment of morbid obesity involves dietary and lifestyle changes. Although this strategy may be effective in some patients, a majority of morbidly obese patients do not achieve significant weight loss through lifestyle modifications. In addition, the weight loss may not be durable, as only a small number of patients are able to comply with the changes on a long-term basis. When conservative measures fail, some patients may consider surgery for morbid obesity (bariatric surgery).
Several bariatric procedures have been developed, but based on the underlying mechanism of weight loss, all fall into one or both of the following categories:

Restrictive procedures

- Decrease the size of the stomach and limit food intake

Malabsorptive procedures

- Limit the absorption of calories and nutrients by altering the way food moves through the intestinal track

Multiple variants exist, differing in the reconfiguration of the small intestines and consequently the extent of malabsorption.
The following table briefly summarizes different bariatric procedures:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Gastric Bypass with Roux-en-Y Anastomosis (RYGBP)** | 43846 | *Involves both restrictive and malabsorptive components:*
 o A small gastric pouch is created from the upper part of the stomach by segmentation or resection to restrict the amount of food that can be ingested
 o The mid portion of the jejunum is divided and the cut end of the distal limb (≤ 150 cm) is attached to the gastric pouch outlet (Roux limb). The cut end of the proximal limb (the limb consisting of the duodenum and proximal jejunum) is attached to the side of the Roux limb (the limb connected to the pouch). This creates the Y configuration of the small intestine, allowing food to bypass the duodenum and proximal jejunum, resulting in malabsorption. |
| AKA: Proximal or Short Limb Gastric Bypass | 43644 | |
| **Distal (Long Limb) Gastric Bypass** | 43847 | The procedure involves both restrictive and malabsorptive components and is a variant of the standard gastric bypass with the longer (>150 cm) Roux limb. The longer the Roux limb, the greater the bypass of the small intestine and consequently the degree of malabsorption. |
| **Biliopancreatic Diversion (Bypass) Procedure** | 43847 | *Involves both restrictive and malabsorptive components:*
 o Subtotal (distal) gastrectomy creates small gastric pouch at the top of the stomach to limit food intake
 o A long limb Roux-en-Y anastomosis (>150 cm) results in the biliopancreatic juices being diverted into the distal ileum, significantly increasing malabsorption
 Designed to preferentially inhibit the absorption of fat
 Only partially reversible |
| AKA Scopinaro procedure | | |
| **Biliopancreatic Diversion (Bypass) with Duodenal Switch (BPD-DS)** | 43845 | *This procedure is an adaptation of the standard biliopancreatic bypass:*
 o The restrictive component involves subtotal gastrectomy resulting in a tube or sleeve-like stomach remnant that leaves the pyloric valve and the initial segment of duodenum intact.
 o The long limb Roux-en-Y anastomosis (>150 cm) provides malabsorption in this variant as well, but the distal ileum is connected to the duodenal segment leading from the stomach sleeve, instead of the stomach pouch itself. |
| **Laparoscopic duodenal switch with single anastomosis** | No specific CPT code | *Restrictive and malabsorptive procedure*
 Simplified version of the BPD-DS procedure
 Surgery consists of:
 o Creation of a small gastric pouch by section the curvature of the stomach
 o Duodenum is transected while keeping the pylorus intact
 o A 1-loop duodenal switch is performed with creation of a 200-250 cm anastomosis |
| AKA Single loop duodenal switch | | |
| **Mini-Gastric Bypass** | no specific code | *The procedure is a variant of the gastric bypass and involves both restrictive and malabsorptive components:*
 o The stomach is segmented to create a small gastric pouch similar to traditional gastric bypass
 o Instead of creating a Roux-en-Y anastomosis, the loop of jejunum is anastomosed directly to the stomach pouch (similar to a Billroth II procedure) |
| **Sleeve Gastrectomy** | 43775 | *Greater curvature of the stomach is resected resulting in a gastric remnant shaped like a tube or sleeve.*
 The pyloric sphincter is preserved leaving stomach function unaltered.
 Not reversible
 Can be performed as:
 o A stand-alone procedure (restrictive)
 o The first part of a two-stage surgical procedure for the very high-risk patients (BMI ≥50 kg/m²) who need to lose some weight before they can proceed with a malabsorptive procedure (most commonly BPD-DS or RYGBP) |

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Procedure</th>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustable Gastric Banding</td>
<td>43770-43774</td>
<td>• Restrictive procedure</td>
</tr>
<tr>
<td></td>
<td>43886-43888</td>
<td>• An adjustable, external, constrictive band is wrapped around the upper portion of the stomach to create a small stomach pouch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The band can be adjusted through a subcutaneous access port, foregoing the need to enter the gastric cavity when adjusting the band</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The least invasive and least technically complex bariatric procedure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lap-Band® (original applicant, Allergan, Inc.; sold to Apollo Endosurgery, Inc.) and the REALIZE™ (Ethicon Endo-Surgery, Inc.) have received approval from the U.S. Food and Drug Administration (FDA).</td>
</tr>
<tr>
<td>Vertical Banded Gastroplasty</td>
<td>43842</td>
<td>• The vertical banded gastroplasty is no longer a standard of care.</td>
</tr>
<tr>
<td>AKA Vertically banded gastric partition or Gastric stapling</td>
<td></td>
<td>• Restrictive procedure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Surgical stapling is used to create a small, vertical gastric pouch at the top of the stomach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The pouch outlet (stoma) is reinforced with an external mesh collar</td>
</tr>
<tr>
<td>Endoscopic (Endoluminal) Bariatric Procedures</td>
<td>No specific CPT code</td>
<td>• The access to the stomach is gained through the mouth, so no incisions are necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Endoluminal procedures being developed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Primary bariatric procedure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Revision (e.g. for treatment of enlarged gastric stoma and/or enlarged gastric pouches that may be associated with weight gain after bariatric surgery)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Examples of the endoscopic revision bariatric procedures include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Gastroplasty using an endoscopically guided stapler (reduces the size of the gastric pouch)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Placement of gastric balloon (soft, silicone balloon inserted into the stomach and filled with sterile saline to induce feeling of satiety)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Placement of duodenal-jejunal sleeve (sleeve placed inside duodenum and upper jejunum to prevent contact between food and the intestine)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• StomaphyX®, an endoscopically guided system intended for tissue plication and ligation, has received 510(k) FDA approval. The device is also being investigated for endoscopic treatment of gastroesophageal reflux.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OverStitch™ Endoscopic Suturing System is intended for endoscopic placement of sutures and approximation of soft tissue, and has received FDA approval. The system may be used as an incisionless revision surgery, with the intent to reduce the size of a stomach pouch that has stretched out following a previous bariatric procedure.</td>
</tr>
<tr>
<td>Laparoscopic Gastric Plication</td>
<td>No specific CPT code</td>
<td>• Sutures are laparoscopically placed over the greater curvature (laparoscopic greater curvature plication) or anterior gastric region (laparoscopic anterior curvature plication) to create a tube-like stomach.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The procedure involves 2 main steps:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Mobilization of the greater curvature of the stomach, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Suture plication of the stomach to achieve gastric restriction</td>
</tr>
</tbody>
</table>
EVIDENCE SUMMARY

- Roux-en-Y Gastric Bypass (RYGBP)

The Roux-en-Y gastric bypass is a commonly performed procedure with the most accumulated evidence in the published literature.\(^2\) Consequently, in order to determine the safety and efficacy of other bariatric surgical procedures, they need to be compared to RYGBP in well-designed, well-executed randomized controlled trials (RCTs).

- Laparoscopic Adjustable Gastric Banding (LAGB)

RCT data comparing LAGB and RYGBP are limited, however:

 - LAGB is reversible and the least invasive of all bariatric procedures.
 - Weight loss following LAGB is less than what is usually seen following RYGBP.
 - LAGB has low perioperative complications; however inadequate weight loss or long term complications of band erosion, slippage, or malfunction may require additional surgery.

- Sleeve Gastrectomy (SG)

 - SG has gained acceptance in clinical practice and is a commonly performed procedure.
 - SG offers an alternative to adjustable gastric banding with potentially greater weight loss but without the complications associated with malabsorptive procedures, such as RYGBP.

- Other Bariatric Surgical Procedures

 Randomized Controlled Trials

Very few randomized controlled trials compared other bariatric procedures with RYGBP. Overall, the trials were of poor quality and the findings unreliable due to at least one of the following design flaws:

 - The trials had very small study populations, limiting the ability to rule out the role of chance as an explanation of findings.
 - The randomization scheme was either inadequate or not explained. Inadequate randomization of study participants may result in unequal distribution of potential confounders, such as clinical characteristics, which in turn may affect the outcome.
 - The studies have short follow-up times so there is no long-term (5-10 years or longer) evidence regarding:
 - durability of weight loss
 - complications (e.g. metabolic side effects, nutritional deficiencies, anastomotic ulcers, esophagitis, procedure-specific complications such as band erosion)
 - resolution of comorbidities (e.g. diabetes, hypertension, obstructive sleep apnea, increased cholesterol)
 - need for reoperations
- Short-term complications, adverse events, morbidity, resolution of comorbidities, and reoperation rates are inconsistently reported, limiting conclusions and comparisons across studies.
- There is limited understanding of appropriate patient selection criteria for each of the non-RYGBP bariatric procedures (e.g. superobese patients vs. morbidly obese patients).

Nonrandomized Studies

Although the published, peer-reviewed literature on non-RYGBP bariatric procedures is voluminous, it consists mostly of case series and retrospective, nonrandomized comparisons. Evidence from these studies is unreliable due to design flaws, such as non-random allocation of treatment, lack of adequate comparison groups, and short-term follow-up. In addition, the inconsistent reporting of weight loss, resolution of comorbidities, adverse events, morbidity, and reoperation rates further limit meaningful comparisons across these studies.

- **Bariatric Surgery in the Pediatric Population**

 Overall, there is enough evidence on the role of bariatric surgery in treating morbidly obese pediatric patients. Moreover, the evidence mostly comes from small, nonrandomized and therefore unreliable studies. Specifically:

 - There is enough evidence that bariatric surgery leads to clinically significant, long-term sustained weight loss and resolution of obesity-related comorbidities in the pediatric population.
 - There is still a lack of evidence regarding the long-term potential impact of bariatric procedures on growth and development in the pediatric population.

- **Bariatric Surgery as a Treatment for Gastroesophageal Reflux Disease (GERD)**

 In order to determine the safety and efficacy of bariatric surgical procedures as treatments for GERD, they need to be compared to standard medical or surgical treatments of this condition in well-designed, well-executed randomized controlled trials.

- **Endoscopic Bariatric Procedures**

 There is insufficient evidence to determine the safety and efficacy of any endoluminal procedure as either a primary bariatric procedure or a revision procedure. The published evidence is limited and consists of only a few case series and randomized trials with a high risk of bias.

- **Multidisciplinary Approach to the Clinical Management of Bariatric Surgery Patients**

 The National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) clinical practice guidelines state the importance of a multidisciplinary approach to the clinical management of bariatric surgery patients. Comprehensive programs should address nursing, nutrition, exercise, behavior modification, and psychological support, and they should provide lifelong follow-up for treated patients.[1]

- **Bariatric Surgery Centers of Excellence**

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
The published evidence indicates that high volume bariatric centers are more likely to be successful in achieving optimal outcomes and lower complication and mortality rates than low volume bariatric centers. These data have led to national efforts to establish bariatric surgery centers of excellence by the American Society for Metabolic and Bariatric Surgery, the American College of Surgeons, and the BlueCross BlueShield Association.

The following literature appraisal is based on randomized controlled trials (RCT), Blue Cross Blue Shield Association (BCBSA) Technology Evaluation Center (TEC) Assessments, Cochrane reviews, Agency for Healthcare Research and Quality (AHRQ) comparative effectiveness reviews, Washington State Health Technology Assessment and evidence-based guidelines.

DISTAL (LONG LIMB) GASTRIC BYPASS

SYSTEMATIC REVIEWS

The 2005 Blue Cross Blue Shield Association (BCBSA) Technology Evaluation Center (TEC) Assessment identified six comparative trials of long limb gastric bypass with Roux-en-Y anastomosis (LL-RYGBP) vs. standard RYGBP. However, only two were randomized controlled trials (RCT). The assessment determined that there was not sufficient evidence to reach conclusions on the efficacy and safety of LL-RYGBP compared to standard RYGBP:

• In both RCTs, there was no significant difference in weight loss between the two groups at 1 year.
• The evidence for the super obese (BMI ≥50 kg/m²) population was weak and did not allow conclusions concerning whether LL-RGYBP is superior in this subgroup of patients.
• The adverse events were poorly reported in all comparative studies. Some of the reports contradicted one another.
• There was no definite cut-off for “long” vs. “standard” limb, making comparisons even more challenging.

RANDOMIZED CONTROLLED TRIALS

One RCT evaluated the effectiveness of the distal gastric bypass for weight loss and control of comorbidities. The study included only super obese patients (BMI ≥50 kg/m²). There was no significant difference in the control or improvement of hypertension, sleep apnea, or gastroesophageal reflux disorder between the patients who underwent long-limb (Roux limb = 250 cm) and short-limb gastric bypass (Roux limb = 150 cm). In addition, there was no difference in excess weight loss between the groups. Although the study reports better control of lipid disorders and diabetes in patients who underwent the long-limb gastric bypass, several design flaws undermine the reliability of the study findings:

• The small study population (n=105) limits the ability to rule out the role of chance as an explanation of findings.
• The randomization scheme was not explained. Inadequate randomization of study participants may result in unequal distribution of potential confounders, such as clinical characteristics.
• The short-term follow-up limits conclusions regarding the long-term complications and the effectiveness of the distal gastric bypass in controlling weight loss and comorbidities.
• The study included only super obese patients limiting the generalizability of the study findings to other patient populations (i.e. morbidly obese).
• The need for nutritional supplementation after the surgery was reported for the two treatment groups, but there was a failure to include statistical testing for this outcome.

NONRANDOMIZED STUDIES

A number of nonrandomized studies (retrospective comparisons, case series) describe the experiences of patients undergoing distal gastric bypass.\[2, 7-9\] As noted at the beginning of the evidence section, conclusions cannot be reached from these studies as the evidence is considered unreliable.

SECTION SUMMARY

Evidence regarding long limb gastric bypass with Roux-en-Y anastomosis (LL-RYGBP) vs. standard RYGBP is limited to three RCTs which showed either no benefit to the LL approach compared to the RYGBP and/or had numerous methodological limitations. In addition, without a standardized cut-off for long vs. standard limb length, comprehensive assessment of the long limb procedure is unlikely. Therefore, current evidence is insufficient to recommend LL-RYGBP over standard RYGBP, including in the super obese.

BILIOPANCREATIC BYPASS AND BILIOPANCREATIC BYPASS WITH DUODENAL SWITCH

SYSTEMATIC REVIEWS

In 2013, Colquitt updated a 2009 Cochrane review\[10\] which compared outcomes for a variety of surgical weight loss procedures.\[11\] Two RCTs were identified which assessed outcomes of biliopancreatic diversion with duodenal switch (BPD-DS) compared to RYGBP. At a mean three year follow-up, data from the two trials were pooled (n= 107) and the following conclusions were reached:

• BPD-DS resulted in significantly greater weight loss than RYGBP.
• Quality of life measures were similar between the two groups.
• Reoperation rates were higher in the BPD-DS group (16.1%-27.6%) compared to the RYGBP group (4.3%-8.3%), with one death reported in the BPD-DS group.

The 2005 BCBSA TEC Assessment identified only one comparative trial that compared RYGBP with BPD-DS.\[2\] Although the trial included 237 RYGBP and 113 BPD-DS patients, it was not a randomized clinical study (the choice of the surgery was determined by surgeon and/or patient) and it followed participants for only one year. The TEC Assessment did not find this data sufficient to determine the risk/benefit ratio for this procedure or that it results in greater weight loss than RYGBP:

• The % estimated weight loss (EWL) at one year was the same for both the RYGBP and BPD-DS groups.
• Data on short-term adverse events was limited, except for the mortality and wound infection rates which were equivalent in both groups.
• More anastomotic leaks were reported in BPD-DS group.
• Long-term complications were not reported.
• Nutritional concerns were not adequately addressed. This is of concern because BPD-DS further reduces fat absorption, affecting the absorption of fat soluble vitamins.
RANDOMIZED CONTROLLED TRIALS

Two prospective randomized trials compared the experiences of obese patients undergoing RYGBP vs. BPD.

The first trial compared weight loss, metabolic deficiencies, and resolution of comorbidities in morbidly obese patients undergoing RYGBP vs. a variant of BPD (BPD with RYGBP).[12] The study reports comparable nutritional deficiencies between the two procedures. Although better weight loss and resolution of diabetes and hypercholesterolemia was reported in the BPD group, several design flaws undermine the reliability of the study findings:

- The study employed an inadequate randomization scheme: the report states that patients were chosen to undergo RYGBP or BPD, but fails to provide any further explanation of how the treatment was assigned. Inadequate randomization of study participants may result in unequal distribution of potential confounders, such as clinical characteristics.
- The RYGBP group had a significantly higher level of preexisting comorbidities (p = 0.01), suggesting a difference between the treatment groups that may have affected the outcome.
- The small study population (65 patients/surgery group) limits the ability to rule out the role of chance as an explanation of findings.
- The short-term follow-up (2 years) limits conclusions regarding the long-term metabolic complications and the long-term effectiveness of the BPD in controlling weight loss and comorbidities.

Another small randomized trial (n=60) compared laparoscopic RYGBP and BPD-DS for superobese patients (BMI 50-60 kg/m²).[13] The study found comparable 30-day perioperative safety and greater weight loss following BPD-DS in the first year.

In 2015, long-term 5-year follow-up results were published on data from 55 patients (92%).[14] Results indicated a mean reduction of body mass index was greater with duodenal switch compared to bypass (mean between-group difference was 8.5 [95% CI, 4.9-12.2; P < .001]); however, duodenal switch was associated with more surgical, nutritional and gastrointestinal adverse effects.

NONRANDOMIZED STUDIES

A number of non-randomized studies (retrospective comparisons, case series) describe the experiences of patients undergoing biliopancreatic diversion with or without duodenal switch.[15-33] Many of these studies show successful weight loss after BPD compared to other bariatric procedures.

SLEEVE GASTRECTOMY

There are various types of gastrectomy, which include distal, partial (including sleeve gastrectomy) or complete gastrectomy which may be performed with or without gastroduodenostomy, gastrojejunostomy, or Roux-en-Y reconstruction. There is insufficient evidence regarding the use of gastrectomy, other than sleeve gastrectomy, as a treatment of obesity. Numerous studies were identified which evaluated outcomes of these alternative gastrectomy methods as a treatment of other conditions, including gastric cancer; however, no studies or clinical practice guidelines were identified which evaluated the efficacy of these alternative types of gastrectomy as a treatment of obesity. Therefore, the following evidence
review will focus on the use of sleeve gastrectomy as a treatment of obesity, in the context of systematic reviews and well-designed randomized controlled trials:

SYSTEMATIC REVIEWS

Numerous recent systematic reviews have compared SG and RYGB with regard to effects on weight, comorbidities, and complications.

Gu (2020) completed a meta-analysis of the medium- and long-term effects of laparoscopic SG and RYGB.\[34\] The evaluation included 9038 patients from 28 studies. Overall, 5 year follow-up results revealed that laparoscopic RYGB was associated with an improvement in percentage of EWL and remission of T2D, hypertension, and dyslipidemia as compared to laparoscopic SG.

Han (2020) also published a systematic review and meta-analysis involving 18 studies (N=2917) that compared weight loss and comorbidity resolution between laparoscopic SG and RYGB.\[35\] Results from this analysis revealed no significant difference in EWL or T2D resolution between the 2 procedures. Laparoscopic RYGB was found to be superior to SG with regard to dyslipidemia, hypertension, and GERD management; however, patients who underwent laparoscopic SG experienced fewer postoperative complications and reoperation rates.

Sharples (2020) performed a systematic review and meta-analysis evaluating long-term (5 years) outcomes of RYGB and SG.\[36\] Overall, both RYGB and SG resulted in sustained weight loss and comorbidity control with RYGB associated with a greater percent EWL, improved dyslipidemia outcomes, and a reduced incidence of GERD (Table 5).

Shenoy (2020) published a systematic review and meta-analysis of 9 studies that compared laparoscopic SG and RYGB in 2240 elderly (>55 years) patients.\[37\] Results revealed no significant differences between the 2 bariatric procedures with regard to the rate of early complications (3.6% LSG versus 5.8% LRYGB; \(p=0.15\)) and mortality (0.1% versus 0.8%; \(p=0.27\)). Additionally, there was no difference in EWL between the procedures at 1 year; however, the authors recommended SG for high-risk elderly patients due to the reduced mortality and complication rates with this procedure.

Another systematic review and meta-analysis by Xu (2020) involving 19 studies also concluded that SG was the preferable option for elder obese patients 60 years and older as it was found to be non inferior to RYGB with regard to efficacy, but overall had an improved safety profile.\[38\]

Osland (2017) published a systematic review and meta-analysis of RCTs comparing laparoscopic vertical SG with RYGB.\[39\] The literature search, conducted from 2000 to November 2015, identified 9 RCTs for inclusion (N=865 patients). Four trials were included in meta-analyses comparing percent EWL between the 2 groups. Results at both 6- and 12-month follow-ups showed that the procedures are comparable. Osland (2020) recently published a continuation of their work that focused exclusively on long-term (5 year) weight outcomes of laparoscopic vertical SG versus RYGB.\[40\] This systematic review and meta-analysis included 5 studies (SG=520; RYGB=508) and results revealed that a statistically significant BMI loss was seen with both SG: \(-11.37\) kg/m\(^2\) (range: \(-6.3\) to \(-15.7\) kg/m\(^2\)) and RYGB: \(-12.6\) kg/m\(^2\) (range: \(-9.5\) to \(-15.4\) kg/m\(^2\)) at 5 years. However, differences in reporting parameters limit the ability to reliably compare outcomes using statistical methods and the
results may have been impacted by large dropout rates and per protocol analyses of the 2 largest included studies.

In 2017, Juodeikis evaluated five-year results following sleeve gastrectomy in a systematic review of the literature through May 2016.[41] The review was conducted according to PRISMA guidelines. Twenty studies were included for evaluation, however, only one study was a randomized controlled trial. Of the 2,713 patients included amongst all the studies combined, 1,626 reached at least five years follow-up (duration ranged from 5-11 years follow-up). Although mean percentage excess weight loss of greater than 56% was achieved at each time point from 5 to 11 years time, the review was substantially limited by the lack of RCT data.

In 2016, Osland compared the efficacy of Roux-En-Y gastric bypass versus vertical sleeve gastrectomy in randomized controlled trials.[39] Six RCTs performed between 2005 and 2015 were included (N = 695; 347 for SG and 348 for RYGB). The authors summarized recent publications, without pooled analysis. Although the results stated comparable efficacy and improvement or resolution in comorbidities, the authors also noted the significant limitation of short follow-up time (one year, with significant loss of follow-up), and lack of blinding in five of the six studies included. In 2017, Osland published an additional meta-analysis, again comparing vertical sleeve gastrectomy in RCT’s to LRYGB (N=865 patients; 437 for SG and 428 for LRYGB).[42] The authors concluded once again that a significant gap exists in the literature with respect to well-designed studies using intent-to-treat analysis.

In 2015, Zhang published a separate review comparing LSG to laparoscopic RYGBP (LRYGBP) which included 21 studies involving 18,766 morbidly obese patients.[43] Data regarding percentage of excess weight loss (%EWL), resolution or improvement of comorbidities, and adverse events were pooled. Although no difference in %EWL was observed between the two groups in the first 6 months-1.5 year follow-up, LRYGBP achieved higher %EWL compared to LSG (p<0.05). Except for improvements in type 2 diabetes, comorbidities did not differ significantly between the two groups. Adverse events were more frequent following Roux-en-Y bypass (OR for major complication: 1.29; 95% CI 1.22 to 3.22; P<0.01). Results of this review must be interpreted with caution as 13 of the 21 included studies were nonrandomized, limiting the ability to control for confounding factors.

A 2014 review by Zellmer compared complication rates of laparoscopic RYGBP to LSG in 61 publications which included 10,906 laparoscopic RYGBP patients and 4,816 LSG patients.[44] Authors reported similar leak and mortality rates in both groups; laparoscopic RYGBP (leak: 1.9%, mortality: 0.4%) vs. LSB (leak: 2.3%, mortality: 0.2%).

The 2013 Cochrane review of bariatric surgery identified only one randomized controlled trial that compared sleeve gastrectomy to gastric bypass with Roux-en-Y anastomosis (RYGBP).[10, 11, 45] This very small (n=32) and short trial that followed participants for only 1 year reported that:

- Weight loss and BMI were similar between the two procedures, but % excess weight loss was greater with sleeve gastrectomy.
- Two patients had diabetes at baseline, both in the RYGBP group. The condition was resolved at 1 year in both patients. The outcome of other comorbidities reported at baseline was not reported for the RYGBP or SG groups.
- Although the study reported no conversions to open surgery and no intraoperative and postoperative complications, the other complications and additional operative procedures were not reported.
• The study did not assess a two-stage approach using sleeve gastrectomy prior to another bariatric procedure and consequently no conclusions about the two-stage approach could be made.
• The short duration of the follow-up results in underestimation of the impact of late complications and the need for revision surgery.

In 2013, Trastulli published a systematic review of randomized trials that compared sleeve gastrectomy to other bariatric procedures. A total of 15 RCTs with 1191 patients were included. In six trials laparoscopic sleeve gastrectomy (LSG) was compared to laparoscopic RYGBP. The authors reported mean complication rates with sleeve gastrectomy of 12.1% (range 10%-13.2) compared with 20.9% with laparoscopic gastric bypass (range 10%-26.4%). Percentage of excess weight loss ranged from 49%-81% with sleeve gastrectomy compared with 62.1%-94.4% with laparoscopic gastric bypass. Included studies which compared LSG to laparoscopic RYGBP were small (n<60) and several contained a risk for bias which included unclear blinding, randomization methods and outcome data.

A 2013 meta-analysis by Li pooled data from five trials, four of which were included in the Trastulli review, to compare the impact of these procedures on type 2 diabetes rates. Laparoscopic Roux-en-Y gastric bypass was associated with higher rates of type 2 diabetes remission and greater estimated weight loss, but higher rates of complications.

RANDOMIZED CONTROLLED TRIALS

Hofsø (2019) published the results of a single-center, triple-blind RCT comparing the efficacy of Roux-en-Y gastric bypass (RYGB) (n=54) vs sleeve gastrectomy (SG) (n=55) on diabetes remission and β-cell function in patients with obesity and T2D. Inclusion criteria included previously verified BMI ≥35 kg/m2 and current BMI ≥33.0 kg/m2, hemoglobin A1c (HbA1c) ≥6.5% or use of antidiabetic medications with HbA1c ≥6.1%, and age ≥18 years. One-year follow-up was completed by 107 (98%) of 109 patients, with 1 patient in each group withdrawing after surgery. In the intention-to-treat population, diabetes remission rates were superior in the gastric bypass group than in the sleeve gastrectomy group (risk difference 27%; relative risk [RR] 1.57). Results were similar in the per-protocol population (risk difference 27%; RR 1.57). The two procedures had a similar beneficial effect on β-cell function.

Peterli (2018) published a randomized study of adults with morbid obesity treated with either laparoscopic sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB). Two hundred five patients treated at four bariatric centers were randomly assigned to receive SG (n=101) or RYGB (n=104) with 5-year follow-up. Excess BMI loss was 61.6% for SG and 68.3% for RYGB. Gastric reflux remission was seen in 25.0% of SG and 60.4% of RYGB patients. Reoperations or interventions were necessary for 15.8% in the SG group and 22.1% of the RYGB group. The study was limited by the lack of analysis of diabetes remission information and the results may not be generalizable.

Salminen (2018) published a randomized trial (SLEEVEPASS) comparing 5-year outcomes of morbidly obese patients who underwent either laparoscopic sleeve gastrectomy (SG; n=121) or Roux-en-Y gastric bypass (RYGB; n=119). Five-year estimated mean percentage excess weight loss was 49% for sleeve gastrectomy and 57% for gastric bypass. For SG and RYGB, respectively, rates of remission of type 2 diabetes were 37% and 45%. Medication for hypertension was discontinued in 20/68 (29%) SG patients and 37/73 (51%) RYGB patients. Overall 5-yr morbidity rate was 19% for SG and 26% for RYGB, and there was no significant difference in QOL between groups. The study was limited by the following: the study having a
higher reoperation rate for sleeve gastrectomy than other trials reported, approximately 20% of patients were lost to follow-up, and there was a lack of reliable information for diabetes duration at baseline.

CLINICAL PRACTICE GUIDELINES

In 2012, the American Society for Metabolic & Bariatric Surgery (ASMBS) updated their position statement on *Sleeve Gastrectomy as a Bariatric Procedure.* The ASMBS recognizes sleeve gastrectomy as an acceptable option as a primary bariatric procedure and as a first stage procedure in high risk patients as part of a planned staged approach. In addition, the group noted that substantial comparative and long-term data have now been published which demonstrate durable weight loss, improved medical comorbidities, long-term patient satisfaction, and improved quality of life after SG. However, the ASMBS Statement does not include a critical appraisal of the reviewed evidence.

SECTION SUMMARY

Recent systematic reviews of existing trials indicate sleeve gastrectomy (SG) is a comparable procedure to RYGBP. Although the evidence regarding SG with RYGBP compared to standard RYGBP is limited by short-term follow-up, SG has become a recognized surgical option in clinical practice for the treatment of morbid obesity.

ADJUSTABLE GASTRIC BANDING

SYSTEMATIC REVIEWS

Park (2019) conducted a systematic review with a network meta-analysis evaluating the comparative efficacy of various bariatric surgery techniques against standard-of-care in the treatment of morbid obesity and diabetes. The literature search was conducted through February 2018, identifying 45 RCTs for inclusion on Roux-en-Y gastric bypass (RYGB; 2 studies), sleeve gastrectomy (SG; 3 studies), laparoscopic adjustable gastric band (LAGB; 5 studies), and biliopancreatic diversion with duodenal switch (BPD-DS; 3 studies vs RYGB). Based on 33 trials, superior efficacy for % excess weight loss compared to standard-of-care was seen for BPD-DS (mean difference [MD] 38.2%), RYGB (MD 32.1%), and SG (MD 32.5%) at 6 months post procedure. LAGB was not superior to standard-of-care (MD -0.2%). At 3 years post-procedure, superior efficacy for %EWL compared to standard-of-care was seen for RYGB (MD 45%) and SG (MD 39.2%). BPD-DS (RR 7.51), RYGB (RR 7.51), and SG (RR 6.69) were all superior to standard-of-care with respect to remission rates at 3-5 years post-procedure and remission rates were not significantly different among procedures. SG was found to have a relatively lower risk of adverse events compared to RYGB.

A 2017 systematic review by Kang reported results from a network meta-analysis of RCTs evaluating the three most commonly performed bariatric procedures – Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), and laparoscopic adjustable gastric band (LAGB). The review was conducted with literature through July 2016, and in accordance with PRISMA guidelines. Evidence was synthesized from 11 trials (8 RYGB vs SG; 2 RYGB vs LAGB; 1 SG vs LAGB) in order to evaluate the primary outcome of changes in weight loss, expressed as the mean difference in BMI reduction and in percentage excess weight loss (%EWL) following 1 year after the surgery. The smallest treatment effect was observed in LAGB (8 trials, totalling 656 patients). The mean %EWL for RYGB, SG, and LAGB were 67.3% (n=294), 71.2% (n=209), and 40.6% (n=153), respectively. Heterogeneity between studies was
low (as evaluated by calculating the I^2 statistic), and the studies were consistent between direct and indirect comparisons – both demonstrated strengths of the analysis. The study was limited by fewer trials evaluating LAGB, and inclusions of RCTs with a lack of blinding.

The 2013 Cochrane review of bariatric surgery identified three randomized controlled trial that compared laparoscopic adjustable gastric banding (LAGB) to laparoscopic gastric bypass with Roux-en-Y anastomosis (RYGBP).\cite{10, 11, 55} At five-year follow-up, the review reported the following conclusions:

- RYGBP was superior to LAGB on more than one measure of weight loss (% excess weight loss, mean BMI).
- Quality of life measures and comorbidities were not assessed due to the low quality of the evidence.
- RYGBP resulted in a greater duration of hospitalization and a greater number of late major complications.
- One study reported high rates of reoperation for removal of LAGB (9 patients, 40.9%).

In 2012, TEC conducted an updated Assessment, focusing on LAGB in patients with BMIs less than 35 kg/m2.\cite{56} TEC made the following observations and conclusions:

- The evidence on LAGB for patients with lower BMIs is limited both in quantity and quality. There was only one small randomized, controlled trial, which had methodologic limitations, one nonrandomized comparative study based on registry data, and several case series. Using the GRADE evaluation, the quality of evidence on the comorbidity outcomes was judged to be low and the quality of the evidence on the weight loss outcomes was judged to be moderate.
- The evidence was sufficient to determine that weight loss following LAGB was greater than with nonsurgical therapy.
- Direct data on improvement in weight-related comorbidities was lacking. The limited evidence was not sufficient to conclude that the amount of weight loss was large enough that improvements in weight-related comorbidities could be assumed.
- There was very little data on quality of life in this population of patients.
- The frequency and impact of long-term complications following LAGB was uncertain, thus it was not possible to determine whether the benefit of LAGB outweighed the risk for this population. TEC concluded that while the short-term safety of LAGB was well-established, the long-term adverse effects occur at a higher rate and are less well-defined.

RANDOMIZED CONTROLLED TRIALS

An updated literature search failed to identify any additional randomized controlled trials that compare LAGB with RYGBP.

NONRANDOMIZED STUDIES

A number of non-randomized studies (retrospective comparisons, case series) describe the experiences of patients undergoing LAGB.\cite{32, 57-64} As noted at the beginning of the evidence section, conclusions cannot be reached as the evidence from these studies is considered unreliable.

SECTION SUMMARY
The evidence regarding the laparoscopic adjustable gastric banding (LAGB) compared to standard RYGBP is limited. Additionally, LAGB may have higher rates of reoperation and revisions. LAGB is no longer considered a standard of care.

LAPAROSCOPIC DUODENAL SWITCH WITH SINGLE ANASTOMOSIS

Several nonrandomized studies were identified which describe the experiences of patients undergoing laparoscopic duodenal switch with single anastomosis (LSDSA).\[^{65-69}\] As noted at the beginning of the evidence section, conclusions cannot be reached from these studies as the evidence is considered unreliable. Well-designed RCTs which compare LSDSA with RYGBP are needed in order to evaluate the safety and efficacy of this procedure compared to accepted surgical treatments of morbid obesity.

SYSTEMATIC REVIEWS

Spinos (2021) conducted a systematic review to evaluate the effectiveness of patients who have undergone single-anastomosis duodenal bypass with sleeve gastrectomy/one anastomosis duodenal switch (SADI-S/OADS).\[^{70}\] There were 14 studies included in the review including five retrospective cohort and nine case series. A total of 1086 patients were included in the analysis with preoperative BMI of 51.3 ± 9.5 kg/m². The average body mass index (BMI) following SADI-S was 32.1 ± 6.7 kg/m². Mean total body weight (TBW) loss ranged from 11.3% to 17.3% at three months, 21.5% to 41.2% at 12 months, and 25.8% to 46.3% at 24 months. Mean excess body weight (EBW) loss ranged from 21.8% to 40.2% at three months, 60.9% to 91.0% at 12 months, and 44.3% to 86.0% at 24 months. Mean excess BMI (EBMI) ranged from 9.4% to 31.1% at three months, 17.9% to 86.6% at 12 months, and 19.5% to 80.8% at 24 months. The comorbidity resolution rates were 72.6% for diabetes mellitus, 77.2% for dyslipidemia, 59% for hypertension, 54.8% for obstructive sleep apnea, and 25% for gastroesophageal reflux disease. The most common early postoperative complications after SADI-S included the need for reoperation (3.1%), bleeding (1.1%), wound infection (1.0%), anastomotic leak (0.9%), and intrabdominal collection/abscess (0.6%). Late postoperative complications were the need for reoperation (5.3%) and dumping syndrome (1.3%). The major limitation of this review is that studies were either retrospective cohort studies or case series with short-term follow ups.

CLINICAL PRACTICE GUIDELINES

In 2020, ASMBS published an updated statement on single-anastomosis duodenal switch (SADI-S) "in response to numerous inquiries made...by patients, physicians, society members, hospitals, and others regarding [this procedure] as a treatment for obesity and metabolic diseases."\[^{71}\] The following recommendations were endorsed regarding SADI-S for the primary treatment of obesity or metabolic disease:

- "SADI-S, a modification of classic Roux-en-Y duodenal switch, is an appropriate metabolic bariatric surgical procedure."

- "Publication of long-term safety and efficacy outcomes is still needed and is strongly encouraged, particularly with published details on sleeve gastrectomy size and common channel length."

- "There remain concerns about intestinal adaptation, nutritional issues, optimal limb lengths, and long-term weight loss/regain after this procedure. As such, ASMBS recommends a cautious approach to the adoption of this procedure, with attention to ASMBS-published guidelines on nutritional and metabolic support of bariatric patients, in particular for duodenal switch patients."
MINI-GASTRIC BYPASS

SYSTEMATIC REVIEWS

In 2014, Georgiadou published a systematic review regarding the safety and efficacy of laparoscopic mini gastric bypass.[72] The review included a search of the literature through July 2013, and was conducted according to PRISMA guidelines. Ten articles with a total of 4,899 patients were included for review, of which three were comparative studies (two versus LRYGB and one versus LAGB). Excess weight loss at two years ranged from 64.4% ± 8.8% to 80%. Minor postoperative complication rates ranged from 3.6%-7.5%, and major early postoperative complication rates ranged from 0-7%. Authors noted a major concern for postoperative esophagitis and gastritis caused by bile reflux, and the risk for gastric cancer. Overall, the study was limited by the limitations of the included studies (e.g., short term follow-up and noncomparative design).

RANDOMIZED CONTROLLED TRIALS

One small RCT compared the safety and effectiveness of laparoscopic RYGBP and mini-gastric bypass (MGBP).[73] The study found a comparable rate of late complications (>30 days post-op), weight loss, and comorbidity resolution. MGBP was associated with fewer early complications (<30 days post-op). However, the following design flaws undermine reliability of the study findings:

- The small study population (n=80) limits the ability to rule out the role of chance as an explanation of findings.
- Short-term follow-up (2 years) limits comparisons regarding the longer-term complications rates and the effectiveness of the two procedures in controlling weight loss and comorbidities

NONRANDOMIZED STUDIES

In 2017, Plamper reported a comparison of mini gastric bypass and sleeve gastrectomy in super-obese patients (i.e., BMI > 50 kg/m²) at a single institution.[74] At one-year follow-up, 90.8% (99 of 109) and 78.7% (74 of 94) of the MGB and SG patients were available for follow-up, respectively. Reasons for loss of follow-up were not discussed. One patient in the SG group died within 30 days of the operation due to multi-organ failure after staple line leakage. Percent excess weight loss was statistically significantly greater in the MGB group at 12 months. The authors cited limitations of their review to include the retrospective design, and short-term results.

Several other nonrandomized studies (retrospective comparisons, case series), describe experiences of patients undergoing MGBP.[75-79] As noted at the beginning of the evidence section, conclusions cannot be reached as this evidence is considered unreliable.

SECTION SUMMARY

Data regarding the mini-gastric bypass (MGBP) is limited to a small RCT, prohibiting conclusions regarding the efficacy of this procedure compared to RYGBP.

VERTICAL BANDED GASTROPLASTY (VBG)
VBG has largely been abandoned in the United States due to insufficient weight loss and high reoperation rates (approximately 30%).[10, 80]

HIATAL HERNIA REPAIR

Numerous studies[81-84] were identified which evaluated outcomes of hiatal hernia repair performed in conjunction with other bariatric surgical procedures; however, no studies or clinical practice guidelines were identified which evaluated the efficacy of hiatal hernia repair as an independent treatment of obesity.

CLINICAL PRACTICE GUIDELINES

In 2018, the ASMBS and the American Hernia Society published a consensus guideline on bariatric surgery and hernia surgery.[85] The guideline contained the following conclusions and summary recommendations:

• "There is a significant link between obesity and hernia formation both after abdominal surgery and de novo. There is also evidence that abdominal wall hernia can more commonly present with obstruction or strangulation in patients with obesity."
• "There is a higher risk for complications and recurrence after hernia repair in patients with obesity."
• "In patients with severe obesity and ventral hernia, and both being amenable to laparoscopic repair, combined hernia repair and metabolic/bariatric surgery may be safe and associated with good short-term outcomes and low risk of infection. There is a relative lack of evidence, however, about the use of synthetic mesh in this setting."
• "In patients with severe obesity and abdominal wall hernia that is not amenable to laparoscopic repair, a staged approach is recommended. Weight loss prior to hernia repair is likely to improve hernia repair outcomes. Metabolic/bariatric surgery appears to provide far more significant and rapid weight loss than other modalities and would be a good option for selected patients with severe obesity and large, symptomatic abdominal wall hernia."

TWO-STAGE BARIATRIC SURGERY PROCEDURES

Bariatric surgeries that are performed in two stages have been proposed as a treatment option, particularly for patients with “super-obesity” defined as a BMI greater than 50. The rationale for a two-stage procedure is that the risk of an extensive surgery is prohibitive in patients with extreme levels of obesity. Therefore, an initial procedure with low risk, usually a sleeve gastrectomy, is performed first. After a period of time in which the patient loses some weight, thus lowering the surgical risk, a second procedure that is more extensive, such as a biliopancreatic diversion (BD), is performed.

RANDOMIZED CONTROLLED TRIALS

Coffin (2017) published results on the use of intragastric balloon (IGB) prior to a laparoscopic gastric bypass in patients with super-obesity.[51] Patients with BMI greater than 45 kg/m² were randomized to an IGB (n=55) or standard medical care (n=60) during the 6 months prior to a planned laparoscopic gastric bypass procedure. Five patients had the IGB removed earlier than 6 months due to complications (n=3) or patient request (n=2). Patients receiving IGBs during the first 6 months of the study experienced significantly more BMI reduction (2.8 kg/m²; range 1.7-6.2 kg/m²) than patients receiving standard care (0.4 kg/m²; range 0.3-2.2 kg/m²). Weight loss during months 6 through 12, after the laparoscopic gastric bypass procedure, was
greater in the patients who received standard of care before the procedure. Duration of hospitalization after laparoscopic gastric bypass and quality of life did not differ between groups.

NONRANDOMIZED STUDIES

Case series on two-stage procedures for patients undergoing sleeve gastrectomy (SG) as the initial procedure generally did not report on the second-stage operation, and in those that did, only a minority of patients undergoing the first stage actually proceeded to the second-stage surgery. For example, Cottam[86] reported on 126 patients with a mean BMI of 65 who underwent laparoscopic SG as the first portion of a planned two-stage procedure. A total of 36 patients (29%) proceeded to the second-stage procedure, which was laparoscopic gastric bypass. In a similar study, Alexandrou.[87] reported on 41 patients who underwent SG as the first stage of a planned 2-stage procedure. After 1-year follow-up, 12 patients (29%) achieved a BMI less than 35 and were not eligible for the second-stage procedure. Of the remaining 28 patients, 10 (24% of total) underwent the second-stage procedure. The remaining 18 patients (44% of total) were eligible for, but had not undergone, the second-stage procedure at the last follow-up.

Patients who undergo two-stage procedures are at risk for complications from both procedures. Silecchia.[88] described the complication rates in 87 patients undergoing a stage I SG followed by a BPD in 27 patients. For the first stage of the operation, 16.5% of patients had complications of bleeding, fistula, pulmonary embolism, acute renal failure, and abdominal abscess. For the 27 patients who underwent the second-stage BPD, major complications occurred in 29.6% including bleeding, duodenoileal stenosis, and rhabdomyolysis.

SECTION SUMMARY

The current evidence does not indicate that a two-stage bariatric surgery procedure improves outcomes for patients with extreme levels of obesity. There is no evidence to suggest that weight loss is improved or that complications are reduced by this approach. A majority of patients who received SG as the initial procedure lost sufficient weight during the first year such that a second procedure was no longer indicated. In addition, patients undergoing a two-stage procedure are at risk for complications from both procedures; therefore, it is possible that overall complications are increased by this approach.

ENDOSCOPIC (ENDOLUMINAL) BARIATRIC PROCEDURES

SYSTEMATIC REVIEWS

Several systematic reviews of RCTs evaluating intragastric balloon (IGB) devices for the treatment of obesity have been published; none was limited to FDA-approved devices.[89-91] Kotinda (2020) published a systematic review and meta-analysis that evaluated the efficacy of IGB devices in comparison to sham or lifestyle interventions in overweight and obese adults.[92] Thirteen RCTs with 1,523 patients were included. Results revealed that the mean percent EWL difference between the IGB and control groups was 17.98% (95% CI, 8.37 to 27.58; p<0.001), significantly favoring IGB. IGB was also significantly favored when evaluating the mean percent TWL difference between the groups: 4.40% (95% CI, 1.37 to 7.43; p<0.001). Similarly, the difference in actual weight loss and BMI loss was 6.12 kg and 2.13 kg/m2, respectively. Overall, IGB was found to be more effective than lifestyle intervention alone for...
weight loss. The majority of included RCTs used one fluid-filled IGB and there was significant heterogeneity between the included studies.

The systematic review by Tate (2017) focused on recent RCTs, published between 2006 and 2016.[93] Additional inclusion criteria were: sham, lifestyle modification, or pharmacologic agent as a comparator; at least 1 outcome of body weight change; and study duration of 3 or more months. Eight RCTs were included in the review, with four contributing to the meta-analysis. The meta-analysis included 777 patients and showed a significant improvement in percent TBWL with IGB compared with control (5.5%; 95% CI, 4.3% to 6.8%). However, there was significant heterogeneity among the trials ($I^2=62\%$), so interpretation of results is limited. The percent TBWL with IGB is lower than expected with RYGB (reported 27%) or with the most efficacious pharmacologic agent (reported 9%).

Saber (2017) identified 20 RCTs reporting weight loss outcomes after IGB implantation or a non-IGB control intervention.[91] IGB was compared with sham in 15 trials, behavioral modification in 4 trials, and pharmacotherapy in 1 trial. In 17 trials, patients received lifestyle therapy in addition to other interventions. Studies were published between 1987 and 2015 and sample sizes varied from 21 to 326 participants. Outcomes were reported between 3 and 6 months. In a meta-analysis of 7 RCTs reporting BMI loss as an outcome, there was a significantly greater BMI loss in the IGB group than in the control group (mean effect size [ES], 1.59 kg/m²; 95% CI, -0.84 to 4.03 kg/m²; p<0.001). Findings on other outcomes were similar. A meta-analysis of 4 studies reporting percent EWL favored the IGB group (ES=14.25%; 95% CI, 2.09% to 26.4%; p=0.02). Also, a meta-analysis of 6 studies reporting absolute weight loss favored the IGB group (ES=4.6 kg; 95% CI, 1.6 to 7.6 kg; p=0.003).

Although the review was not limited to FDA-approved devices, older devices were air-filled and newer devices, including the two approved by FDA in 2015, are fluid-filled. Sufficient data were available to conduct a sensitivity analysis of 3-month efficacy data. A meta-analysis of 4 studies did not find a significant difference in weight loss with air-filled IGB devices or a control intervention at 3 months (ES= 0.26; 95% CI, -0.12 to 0.64; p=0.19). In contrast, a meta-analysis of 8 studies of fluid-filled devices found significantly better outcomes with the IGB than with control (ES=0.25; 95% CI, 0.05 to 0.45; p=0.02).

In 2017, Vargas performed a systematic review of two observational studies with no comparator group combined with results from a multi-center study of 130 consecutive patients.[94] Between the three studies, 330 endoscopic transoral outlet reduction (TORe) cases were performed with the Apollo OverStitch system. TORe was performed in patients experiencing weight regain following RYGB. Study quality was evaluated using the Newcastle-Ottawa Quality Assessment Scale for cohort studies; all were rated to be of moderate overall quality. Using a random effects model, the pooled absolute weight loss at 6, 12, and 18–24 months was 9.5 kg (95% CI 7.9–11.1), 8.4 kg (95% CI 6.5–10.3), 8.4 kg (95% CI 5.9–10.9), respectively. Given the fluctuation of absolute weight loss reported between timelines by each of the three studies, longer term follow-up would aid in evaluating the overall efficacy of TORe.

A systematic review of the effect of EndoBarrier® on weight loss and diabetic outcomes was published in 2015.[95] There were five small RCTs included with a total of 235 individuals (range, 18–77) and follow-up ranging from 12 to 24 weeks. The comparators were diet and/or other lifestyle modifications, and 2 studies had sham controls. All studies were judged to be at high risk of bias using the Cochrane risk of bias tool. Combined results demonstrated that the EndoBarrier® group had 12.6% greater EWL (95% CI, 9.0 to 16.2) compared to medical
therapy. For diabetic outcomes, there were trends toward greater improvement in the EndoBarrier® group that did not reach statistical significance. The mean difference in HgA1c was -0.8% (95% CI, -1.8 to 0.3) and the relative risk of reducing or discontinuing diabetic medications was 3.28 (95% CI, 0.54 to 10.73).

RANDOMIZED CONTROLLED TRIALS

In June 2016 the AspireAssist (Aspire Bariatrics, King of Prussia, PA) weight loss therapy system was approved by the FDA to assist in weight reduction in adults aged 22 and older with a BMI of 35.0-55.0 kg/m² who have failed to achieve and maintain weight loss with non-surgical weight loss therapy. Feasibility data for the AspireAssist was reported by Sullivan and colleagues in 2013.[96] Preliminary results from the ongoing PATHWAY Pivotal Trial (sponsored by Aspire Bariatrics) are included in the FDA Summary of Safety and Effectiveness Data, though results have not been published in peer-reviewed literature at this point in time.[97]

In 2014, Eid reported results from a single-center RCT of the StomaphX device compared with a sham procedure for revision procedures in patients with prior weight loss after Roux-en-Y gastric bypass at least two years earlier.[98] Enrollment was initially planned for 120 patients, but the trial was stopped prematurely after 1-year follow up was completed by 45 patients in the StomaphyX group and 29 patients in the sham control group after preliminary analysis failed to achieve the primary efficacy endpoint in at least 50% of StomaphyX patients. The primary efficacy end point (reduction in pre-Roux-en-Y gastric bypass excess weight by 15% or more, excess BMI loss, and BMI less than 35, at 12 months post-procedure) was achieved by 10/45 (22.2%) of the StomaphyX group and 1/29 (3.4%) of the sham control group (P<0.01). Conclusions regarding the use of the StomaphX device as a primary procedure for the treatment of obesity may not be drawn due to the discontinuation of the trial and the limited use of the device as a revision procedure in patients who had failed a prior bariatric surgery.

In 2014, Kohehestanie published results from an RCT of duodenal-jejunal bypass liner (DJBL) treatment in comparison with dietary intervention for obesity and type 2 diabetes mellitus (T2DM).[99] A total of 77 patients were included in the trial with 38 patients randomized to 6 months DJBL in combination with dietary intervention and 39 patients were randomized to dietary interventions only. The total study duration for both groups was 12 months, including 6 months of post-DJBL removal follow-up. At 6 months follow-up, prior to DJBL removal, the DJBL group lost a higher percentage of excess weight compared to the dietary only group, 32% (22%-46.7%) vs. 16.4% (4.1%-34.6%) respectively. However, better HbAlc levels improvement was observed in the dietary only group compared to the DJBL at both 6 and 12 month follow-ups. Conclusions are limited in this study as both groups underwent dietary interventions limiting the isolation of the effects of DJBL upon obesity and type 2 diabetes.

In 2013, Sullivan reported results from a small feasibility pilot RCT (n=18) comparing the AspireAssist siphon assembly (Aspire Bariatrics, King of Prussia, PA) combined with lifestyle therapy (AT) versus lifestyle therapy (LT) alone.[96] Only fourteen subjects completed the 12-month trial (10 in the AT group and four in the LT group). Although weight loss in the AT group was greater at 52 weeks than the LT group (18.6% ± 2.3% of body weight vs 5.9% ± 5.0%) the study was limited by the very small sample size, and unblinded design. The study was partially funded by the manufacturer. The authors all disclosed having previously performed contracted research for the manufacturer of the device and one author also disclosed having consulted on a pivotal trial for the company.
In 2013, Fuller published a small RCT (n=66) which evaluated intragastric balloons (IGB) compared to behavioral modification as a treatment of obesity. Subjects were either randomized to IGB and 12 months behavior modification (BH) and or 12 months BH alone. At six months the IGB treatment group demonstrated superior weight loss compared to the BH group (-14.2 vs. -4.8; P < 0.0001). However, at 12 months the difference in weight loss between groups, although still statistically significant, diminished (-9.2 vs. -5.2; P = 0.007). There were numerous adverse events related to IGB placement which typically resolved in two weeks. Limitations of this study include a relatively small population size and short-term follow-up with which to evaluate the lasting effects of weight reduction with IGB. In addition, RCTs which evaluate IGB to other standard surgical treatments of obesity are needed.

Additional, small RCTs assessing IGB were identified; however, large, long-term data remain lacking with which to evaluate the safety and sustained benefit of IGB in weight reduction compared to conservative measures and accepted bariatric procedures.

NONRANDOMIZED STUDIES

A small number of non-randomized studies, primarily case series, describe experiences of patients undergoing different endoluminal procedures, such as endoscopic gastroplasty and endoscopically placed sleeves, gastric balloons or tissue anchors. As noted at the beginning of the evidence section, conclusions cannot be reached as this evidence is considered unreliable.

LAPAROSCOPIC GASTRIC PLICATION

Similar to the data for endoscopic bariatric procedures, the data for laparoscopic gastric plication (also known as laparoscopic gastric imbrication) is limited to case series and case reports and few, small RCT’s.

RANDOMIZED CONTROLLED TRIALS

Sullivan (2017) published results from the ESSENTIAL trial, a randomized sham-controlled trial evaluating the efficacy and safety of endoscopic gastric plication. Patients (N=332) were randomized 2:1 to the active or sham procedure. All patients were provided low-intensity lifestyle therapy. The primary end point was total body weight loss (TBWL) at 12-month follow-up. The mean difference in TBWL for patients receiving the procedure compared with patients receiving the sham procedure was 3.6% (95% CI, 2.1% to 5.1%). Significant differences between the active and sham groups were also reported in a change in weight from baseline, percent excess weight loss, BMI, and improvement in diabetes. No significant differences were detected in improvements in hyperlipidemia or hypertension between the treatment groups.

Talebpour (2017) randomized patients to laparoscopic gastric plication (n=35) or laparoscopic SG (n=35). Patients were followed for 2 years. Both procedures were equally effective based on weight reduction outcomes. Adverse events (eg, nausea, hair loss, vitamin D deficiency, iron deficiency) were similar between groups. One death due to pulmonary thromboembolism occurred in the gastric plication group.

NONRANDOMIZED STUDIES

Additional studies describe patient outcomes after different laparoscopic plication procedures. As noted at the beginning of the evidence section, conclusions cannot be reached as this evidence is considered unreliable.
There are a number of reasons why patients who are treated with accepted forms of bariatric surgery may not lose weight or may regain weight that is initially lost. These reasons include issues of adherence (compliance), as well as technical (structural) issues. A number of studies\[129-131\] have evaluated the efficacy of revision procedures after failed bariatric surgery and reported satisfactory weight loss and resolution of co-morbidities with somewhat higher complication rates than for primary surgery. However, criteria for classifying what constitutes a failed, primary bariatric procedure, has not been clearly established.\[132\]

Kermansaravi (2021) published a systematic review of 1,771 patients from 26 studies evaluating the efficacy of one anastomosis/mini gastric bypass (OABG-MGB) as a revisional procedure.\[133\] Mean initial BMI was 45.7 which decreased to 30.5 at five year follow up with remission of type 2 diabetes reaching 78.1%. Leakage was the most common complication in the included patients and 7.4% of patients developed de novo GERD following OABG-MGB. Although the authors concluded that OAGB-MGB is a safe and effective choice for revisional bariatric surgery, RCTs on this topic are needed as currently only retrospective cohort studies with heterogenous data are available.

Parmar (2020) published a systematic review of 1,075 patients (n=17 studies) who underwent one anastomosis/mini gastric bypass as a revisional bariatric procedure after failure of a primary LAGB and SG.\[134\] No RCTs were available on this topic and no meta-analyses were performed as part of this systematic review. The most commonly reported reason for revisional surgery was poor response (81%) followed by gastric band failure (35.9%), GERD (13.9%), intolerance (12.8%), staple line disruption (16.5%), pouch dilatation (17.9%), and stomal stenosis (10.3%). Results revealed that after the revisional OABG-MGB, the mean percent EWL was 50.8% at 6 months, 65.2% at one year, 68.5% at two years, and 71.6% at five years. Resolution of comorbidities after OAGB-MGB was significant with 80.5% of patients with T2D, 63.7% of patients with hypertension, and 79.4% of patients with GERD reporting resolution. The overall readmission rate following OABG-MGB was 4.73%, the mortality rate was 0.3%, and the leak rate was 1.54%. Although the authors concluded that OAGB-MGB is a safe and effective choice for revisional bariatric surgery, RCTs on this topic are needed as currently only retrospective cohort studies with heterogenous data are available.

In 2018, Almalki published a retrospective analysis of patients diagnosed with failed restrictive procedure who underwent revision bariatric surgery.\[42\] One hundred sixteen patients between 2001 and 2015 had revision RY gastric bypass (R-RYGB) or revision single-anastomosis (mini-) gastric bypass (R-RSAGB); the primary indications for revisional procedures were weight regain (50.9%), inadequate weight loss (31%), and intolerance (18.1%). Major complications occurred in 12 patients without significant difference between groups. At one year after revision surgery, the R-SAGB group (76.8% EWL) showed better weight loss than R-RYGB (32.9% EWL). In the 37.1% of patients available for follow-up at five years, R-SAGB had significantly lower hemoglobin levels than R-RYGB (8.2 ± 3.2 g/dl vs 12.8 ± 0.5 g/dl). The study was limited by its retrospective nature, relatively short follow-up time, and lack of consideration of data related to patient compliance.

In 2016, Dang reported results from a systematic review and meta-analysis comparing revisional single-step versus two-step bariatric surgery from laparoscopic adjustable gastric banding (LAGB) to Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG).\[135\] Single-step procedures involved revisional surgery wherein the LAGB was removed and replaced by...
RYGB or SG in the same operation; two-step procedures allowed a delay before the second bariatric procedure was performed. Although the authors found comparable rates of complications, morbidity and mortality between the one- and two-step procedures, the study was not designed to evaluate differences in patient outcomes between the second bariatric procedure (i.e., RYGB vs SG).

In 2014, Sudan reported safety and efficacy outcomes for reoperative bariatric surgeries using data from a national registry, the Bariatric Outcomes Longitudinal Database.[136] The Bariatric Outcomes Longitudinal Database is a large multi-institutional bariatric surgery-specific database to which data was submitted from June 2007 through March 2012 by 1,029 surgeons and 709 hospitals participating in the Bariatric Surgery Centers of Excellence (BSCOE) program. Surgeries were classified as primary or reoperative bariatric surgery. Reoperations were further divided into corrective operations (when complications or incomplete treatment effect of a previous bariatric operation was addressed but the initial operation was not changed) or conversions (when an index bariatric operation was changed to a different type of bariatric operation or a reversal restored original anatomy.) There were a total of 449,473 bariatric operations in the database of which 420,753 (93.6%) operations had no further reoperations (primary operations) while 28,270 (6.3 %) underwent reoperations. Of the reoperations, 19,970 (69.5%) were corrective operations and 8,750 (30.5%) were conversions. The primary bariatric operations were Roux-en-Y gastric bypass (N=204,705, 49.1 %), adjustable gastric banding (N=153,142, 36.5 %), sleeve gastrectomy (N=42,178, 10 %), and BPD±DS (N=4,260, 1 %), with the rest classified as miscellaneous. Adjustable gastric banding was the most common primary surgery among conversions (57.5% of conversions; most often [63.5%] to Roux-en-Y gastric bypass). Compared with primary operations, mean length of stay was longer for corrections (2.04±6.44 vs 1.8±4.9, P<0.001) and for conversions (2.86±4.58 vs 1.8±4.9, P<0.001). The mean % excess weight loss at one year was 43.5 % after primary operation, 39.3 % after conversions, and 35.9 % after corrective operations (statistical comparison not reported). One-year mortality was higher for conversions compared with primary operations (0.31% vs 0.17%, P<0.001), but not for corrections compared with primary operations (0.24% vs0.17%, P=NS). One-year serious adverse event rates were higher for conversions compared with primary operations (3.61% vs 1.87%, P<0.001), but not for corrections compared with primary operations (1.9% vs 1.87%, P=NS). The authors conclude that reoperation after primary bariatric surgery is relatively uncommon, but generally safe and efficacious when it occurs.

As part of the American Society for Metabolic and Bariatric Surgery Revision Task Force, Brethauer conducted a systematic review of reoperations after primary bariatric surgery that included 175 studies, most of which were single-center retrospective reviews.[137] The review was primarily descriptive, but the authors made the following conclusions:

“The current evidence regarding reoperative bariatric surgery includes a diverse group of patient populations and procedures. The majority of the studies are single institution case series reporting short- and medium-term outcomes after reoperative procedures. The reported outcomes after reoperative bariatric surgery are generally favorable and demonstrate that additional weight loss and co-morbidity reduction is achieved with additional therapy. The risks of reoperative bariatric surgery are higher than with primary bariatric surgery and the evidence highlights the need for careful patient selection and surgeon expertise.”

REVISION OR REMOVAL OF ADJUSTABLE GASTRIC BAND
Evidence regarding the indications for band removal or revision procedure is primarily limited to small cohort\cite{138} and case series studies; however, reoperation or removal rates are estimated to range from 4.1% - 53%, depending on the time of reported follow-up.\cite{139-142} Several of the largest cohort studies have reported the following complications which resulted in reoperation or band removal:

Arapis reported the following complications in 87 patients who underwent reoperation:\cite{143} chronic dilatation of the proximal gastric pouch (27 patients - 14.5%), acute dilatation (21 patients - 11.3%), intragastric migration of the prosthesis (6 patients - 3.2%), reflux esophagitis (6 patients - 3.2%), infection of the gastric band (1 patient - 0.5%), and Barrett’s esophagus (1 patient - 0.5%).

Perathoner reported on 108 patients who underwent laparoscopic conversion of gastric banding to gastric bypass due to the following complications: band migration, inadequate weight loss, pouch dilation, band leakage, band intolerance, band infection and esophageal dilation.\cite{144}

Other reported complications included: band erosion,\cite{141, 145, 146} gastric obstruction,\cite{111} and gastric slippage.\cite{141, 146}

Avriel reported major respiratory complications and chronic disease development in 30 patients who underwent LAGB.\cite{147} Reported complications included aspiration pneumonia (19 patients) including pulmonary abscess (4 patients) and empyema (2 patients), exacerbation of asthma (3 patients), hemoptysis (1 patient), interstitial lung disease (5 patients) and bronchiectasis (3 patients). However, the impact of LAGB upon the development of these conditions is unclear given that 83% of the patients smoked or had a smoking history (mean pack years 34).

Studies which evaluated band conversion to a second bariatric surgery primarily indicated that bypass was the preferred revision surgery due to better long-term outcomes compared to sleeve gastrectomy.\cite{148-151} In one large retrospective study published in 2014, bypass was compared to sleeve gastrectomy after band removal and conversion.\cite{152} National Surgical Quality Improvement Project data from 2005-2011 were analyzed and included 495 patients who converted from LAGB to bypass and 130 patients who converted to sleeve gastrectomy. Conversion to bypass was not associated with higher morbidity or mortality compared to primary RYGB; however, conversion to sleeve gastrectomy was independently associated with a higher rate of major complications and mortality compared to primary sleeve gastrectomy (OR 8.02, 95 % CI 1.08-59.34, p = 0.04).

SECTION SUMMARY

For surgical revision of bariatric surgery after failed treatment, evidence from nonrandomized studies suggests that revisions are associated with improvements in weight similar to those seen in primary surgery. However, evidence from large long-term studies is required to determine the appropriate clinical indications for band removal or reoperation.

BARIATRIC SURGERY IN PATIENTS WITH DIABETES WITH BMI < 35KG/M²

SYSTEMATIC REVIEWS

In 2015 Muller-Stich published a systematic review comparing surgical versus medical treatment of type II diabetes in patients with a BMI less than 35 kg/m².\cite{153} The analysis
included data from five RCTs and six observational studies for a total of 702 patients. The follow-up of included studies ranged from 12-36 months. Authors concluded that surgery was associated with higher diabetes remission rate (OR: 14.1, 95% CI: 6.7–29.9, P < 0.001), higher rate of glycemic control (OR: 8.0, 95% CI: 4.2–15.2, P < 0.001) and lower HbA1c level (MD: −1.4%, 95% CI −1.9% to −0.9%, P < 0.001) compared to medical treatment. However, results are limited by inclusion of studies in which the BMI of some patients was greater than 35 kg/m² and short-term follow-up, limiting conclusion regarding the long-term benefits of bariatric surgery upon glycemic control.

In 2013, the Agency for Healthcare Research and Quality (AHRQ) published a comparative effectiveness review of bariatric surgery and nonsurgical therapy in adults with metabolic conditions, including diabetes, and a BMI of 30.0-34.9 kg/m².[154] The report evaluated key issues which included the effectiveness of bariatric surgery compared to nonsurgical therapies, short and long-term effects in symptom control and racial and demographic disparities regarding benefits and harms of surgery in patients with metabolic conditions and a BMI of 30.0-34.9 kg/m². Evidence was gathered from global literature searches, reference mining and titles identified from external sources. A total of 24 studies reported bariatric surgery results, with a majority of studies evaluating RYGBP or LAGB procedures in diabetic patients with a BMI of 30-35 kg/m². The AHRQ report concluded that there was moderate strength evidence of efficacy for certain bariatric procedures as a treatment for diabetes in the short term. However, the report noted that the evidence contained many limitations, “(m)ost importantly, very few studies of this target population have long-term follow-up. Only two studies followed patients for more than 2 years; one has a followup rate of only 13.8 percent and the other includes only seven patients. Thus, we have almost no data on long-term efficacy and safety.” In addition, the AHRQ report noted the lack of evidence on major clinical outcomes such as all-cause mortality, cardiovascular risks, or peripheral arterial disease. Although short-term studies suggest an improvement in glucose control, the AHRQ report pointed out that, “…the available evidence from the diabetes literature indicates it may be premature to assume that controlling glucose to normal or near normal levels completely mitigates the risk of microvascular and macrovascular events. Thus, claims of a “cure” for diabetes based on glucose control within 1 or 2 years require longer term data before they can be substantiated.”

RANDOMIZED CONTROLLED TRIALS

Since the publication of the AHRQ report, two RCTs have been reported on bariatric surgery compared to medical therapy in diabetic patients with a BMI between 30-40 kg/m².

Ikramuddin performed an unblinded RCT of gastric bypass versus intensive medical therapy on 120 patients with type II diabetes for at least 6 months and an HgbA1C of at least 8.0%.[155] Patients were followed for 12 months with the primary endpoint being a composite of HgbA1C less than 7.0%, low-density lipoprotein (LDL) cholesterol less than 100 mg/dl and systolic blood pressure less than 130 mm Hg. A total of 28 patients in the surgery group achieved the primary outcome compared to 11 patients in the medical therapy group (odds ratio [OR]: 4.8, 95% CI: 1.9-11.7). The percent of patients achieving HgbA1C of less than 7.0% was 75% in the surgery group compared to 32% of patients in the medical therapy group (OR: 6.0, 95% CI: 2.6-13.9). There were 22 serious complications in the surgery group, including 4 perioperative complications, compared to 15 serious complications in the medical group. A limitation of this study was that results were not provided separately for patients who were above and below a BMI of 35 kg/m², thus restricting conclusions regarding the benefits of bariatric surgery compared to medical management in diabetic patients with a BMI < 35 kg/m².
In 2014, Prikh published a small (n=57), short-term (6-month follow-up) RCT which compared intensive medical weight management to bariatric surgery in patients with a BMI of 30-35 kg/m² and type 2 diabetes.[156] Significant improvements in primary outcome measures of homeostatic model of insulin resistance and higher diabetes remission rates were observed in the surgical group compared to the MWM group. Additional small RCTs have been identified;[157] however, larger, long-term RCTs are needed to confirm these findings.

In 2015, Mingrone published results of a small (n=60) RCT comparing long-term outcomes of either medical treatment or surgery by Roux-en-Y gastric bypass or biliopancreatic diversion in patients with type II diabetes.[158] A total of 53 patients were included in the 5-year follow-up assessment. Primary outcome measures included the rate of diabetes remission at 2 years which was defined as glycated HbA1c concentration of 6.5% or less (≤47.5 mmol/mol) and a fasting glucose concentration of 5.6 mmol/L or less without active pharmacological treatment for 1 year. At 5-year follow-up 19 (50%) of the 38 surgical patients (7 of 19 [37%] in the gastric bypass group and 12 of 19 in the [63%] biliopancreatic diversion group) maintained diabetes remission at 5 years, compared with none of the 15 medically treated patients (p=0.0007). Fifteen incidents of hyperglycemic relapse occurred in 34 surgical of the patients who achieved 2-year remission, suggesting continued monitoring of glycemic control may be necessary. Authors also reported that both surgical procedures were associated with significantly lower plasma lipids, cardiovascular risk, and medication use and no late complications or deaths.

CLINICAL PRACTICE GUIDELINES

American College of Cardiology, American Heart Association, and the Obesity Society

In 2013, the American College of Cardiology (ACC), American Heart Association (AHA), and the Obesity Society published guidelines on the management of obesity and overweight in adults.[159] The guidelines were based upon a high-quality systematic review of the evidence which included transparent methods for grading the strength of the evidence and subsequent recommendations. The guidelines make the following recommendations related to bariatric surgery:

“For adults with a BMI >40kg/m2 or BMI >35 kg/m2 with obesity-related comorbid conditions who are motivated to lose weight and who have not responded to behavioral treatment (with or without pharmacotherapy) with sufficient weight loss to achieve targeted health outcome goals, advise that bariatric surgery may be an appropriate option to improve health and offer referral to an experienced bariatric surgeon for consultation and evaluation.” (Grade A: Indicating a strong recommendation, indicating there is a high certainty based on the evidence that the net benefit is substantial).

“For individuals with a BMI <35 kg/m2, there is insufficient evidence to recommend for or against undergoing bariatric surgical procedures.” (No recommendation given, indicating there is insufficient evidence or evidence is unclear or conflicting)

American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery

In 2019, an update to the 2013 joint guidelines were published by the American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery (AACE/ASM/Obesity Society) regarding the perioperative nutritional, metabolic and
nonsurgical support of the bariatric surgery patient.[160, 161] Recommendations regarding which patients should be offered bariatric surgery indicated the following:

- “Patients with a BMI≥40 kg/m² without coexisting medical problems and for whom bariatric surgery would not be associated with excessive risk should be eligible for a bariatric procedure.”

- “Patients with a BMI≥35 kg/m² and 1 or more severe obesity-related complications remediable by weight loss, including T2D, high risk for T2D, poorly controlled hypertension, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, OSA, osteoarthritis of the knee or hip, and urinary stress incontinence, should be considered for a bariatric procedure.”

- "Patients with the following comorbidities and BMI≥35 kg/m² may also be considered for a bariatric procedure, though the strength of evidence is more variable; obesity-hypoventilation syndrome and Pickwickian syndrome after a careful evaluation of operative risk; idiopathic intracranial hypertension; GERD; severe venous stasis disease; impaired mobility due to obesity, and considerably impaired quality of life."

- “Patients with BMI of 30 to 34.9 kg/m² with T2D with inadequate glycemic control despite optimal lifestyle and medical therapy should be considered for a bariatric procedure; current evidence is insufficient to support recommending a bariatric procedure in the absence of obesity.” or metabolic syndrome may also be offered a bariatric procedure although current evidence is limited by the number of subjects studied and lack of long-term data demonstrating net benefit.”

- "The BMI criterion for bariatric procedures should be adjusted for ethnicity (eg, 18.5 to 22.9 kg/m² is normal range, 23 to 24.9 kg/m² overweight, and ≥25 kg/m² obesity for Asians)." “There is insufficient evidence for recommending a bariatric surgical procedure specifically for glycemic control alone, lipid lowering alone, or cardiovascular disease risk reduction alone, independent of BMI criteria.”

- "Bariatric procedures should be considered to achieve optimal outcomes regarding health and quality of life when the amount of weight loss needed to prevent or treat clinically significant obesity-related complications cannot be obtained using only structured lifestyle change with medical therapy."

Institute for Clinical Systems Improvement

In 2014, the Institute for Clinical Systems Improvement (ICSI) published revised guidelines regarding the diagnosis and management of type 2 diabetes mellitus in adults and indicated:[162]

A clinician may recommend a patient diagnosed with T2DM and a BMI >35 kg/m² consider bariatric surgery if diabetes or comorbidities are difficult to control with lifestyle and pharmacologic therapy. [Quality of Evidence: Moderate, Strength of Recommendation: Weak]

SECTION SUMMARY

Evidence regarding the efficacy of bariatric surgery as a treatment for diabetes in patients with a BMI< 35 kg/m² primarily consists of small cases series with short-term follow-up as noted in the AHRQ report. Since the publication of these reports a single RCT was identified which was
limited by the inclusion of obese (BMI 35-40 kg/m²) and non-obese (BMI 30-34.9 kg/m²) patients, precluding conclusions regarding the clinically non-obese population. Clinical practice guidelines have recommended bariatric surgery in diabetic patients who do not meet the clinical definition of obesity; however, a lack of long-term data was noted. There are clinical concerns about durability and long-term outcomes at 5 to 10 years as well as potential variation in observed outcomes in community practice versus clinical trials. Overall, the current evidence does not demonstrate the safety and efficacy of bariatric surgery as a treatment for diabetes in patients with a BMI < 35 kg/m².

ADOLESCENT AND PEDIATRIC BARIATRIC SURGERY

SYSTEMATIC REVIEWS

Qi (2017) published a systematic review and meta-analysis on the use of bariatric surgery for the treatment of adolescents with obesity. 49 studies were identified for inclusion and study quality was assessed using the Newcastle-Ottawa Scale. Age of patients ranged from 14 to 20 years. BMI ranged from 34 to 63 kg/m². Overall results showed significant improvements in BMI as well as glycemic and lipid control with various bariatric surgery techniques. RYGB showed the largest improvements compared with other procedures, with LAGB and sleeve gastrectomy also showing improvements in this population.

The 2007 Washington State Health Technology Assessment evaluated the published, peer reviewed scientific literature describing bariatric surgery in the pediatric population.[163] Data from 17 studies that enrolled a total of 553 pediatric patients were included. Only one study was clearly prospective. Eight studies reported outcomes after LAGB, six after RYGBP, two after VBG, and one after banded bypass. The report concluded that:

- The evidence that LAGB for morbidly obese pediatric patients leads to sustained and clinically significant weight loss compared to non-operative approaches was weak at the longest follow-up after surgery (1.7 to 3.3 years).
- The evidence that RYGBP for morbidly obese pediatric patients leads to sustained and clinically significant weight loss compared to non-operative approaches was weak at the longest follow-up after surgery (1 to 6.3 years).
- The evidence was insufficient to permit quantitative estimates of the precise amount of weight loss after any bariatric surgical procedure for pediatric patients.
- The evidence was insufficient to permit any conclusions about weight loss after other bariatric surgical procedures for pediatric patients.
- The evidence was insufficient to permit any conclusions about weight loss in specific age subgroups (18-21, 13-17, 12 or less) within the pediatric population.
- The evidence that LAGB for morbidly obese pediatric patients does resolve comorbid conditions linked to obesity (diabetes, hypertension) compared to non-operative approaches was weak.
- The evidence that RYGBP for morbidly obese pediatric patients does resolve comorbid conditions linked to obesity (diabetes, hypertension) compared to non-operative approaches was weak.
- The evidence was insufficient to permit quantitative estimates of the likelihood of comorbidity resolution, quality of life improvement, or survival after any bariatric surgical procedure for pediatric patients.
- The evidence was insufficient to permit any conclusions about comorbidity resolution in specific age subgroups (18-21, 13-17, 12 or less) within the pediatric population.
The LAGB studies reported no in-hospital or postoperative death. However, the most commonly reported complication was band slippage. Reoperations were performed on 7.9% of the LAGB patients to correct various complications (band slippage, intragastric migration, port/tubing problems).

The RYGBP studies reported one postoperative death. The most frequently reported complication was related to malnutrition and micronutrient deficiency. In addition, potentially life-threatening complications (shock, pulmonary embolism, severe malnutrition, bleeding, gastrointestinal obstructions) were reported.

The evidence was insufficient to permit any conclusions on potential impacts of bariatric surgery on growth and development of pediatric patients.

The evidence was insufficient to permit any conclusions on potential harms in specific age groups (18-21, 13-17, 12 or less).

In summary, the assessment found that longer term, prospective collection of data on physical growth, quality of life, weight loss, persistence or resolution of comorbid conditions, and long-term survival are needed in order to fully understand the role of bariatric surgical procedures in treating morbidly obese pediatric patients.

In 2013, Black published a systematic review and meta-analysis of 23 studies (22 nonrandomized) that included 637 young patients (age 6-18 years) who underwent bariatric surgery. In 2013, Black published a systematic review and meta-analysis of 23 studies (22 nonrandomized) that included 637 young patients (age 6-18 years) who underwent bariatric surgery. Although significant weight loss was reported at the 1-year follow-up, limitations of the evidence were similar to those reported in the Washington State Health Technology Assessment. Included studies were limited by small sample size with a median number of 24 patients per study (range: 10-108) and short term follow-up (range: 6-12 months). Authors reported that complications were inconsistently reported and indicated that, “long-term, prospectively designed studies, with clear reporting of complications and comorbidity resolution, alongside measures of [health-related quality of life], are needed to firmly establish the harms and benefits of bariatric surgery in children and adolescents.”

In 2015, the Washington State Health Technology Assessment compared various bariatric procedures and also re-examined the role of bariatric surgery in children and adolescents upon obesity related comorbidities. The group concluded that there was, “a lack of both short- and long-term data demonstrating effectiveness for any bariatric surgery procedure in both children and adolescents.” Only two studies were identified which were deemed to be of sufficient quality and only one of those was a RCT. In addition, no comparative studies were identified which evaluated any bariatric procedure exclusively in children (under 13 years).

Additional reviews were identified; however, conclusions were limited due to a lack of long-term follow-up.

RANDOMIZED CONTROLLED TRIALS

One small randomized trial compared the outcomes of gastric banding with an optimal lifestyle program in adolescents 14-18 years of age with a BMI >35. Although the study reports that gastric banding resulted in greater percentage achieving a loss of 50% of excess weight, several flaws undermine the reliability of the study findings:

- The small study population (n=50) limits the ability to rule out the role of chance as an explanation of findings.
- The study had significant loss to follow-up suggesting a difference that may affect the outcome.
• Short-term follow-up (2 years) limits comparisons regarding the longer-term complications rates and the effectiveness of the procedure in controlling weight loss and comorbidities.

NONRANDOMIZED STUDIES

Studies with short follow-up time

A small number of nonrandomized comparative studies reported significant weight loss and resolution of some of the comorbidities in pediatric patients undergoing bariatric surgery.[172-174] However, the studies were small and had a very short follow up time. In 2014, Inge reported results from Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study, a prospective, multicenter observational study of bariatric surgery in patients aged 19 or under.[175] The study enrolled 242 participants, with mean age 17.1 and median BMI 50.5 (IQR 45.2-58.2) at the time of operation. All patients had at least 1 obesity-related comorbidity, most commonly dyslipidemia (74%), followed by sleep apnea (57%), back and joint pain (46%), hypertension (45%), and fatty liver disease (37%). Roux-en-Y gastric bypass, adjustable gastric banding, and vertical sleeve gastrectomy were performed in 66.5%, 5.8%, and 27.7%, respectively. Within 30 days of surgery, 20 major complications occurred in 19 patients (7.9%), most of which were perioperative complications. The cohort will be followed to assess longer-term outcomes.

Studies with mid-term follow-up time

Dumont (2018) published a retrospective study of obese adolescents who underwent LAGB. Between 2006 and 2015, 97 consecutive teenagers (average age at surgery 17.2 ± 0.7 years; mean BMI of 44.9 ± 6.1 kg/m2) who had achieved full growth and sexual maturity and had previously failed a medical nutritional and dietary management program for at least 1 year were enrolled in the study. After a mean follow-up time of 56.0 ± 22.0 months, mean total weight loss was 20.0 ± 16.6% and mean excess weight loss was 46.6 ± 39.5%. Nineteen patients underwent band removal (mean 43.0 ± 28.0 months). No limitations to the study were reported.

Two observational studies with mid-term follow-up times (≤10 and ≤8 years) reported experiences of pediatric patients undergoing LAGB (sample size 41 and 107 respectively).[176, 177] The first study found that weight loss was initially successful and resulted in resolution of some comorbidities, but it slowly increased over the time and ultimately was unsatisfactory in many patients. The second study reported 65.5% excess weight loss at eight years. Both studies reported high complication and reoperation rates (Lanthaler: 46% patients had complications that required reoperation; Mittermaier: 46% patients had complications and 29% required reoperation).

CLINICAL PRACTICE GUIDELINES FOR PEDIATRIC BARIATRIC SURGERY

American College of Physicians

The 2005 American College of Physicians (ACP) evidence-based guideline on use of bariatric surgery in adolescents and children states that the current evidence on surgical treatment of pediatric populations is limited to a few case series which do not permit quantitative analysis.[178] Further, the guideline states that it is unclear whether extrapolation of adult data for bariatric surgery to the pediatric population is appropriate and that RCTs are needed (and feasible) to establish the role of bariatric surgery in this population.
American Academy of Pediatrics

In 2007, the American Academy of Pediatrics (AAP) published, “Recommendations for Treatment of Child and Adolescent Overweight and Obesity,” which stated that although there is increased use of bariatric surgery in adults:[179]

“There is limited research on the safety, efficacy, and long-term outcomes of bariatric surgery for adolescents; therefore, data from adult studies must be considered as surrogate evidence.”

Ultimately, the AAP noted that additional trials are needed to determine whether bariatric surgery is acceptable in adolescents.

American Heart Association

In 2013, the American Heart Association (AHA) published a statement regarding severe obesity in children and adolescents which concluded:[180]

“Current treatment approaches using lifestyle modification and medications to reduce BMI and improve chronic disease risk factors are insufficient for most patients and significant residual risk (unacceptably high BMI and risk factor levels) remains. Although experts recommend stepped intensification of interventions, the “step” after behavior-based and pharmaceutical interventions to the next established alternative, bariatric surgery, is unacceptably large because of its limited applicability and availability.”

The AHA indicated that the following evidence was needed before bariatric surgery could be widely recommended in children and adolescents:

“Generation of additional safety and efficacy data (especially long-term) on bariatric surgery, including studies describing improvements in vascular structure and function, insulin resistance, and β-cell function.”

Society of American Gastrointestinal and Endoscopic Surgeons

The 2008 the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) evidence-based guidelines state:[181]

“RGB is well tolerated and produces excellent weight loss in patients younger than 18 years with 10-year follow-up... Well-designed prospective studies are just emerging to better define the place for adolescent bariatric surgery.”

This statement is based on eight publications of which six are retrospective studies, each with less than 35 participants and most with limited follow-up. Two of the supporting articles are opinion papers.

Endocrine Society

In 2017, the Endocrine Society published an updated clinical practice regarding the assessment, treatment, and prevention of pediatric obesity.[182] The guideline was developed according to the GRADE system. The following statements were given a rating of “we suggest”, i.e., weak recommendations, and were based on “very low quality” to “low quality” evidence. Given the evidence quality, and the suggestion as opposed to a recommendation, the following statements are ultimately, expert opinion.
For pre-adolescent children, pregnant or breast-feeding adolescents (and those planning on becoming pregnant within two years of surgery), and in any patient who has not mastered the principles of healthy dietary and activity habits and/or has unresolved substance abuse, eating disorder or untreated psychiatric disorder, the Society suggests against bariatric surgery.

The Endocrine Society suggests that bariatric surgery be considered for adolescents only under the following conditions:

- The patient has attained Tanner 4 or 5 pubertal development and final or near-final adult height, the patient has a BMI of >40 kg/m2 or has a BMI of >35 kg/m2 and significant, extreme comorbidities
- Extreme obesity and comorbidities persist despite compliance with a formal program of lifestyle modification, with or without pharmacotherapy
- Psychological evaluation confirms the stability and competence of the family unit [psychological distress due to impaired quality of live (QOL) from obesity may be present, but the patient does not have an underlying untreated psychiatric illness]
- The patient demonstrates the ability to adhere to the principles of healthy dietary and activity habits
- There is access to an experienced surgeon in a pediatric bariatric surgery center of excellence that provides the necessary infrastructure for patient care, including a team capable of long-term follow-up of the metabolic and psychosocial needs of the patient and family.

Institute for Clinical Systems Improvement

In 2013, ICSI published updated guidelines regarding the prevention and management of obesity for children and adolescents. The group noted that, “there is limited information on the long-term efficacy and safety of bariatric surgery in children and adolescents.” However, ICSI concluded that bariatric surgery may be considered at centers of excellence when specific criteria where met and should not be considered in preadolescent children.

National Heart, Lung and Blood Institute

In 2011, National Heart, Lung and Blood Institute (NHLBI) published guidelines regarding cardiovascular health and risk reduction in overweight and obese children and adolescents which indicated bariatric surgery may be considered:

“For adolescents with BMI far above 35 kg/m2 and associated comorbidities, bariatric surgery on a research protocol, in conjunction with a comprehensive lifestyle weight loss program, improved weight loss, BMI, and other outcomes—such as IR, glucose tolerance, and cardiovascular (CV) measures—in a small case series.”

This guideline is based on a Grade D recommendation which is defined as, “Expert opinion, case reports, or reasoning from first principles (bench research or animal studies).”

American Society of Bariatric and Metabolic Surgery

In 2018, ASBMS published an update to the 2012 guideline. Summary of major changes in the guideline included:

- "Vertical sleeve gastrectomy has become the most used and most recommended operation in adolescents with severe obesity for several reasons, near-equivalent..."
weight loss to RYGB in adolescents, fewer reoperations, better iron absorption, and near-equivalent effect on comorbidities as RYGB in adolescents. However, given the more extensive long-term data available for RYGB, we can recommend the use of either RYGB or VSG in adolescents. Long-term outcomes of GERD after vertical sleeve gastrectomy are still not well understood.

- There are no data that the number of preoperative weight loss attempts correlated with success after metabolic/bariatric surgery. Compliance with a multidisciplinary preoperative program may improve outcomes after metabolic/bariatric surgery but prior attempts at weight loss should be removed as a barrier to definitive treatment for obesity.

- The use of the most up to date definitions of childhood obesity are as follows: (1) BMI cut offs of 35 kg/m² or 120% of the 95th percentile with a comorbidity, or (2) BMI >40 kg/m² or 140% of the 95th percentile without a comorbidity (whichever is less). Requiring adolescents with a BMI >40 to have a comorbidity (as in the old guidelines) puts children at a significant disadvantage to attaining a healthy weight. Earlier surgical intervention (at a BMI <45 kg/m²) can allow adolescents to reach a normal weight and avoid lifelong medication therapy and end organ damage from comorbidities.

- Certain comorbidities should be considered in adolescents, specifically the psychosocial burden of obesity, the orthopedic diseases specific to children, GERD, and cardiac risk factors. Given the poor outcomes of medical therapies for T2D in children, these comorbidities may be considered an indication for metabolic/bariatric surgery in younger adolescents or those with lower obesity percentiles.

- Vitamin B deficiencies, especially B1, appear to be more common in adolescents both preoperatively and postoperatively; they should be screened for and treated. Prophylactic B1 for the first 6 months postoperatively is recommended as is education of patients and primary care providers on the signs and symptoms of common deficiencies.

- Developmental delay, autism spectrum, or syndromic obesity should not be a contraindication to metabolic/bariatric surgery. Each patient and caregiver team will need to be assessed for the ability to make dietary and lifestyle changes required for surgery. Multidisciplinary teams should agree on the specific needs and abilities of the given patient and caregiver and these should be considered on a case-by-case basis with the assistance of the hospital ethics committee where appropriate.

- Because metabolic/bariatric surgery results in better weight loss and resolution of comorbidities in adolescents at lower BMI's with fewer comorbidities, referrals should occur early, as soon as a child is recognized to suffer from severe obesity disease (BMI >120% of the 95th percentile or BMI of 35). Prior weight loss attempts, Tanner stage, and bone age should not be considered when referring patients to a metabolic/bariatric surgery program.

- Unstable family environments, eating disorders, mental illness, or prior trauma should not be considered contraindications for metabolic/bariatric surgery in adolescents; however, these should be optimized and treated where possible before and surrounding any surgical intervention for obesity.

- Routine screening of alcohol use is imperative across all procedures. Conservative clinical care guidelines, which strongly advocate abstinence, while appropriate, must also include information for this age group on harm reduction (i.e., lower consumption levels, how to avoid or manage situations related to alcohol-related harm) to mitigate clinical and safety risks. Risks of nicotine should be discussed and smoking or vaping nicotine should be discouraged.
"The recognition of obesity as a chronic disease that requires multimodal therapies justifies the treatment of such a disease in a multidisciplinary team that can provide surgical, pharmacologic, behavioral, nutritional, and activity interventions. Pharmacologic therapies as adjuncts to surgical therapies may provide improved outcomes long term in the pediatric population; more studies are needed.

SECTION SUMMARY

There is evidence to suggest bariatric surgery may provide the benefits of weight reduction and improved comorbidities compared to non-surgical treatments in the obese children and adolescents.

GASTROESOPHAGEAL REFLUX DISEASE

This section focuses on evidence related to gastroesophageal reflux disease (GERD) as it relates to bariatric procedures as a treatment for obesity. See Cross References section, above, for policies focused on treatment of GERD.

SYSTEMATIC REVIEWS

In 2016, Osland compared the efficacy of Roux-En-Y gastric bypass versus vertical sleeve gastrectomy in randomized controlled trials. Six RCTs performed between 2005 and 2015 were included (N = 695; 347 for SG and 348 for RYGB). The authors summarized recent publications, citing worsened GERD symptoms following sleeve gastrectomy in patients with preoperative symptoms, and new symptoms in 9% of patients with no previous symptoms. Preexisting GERD in those who undergo sleeve gastrectomy is noted as being the cause of frequent revisional surgeries, and high rates of surgical complications. In addition those with preexisting GERD were found to have failure to achieve weight loss, and failure to resolve weight related comorbidities such as diabetes, obstructive sleep apnea, and hypertension.

In 2016, Oor reported results from a systematic review and meta-analysis of studies reporting prevalence of GERD symptoms, the use of anti-reflux medication, and/or outcome of esophageal function tests before and after laparoscopic sleeve gastrectomy (LSG) in patients with a BMI of more than 35. Pooled data from seven studies using validated symptom questionnaires for new-onset of GERD symptoms resulted in a 20% incidence following LSG (follow-up time ranging from one- to 60-months). There was heterogeneity amongst these studies ($I^2=68\%$). For difference in prevalence of GERD before and after LSG, the pooled risk difference was found to be 4.3%; with heterogeneity present ($I^2=89\%$). Of the 24 studies reviewed, the authors found new-onset GERD symptom incidence to range from zero to 34.9%. The authors therefore concluded that LSG could induce serious GERD symptoms in patients with no preoperative GERD complaints. The heterogeneity found in analyses may be due to a lack of a standardized approach to LSG, as well has the variability in follow-up length. The authors also noted that range in prevalence of GERD symptoms may be in part due to the variability in reported preoperative BMI, as the LSG will be a more technically challenging procedure in those with a BMI of 60 kg/m2 versus those with a BMI of 40 kg/m2.

Li and colleagues (2016) conducted a systematic review and meta-analysis comparing Roux-en-Y gastric bypass (LRYGB) with LSG for treating morbid obesity. Randomized controlled trials and nonrandomized studies were included. Amongst five studies that reported GERD resolution post-operation (147 in the LRYGB group and 93 in the LSG group), symptoms...
resolved significantly more after LRYGB as compared to LSG (OR = 8.99, 95% CI 4.77-16.95). Heterogeneity was not detected between these groups ($I^2 = 48\% P=0.12$).

NONRANDOMIZED STUDIES

Several nonrandomized studies have retrospectively reviewed weight reduction and GERD symptoms following Roux-en-Y gastric bypass surgery for treatment of morbid obesity.[188-193] Authors have reported reduction in self-reported GERD symptoms, prescribed medications, and weight loss. As demonstrated in small case series, in combination with takedown of fundoplication, Roux-en-Y gastric bypass for morbid obesity has been effective in weight reduction as well as self-reported GERD symptom improvement.[191, 192] Evidence regarding high incidence of GERD following laparoscopic adjustable gastric banding and laparoscopic sleeve gastrectomy makes Roux-en-Y gastric bypass the ideal procedure in the presence of already existing reflux symptoms.[41, 194-198]

CLINICAL PRACTICE GUIDELINES

Society of American Gastrointestinal and Endoscopic Surgeons (SAGES)

The SAGES clinical practice guidelines for the surgical treatment of GERD (2010) state the following:[199]

Due to concerns for higher failure rates after fundoplication in the morbidly obese patient (BMI >35 kg/m²) and the inability of fundoplication to address the underlying problem (obesity) and its associated comorbidities, gastric bypass should be the procedure of choice when treating GERD in this patient group (Grade B). The benefits in patients with BMI > 30 is less clear and needs further study.

SECTION SUMMARY

Systematic review of GERD symptoms following laparoscopic sleeve gastrectomy (LSG) as a treatment for morbid obesity is limited by heterogeneity in the technical approach to the procedure, therefore presenting statistical challenges to analyzing pooled results. In comparing LSG with Roux-en-Y gastric bypass (RYGB) directly, GERD symptoms resolve significantly more post-RYGB as compared to LSG. In the presence of GERD, the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) clinical practice guidelines state that gastric bypass is the procedure of choice in patients who are morbidly obese. In those who are not morbidly obese, evidence does not indicate that bariatric surgery is an appropriate treatment for GERD, and SAGES states this is an area in need of further study.

SAFETY OF BARIATRIC SURGERY

GENERAL SURGICAL RISKS

Bariatric procedures are associated with all the potential risks of any major abdominal surgical procedure including but not limited to:

- Bleeding
- Death
- Infection
- Injury to internal organs or gastrointestinal tract
- Thromboembolic complications
PROCEDURE-SPECIFIC SURGICAL RISKS

The following table summarizes the most common procedure-specific risks. However, other adverse events are also possible.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The safety concerns are specific to the endoluminal procedure performed:</td>
<td>• Cholecystitis</td>
<td>• All RYGBP risks</td>
<td>• Dilated stomach pouch</td>
<td>• Abscesses</td>
<td>• Band slippage</td>
<td>• Bile reflux</td>
</tr>
<tr>
<td></td>
<td>• Depression</td>
<td>• Additional unknown risks associated with the greater bypass of the small intestine and consequent increase in malabsorption<sup>††</sup></td>
<td>• Gastric obstruction</td>
<td>• Frequent vomiting</td>
<td>• Dilated stomach pouch</td>
<td>• Gastrojejunostomy leak</td>
</tr>
<tr>
<td></td>
<td>• Dilated stomach pouch</td>
<td></td>
<td>• GERD</td>
<td>• Gastric fistulas</td>
<td>• Marginal ulcer</td>
<td>• Marginal ulcer</td>
</tr>
<tr>
<td></td>
<td>• Dumping syndrome<sup>†</sup></td>
<td>• Leaks or obstructions at the anastomotic site</td>
<td>• Leaking from the stomach pouch<sup>††</sup></td>
<td>• GERD</td>
<td>• Erosion of the device through gastric wall</td>
<td>• Reoperations<sup>††</sup></td>
</tr>
<tr>
<td></td>
<td>• Gastritis</td>
<td>• Marginal ulcer</td>
<td>• Reoperations<sup>†††</sup></td>
<td></td>
<td></td>
<td>• Vitamin/mineral deficiency</td>
</tr>
<tr>
<td></td>
<td>• Leaks or obstructions at the anastomotic site</td>
<td>• Staple line failure</td>
<td></td>
<td>• Malnutrition and/or vitamin deficiencies</td>
<td>• Band slippage</td>
<td>• Marginal ulcer</td>
</tr>
<tr>
<td></td>
<td>• Vitamin/mineral deficiencies (iron, folate, B<sub>12</sub>)</td>
<td></td>
<td>• Nausea/vomiting</td>
<td>• Nausea from the stomach pouch</td>
<td>• Reoperations<sup>††</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kidney stones</td>
<td></td>
<td>• Wound dehiscence</td>
<td></td>
<td></td>
<td>• Vitamin/mineral deficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Abdominal pain, diarrhea, and/or vomiting shortly after eating due to reduced transit time in the intestine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>††The evidence, especially from the studies with long-term follow-up, is limited and not much is known about the long-term complications of LL-RYGBP;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>†††Due to insufficient weight loss or technical issues;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY

ROUX-EN-Y GASTRIC BYPASS, BILIOPANCREATIC BYPASS WITH DUODENAL SWITCH, AND SLEEVE GASTRECTOMY

Roux-en-Y gastric bypass is well established in clinical practice as a safe and effective bariatric procedure. Sleeve gastrectomy as a stand-alone procedure gained acceptance in clinical practice. Sleeve gastrectomy offers an alternative to adjustable gastric banding with potentially greater weight loss and fewer complications. Therefore, Roux-en-Y gastric bypass, biliopancreatic bypass with duodenal switch, and sleeve gastrectomy may be considered medically necessary in the treatment of morbid obesity when policy criteria are met.

There is not enough research to show that Roux-en-Y gastric bypass, biliopancreatic bypass with duodenal switch, or sleeve gastrectomy improves health outcomes for any condition other than morbid obesity. Therefore, Roux-en-Y gastric bypass, biliopancreatic bypass with duodenal switch, and sleeve gastrectomy are considered investigational for the treatment of any condition other than morbid obesity, including, but not limited to gastroesophageal reflux disease.

There is not enough research to show that any other procedures improves health outcomes. Therefore, the use of distal, partial (not including sleeve gastrectomy) or complete gastrectomy with or without gastroduodenostomy, gastrojejunostomy, or Roux-en-Y reconstruction, are considered investigational as a treatment of obesity.

MINI-GASTRIC BYPASS, DISTAL GASTRIC BYPASS, BILIOPANCREATIC BYPASS, AND LAPAROSCOPIC DUODENAL SWITCH WITH SINGLE ANASTOMOSIS

There is not enough research for these procedures on health outcomes. Therefore, mini-gastric bypass, distal gastric bypass, biliopancreatic bypass, and laparoscopic duodenal switch with single anastomosis are considered investigational for the treatment of morbid obesity, gastroesophageal reflux disease or any other condition.

HIATAL HERNIA REPAIR

There is not enough research regarding the use of hiatal hernia repair as an independent treatment of obesity. In addition, no evidence-based clinical practice guidelines were identified which addressed the use of hiatal hernia repair as a treatment of obesity. Therefore, hiatal hernia repair is considered investigational as an independent treatment of obesity.

VERTICAL BANDED GASTROPLASTY AND ADJUSTABLE GASTRIC BANDING

Due to higher complications, insufficient weight loss, and high reoperation rates, vertical banded gastroplasty and adjustable gastric banding are no longer considered a standard of care and are therefore considered not medically necessary.

ENDOSCOPIC BARIATRIC PROCEDURES

There is not enough evidence to establish the safety and efficacy of any endoscopic bariatric
procedure. Therefore, endoscopic bariatric procedures are considered investigational for all indications.

LAPAROSCOPIC GASTRIC Plication

There is not enough evidence to establish the safety and efficacy of any laparoscopic gastric plication bariatric procedure. Therefore, laparoscopic gastric plication procedures are considered investigational for all indications.

Revision Bariatric Surgical Procedures

Research regarding reoperation of a primary bariatric surgery is limited to noncomparative studies without long-term outcome data. In addition, current research shows that the complication and mortality rate is slightly higher in cases of reoperation. However, reoperation appears to be beneficial for patients with serious complications related to the primary bariatric surgery and may be considered medically necessary when Criteria are met.

Research regarding the revision or removal of an adjustable gastric band is limited to noncomparative studies with short-term follow-up. These studies suggest band removal or revision is associated with improvement in band related complications. In addition, studies indicate gastric bypass is the preferred secondary procedure in cases of adjustable band conversion as bypass is associated with fewer complications and lower mortality rates compared to sleeve gastrectomy. Therefore, adjustable gastric band removal and/or conversion to gastric bypass may be considered medically necessary when Criteria are met.

The research is insufficient to determine the safety or efficacy of all other bariatric surgery reoperations or revisions; therefore, reoperations or revisions are considered not medically necessary when Criteria are not met.

Two-Staged Bariatric Procedures

There is not enough research to establish the safety and efficacy of any two-stage bariatric procedure. Therefore, two-stage bariatric procedures are considered investigational for all indications.

Adolescent and Pediatric Bariatric Surgery

There is evidence to suggest bariatric surgery may provide the benefits of weight reduction and improved comorbidities compared to non-surgical treatments in the obese children and adolescents under the age of 18. Clinical practice guidelines suggest that bariatric surgery may be beneficial for patients under the age of 18 when they have achieved Tanner pubertal development of 4 or 5 and additional consideration is given to the psychosocial and informed consent issues. Therefore, bariatric procedures in patients younger than 18 years of age may be considered medically necessary when Criteria are met.

Bariatric Surgery in Patients with Diabetes with BMI < 35kg/m²

Research for the safety and effectiveness of bariatric procedures as a treatment for diabetes in patients with a BMI < 35 kg/m² is limited by small study sizes and short-term follow-up. High-quality studies that include long-term follow-up are needed in order to evaluate the impact of bariatric surgery on health outcomes in this population. In addition, the majority of evidence-based clinical practice guidelines do not recommend bariatric surgery in diabetic patients.
patients with a BMI < 35 kg/m². Therefore, bariatric procedures in diabetic patients with a BMI < 35 kg/m² are considered not medically necessary.

REFERENCES

31. VN Prachand, RT Davee, JC Alverdy. Duodenal switch provides superior weight loss in the super-obese (BMI > or =50 kg/m2) compared with gastric bypass. *Ann Surg.* 2006;244(4):611-9. PMID: 16998370

56. TEC Assessment 2012. "Laparoscopic Adjustable Gastric Banding In Patients With Body Mass Index Less Than 35 kg/m2 With Weight-Related Comorbidity." BlueCross BlueShield Association Technology Evaluation Center, Vol. 27 Tab TBA.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

100. NR Fuller, S Pearson, NS Lau, et al. An intragastric balloon in the treatment of obese individuals with metabolic syndrome: a randomized controlled study. *Obesity (Silver Spring).* 2013;21(8):1561-70. PMID: 23512773

September 1, 2022

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
157. SA Ding, DC Simonson, M Wewalka, et al. Adjustable Gastric Band Surgery or Medical Management in Patients With Type 2 Diabetes: A Randomized Clinical Trial. The Journal of clinical endocrinology and metabolism. 2015;100(7):2546-56. PMID: 25909333

190. EJ Patterson, DG Davis, Y Khajanchee, LL Swanstrom. Comparison of objective outcomes following laparoscopic Nissen fundoplication versus laparoscopic gastric bypass in the morbidly obese with heartburn. Surg Endosc. 2003;17(10):1561-5. PMID: 12874685

CODES

NOTE: Code 43843 should not be reported if there is a more specific bariatric surgery code within code range listed below.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>43631</td>
<td>Gastrectomy, partial, distal; with gastroduodenostomy</td>
</tr>
<tr>
<td></td>
<td>43632</td>
<td>; with gastrojejunostomy</td>
</tr>
<tr>
<td></td>
<td>43633</td>
<td>; with roux-en-Y reconstruction</td>
</tr>
<tr>
<td></td>
<td>43634</td>
<td>; with formation of intestinal pouch</td>
</tr>
<tr>
<td></td>
<td>43644</td>
<td>Laparoscopy, surgical, gastric restrictive procedure; with gastric bypass and Roux-en-Y gastroenterostomy (roux limb 150 cm or less)</td>
</tr>
<tr>
<td></td>
<td>43645</td>
<td>Laparoscopy, surgical, gastric restrictive procedure; with gastric bypass and small intestine reconstruction to limit absorption</td>
</tr>
<tr>
<td></td>
<td>43659</td>
<td>Unlisted laparoscopy procedure, stomach</td>
</tr>
<tr>
<td></td>
<td>43770</td>
<td>Laparoscopy, surgical, gastric restrictive procedure; placement of adjustable gastric restrictive device (gastric band and subcutaneous port components)</td>
</tr>
<tr>
<td></td>
<td>43771</td>
<td>Laparoscopy, surgical, gastric restrictive procedure; revision of adjustable gastric restrictive device component only</td>
</tr>
<tr>
<td></td>
<td>43772</td>
<td>Laparoscopy, surgical, gastric restrictive procedure; removal of adjustable gastric restrictive device component only</td>
</tr>
<tr>
<td></td>
<td>43773</td>
<td>Laparoscopy, surgical, gastric restrictive procedure; removal and replacement of adjustable gastric restrictive device component only</td>
</tr>
<tr>
<td></td>
<td>43774</td>
<td>Laparoscopy, surgical, gastric restrictive procedure; removal of adjustable gastric restrictive device and subcutaneous port components</td>
</tr>
<tr>
<td>Codes</td>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>43775</td>
<td></td>
<td>Laparoscopy, surgical, gastric restrictive procedure; longitudinal gastrectomy (ie, sleeve gastrectomy)</td>
</tr>
<tr>
<td>43820</td>
<td></td>
<td>Gastrojejunostomy; without vagotomy</td>
</tr>
<tr>
<td>43842</td>
<td></td>
<td>Gastric restrictive procedure, without gastric bypass, for morbid obesity; vertical banded gastroplasty</td>
</tr>
<tr>
<td>43843</td>
<td></td>
<td>Gastric restrictive procedure, without gastric bypass, for morbid obesity; other than vertical banded gastroplasty</td>
</tr>
<tr>
<td>43845</td>
<td></td>
<td>Gastric restrictive procedure with partial gastrectomy, pylorus-preserving duodenoileostomy and ileoileostomy (50 to 100 cm common channel) to limit absorption (biliopancreatic diversion with duodenal switch)</td>
</tr>
<tr>
<td>43846</td>
<td></td>
<td>Gastric restrictive procedure, with gastric bypass for morbid obesity; with short limb (150 cm or less) Roux-en-Y gastroenterostomy</td>
</tr>
<tr>
<td>43847</td>
<td></td>
<td>Gastric restrictive procedure, with gastric bypass for morbid obesity; with small intestine reconstruction to limit absorption</td>
</tr>
<tr>
<td>43848</td>
<td></td>
<td>Revision, open, of gastric restrictive procedure for morbid obesity, other than adjustable gastric restrictive device (separate procedure)</td>
</tr>
<tr>
<td>43860</td>
<td></td>
<td>Revision of gastrojejunal anastomosis (gastrojejunostomy) with reconstruction, with or without partial gastrectomy or intestine resection; without vagotomy</td>
</tr>
<tr>
<td>43865</td>
<td></td>
<td>;with vagotomy</td>
</tr>
<tr>
<td>43886</td>
<td></td>
<td>Gastric restrictive procedure, open; revision of subcutaneous port component only</td>
</tr>
<tr>
<td>43887</td>
<td></td>
<td>Gastric restrictive procedure, open; removal of subcutaneous port component only</td>
</tr>
<tr>
<td>43888</td>
<td></td>
<td>Gastric restrictive procedure, open; removal and replacement of subcutaneous port component only</td>
</tr>
<tr>
<td>HCPCS</td>
<td>S2083</td>
<td>Adjustment of gastric band diameter via subcutaneous port by injection or aspiration of saline</td>
</tr>
</tbody>
</table>

Date of Origin: January 1996
Reduction Mammaplasty

Effective: November 1, 2021

Next Review: July 2022
Last Review: September 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Reduction mammaplasty is the surgical excision of a substantial portion of the breast, including the skin and underlying glandular tissue, until a clinically normal size is obtained.

MEDICAL POLICY CRITERIA

Notes:

- This policy is not applicable when there has been a prior mastectomy for which the Women's Health & Cancer Rights Act applies. The Reconstructive Breast Surgery/Mastopexy, and Management of Breast Implants policy (Surgery, Policy No. 40 – see Cross References) may be applicable. Please refer to the Surgery, Policy No. 40 for reconstruction after partial or complete mastectomy.
- This policy is not intended to address treatment of gender dysphoria which is addressed in the Transgender Services medical policy (Medicine, Policy No. 153 – see cross references), which may be applicable.

I. Reduction mammaplasty may be considered medically necessary when one or more of the following are met:

A. As a preparatory first stage procedure preceding a nipple-sparing mastectomy,
when the amount of breast tissue removed from each breast is at least the minimum in grams per breast for the patient’s body surface area (in meters squared using the Mosteller formula) according to the Schnur Sliding Scale (see Policy Guidelines for body surface area/breast weight table); or

B. When all of the following criteria (1. - 3.) are met:

1. The patient is aged 18 years or older; and

2. The amount of breast tissue removed from each breast, not including fat removed by liposuction, must be at least the minimum in grams per breast for the patient’s body surface area* according to the Schnur Sliding Scale (see Policy Guidelines), or, in cases of asymmetry where one breast meets criterion but the other breast does not, the combined weight of the tissue removed from both breasts must total at least twice the Schnur Sliding Scale minimum for the patient’s body surface area (the health plan may review medical records to confirm the amount of breast tissue removed during the procedure); and

3. Two or more of the following clinical indications have been present for at least 12 months and have failed to respond to appropriate conservative therapy:

 a. Pain in the upper back, neck, shoulders, and/or arms, with all of the following documented in the medical records by the referring provider:

 i. The pain is of long-standing duration and increasing intensity; and

 ii. The pain has been evaluated to determine that it is not associated with another condition such as arthritis, if applicable; and

 iii. The pain is not relieved by at least three months of conservative therapy such as an appropriate support bra with wide straps, exercises, heat/cold treatments and appropriate non-steroidal anti-inflammatory agents/muscle relaxants.

 b. Shoulder grooving not responding to conservative treatment (e.g., wide-strap or support bra).

 c. Intertrigo between the pendulous breasts and the chest wall persisting despite at least three months of conservative dermatologic treatments (e.g., taking steps to eliminate friction, heat, and maceration by keeping skin cool and dry and where appropriate, antimycotic agents).

 d. Kyphosis documented by x-ray.

 e. Ulnar paresthesia not relieved by at least three months of conservative therapy such as an appropriate support bra with wide straps, range of motion exercises, physical therapy, and appropriate non-steroidal anti-inflammatory agents/muscle relaxants.

II. Reduction mammaplasty is considered **not medically necessary** when Criteria I. is not met.

III. Reduction mammaplasty for gynecomastia is considered **not medically necessary**.

IV. The use of liposuction as an additional procedure with breast reduction surgery is considered **not medically necessary**.
V. The use of liposuction as the sole procedure for breast reduction is considered investigational.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

Mosteller formula: body surface area (m2) = ([height (cm) x weight (kg)] / 3600)$^{1/2}$ [1]

[Click here for link to Body Surface Area Calculator]

Schnur Sliding Scale

<table>
<thead>
<tr>
<th>Body Surface Area (m2)</th>
<th>Grams per Breast of Minimum Breast Tissue to be Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.350-1.374</td>
<td>199</td>
</tr>
<tr>
<td>1.375-1.399</td>
<td>208</td>
</tr>
<tr>
<td>1.400-1.424</td>
<td>218</td>
</tr>
<tr>
<td>1.425-1.449</td>
<td>227</td>
</tr>
<tr>
<td>1.450-1.474</td>
<td>238</td>
</tr>
<tr>
<td>1.475-1.499</td>
<td>249</td>
</tr>
<tr>
<td>1.500-1.524</td>
<td>260</td>
</tr>
<tr>
<td>1.525-1.549</td>
<td>272</td>
</tr>
<tr>
<td>1.550-1.574</td>
<td>284</td>
</tr>
<tr>
<td>1.575-1.599</td>
<td>297</td>
</tr>
<tr>
<td>1.600-1.624</td>
<td>310</td>
</tr>
<tr>
<td>1.625-1.649</td>
<td>324</td>
</tr>
<tr>
<td>1.650-1.674</td>
<td>338</td>
</tr>
<tr>
<td>1.675-1.699</td>
<td>354</td>
</tr>
<tr>
<td>1.700-1.724</td>
<td>370</td>
</tr>
</tbody>
</table>

NOTE: When BSA is < 1.350 minimum is 199 grams

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Range</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.725-1.749</td>
<td>386</td>
</tr>
<tr>
<td>1.750-1.774</td>
<td>404</td>
</tr>
<tr>
<td>1.775-1.799</td>
<td>422</td>
</tr>
<tr>
<td>1.800-1.824</td>
<td>441</td>
</tr>
<tr>
<td>1.825-1.849</td>
<td>461</td>
</tr>
<tr>
<td>1.850-1.874</td>
<td>482</td>
</tr>
<tr>
<td>1.875-1.899</td>
<td>504</td>
</tr>
<tr>
<td>1.900-1.924</td>
<td>527</td>
</tr>
<tr>
<td>1.925-1.949</td>
<td>550</td>
</tr>
<tr>
<td>1.950-1.974</td>
<td>575</td>
</tr>
<tr>
<td>1.975-1.999</td>
<td>601</td>
</tr>
<tr>
<td>2.000-2.024</td>
<td>628</td>
</tr>
<tr>
<td>2.025-2.049</td>
<td>657</td>
</tr>
<tr>
<td>2.050-2.074</td>
<td>687</td>
</tr>
<tr>
<td>2.075-2.099</td>
<td>717</td>
</tr>
<tr>
<td>2.100-2.124</td>
<td>750</td>
</tr>
<tr>
<td>2.125-2.149</td>
<td>784</td>
</tr>
<tr>
<td>2.150-2.174</td>
<td>819</td>
</tr>
<tr>
<td>2.175-2.199</td>
<td>856</td>
</tr>
<tr>
<td>2.200-2.224</td>
<td>895</td>
</tr>
<tr>
<td>2.225-2.249</td>
<td>935</td>
</tr>
<tr>
<td>2.250-2.274</td>
<td>978</td>
</tr>
<tr>
<td>2.275-2.299</td>
<td>1022</td>
</tr>
<tr>
<td>2.300-2.324</td>
<td>1068</td>
</tr>
<tr>
<td>2.325-2.349</td>
<td>1117</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome:

1. Total amount of breast tissue to be removed, include if L/R or bilateral
2. Height and weight
3. Any two of the following detailed in chart notes, history and physical, physical therapy notes, radiologic exams, dermatology treatments notes, and/or any other clinical notes:
 A. Medical records by the referring physician, which include pain in the upper back, neck, shoulders and/or arms with documentation of long standing pain, and detailed notes regarding treatment with at least three months of conservative therapy, and that the pain is not associated with another diagnosis such as arthritis;
 B. Documentation or photograph of shoulder grooving with description of conservative treatment;
 C. Intertrigo despite three months detailed documentation of conservative therapy;
 D. X-ray showing kyphosis;
 E. Ulnar paresthesia despite three months documentation of conservative therapy and outcome with chart notes detailing specific treatment.

CROSS REFERENCES

1. Gender Affirming Interventions for Gender Dysphoria, Medicine, Policy No. 153
2. Cosmetic and Reconstructive Surgery, Surgery, Policy No. 12
3. Reconstructive Breast Surgery/Mastopexy, and Management of Breast Implants, Surgery, Policy No. 40
4. Autologous Fat Grafting to the Breast and Adipose-derived Stem Cells, Surgery, Policy No. 182

BACKGROUND

Female breast hypertrophy, or macromastia, is the development of abnormally large breasts in the female. This condition can cause significant clinical manifestations when the excessive

SUR60 | 5
breast weight adversely affects the supporting structures of the shoulders, neck and trunk. Macromastia is distinguished from large, normal breasts by the presence of persistent symptoms such as shoulder, neck, or back pain, shoulder grooving, or intertrigo. This condition can be improved and the associated signs and symptoms can be alleviated by reduction mammaplasty surgery.

EVIDENCE SUMMARY

The following literature appraisal is focused on the investigational technique of reduction mammaplasty by liposuction alone. In order to understand the impact on health outcomes of reduction mammaplasty by liposuction alone, prospective clinical trials are needed, comparing liposuction with standard reduction mammaplasty. These comparisons are necessary in order to understand the safety and efficacy of liposuction and to determine whether liposuction offers advantages over conventional surgical procedures with respect to patient satisfaction, complications, durability, and cosmesis.

While there are some published articles concerning the use of liposuction as the sole procedure for breast reduction, none compare the outcomes of liposuction alone to standard excisional reduction mammaplasty.[2-9] Examples of these articles are detailed below:

Moskovitz (2007) conducted a study of liposuction alone for treatment of macromastia in twenty-four African-American women due to their high risk for complex scar formation following standard excision mammaplasty.[8] The mean aspirate was 1075 cc of fat per breast; however, the before and after liposuction pictures indicate that the participants continued to support large breasts. Outcome measures included the SF-36, EuroQol, Multidimensional Body-Self Relations Questionnaire, McGill Pain Questionnaire and Breast-Related Symptoms Questionnaire. Statistical analysis demonstrated a significant improvement in breast-related symptoms and pain. This was a relatively small, non-randomized trial and patients were not blinded to the intervention. Conclusions concerning the effect of liposuction alone on breast-related symptoms in patients with macromastia cannot be made.

Jakubietz (2011) reported the indications and limitations of this procedure compared to conventional surgical excision.[9] Advantages included selective removal of fat, ease of procedure, and the advantages of less invasive procedures such as faster recovery time and reduced scarring. One disadvantage of liposuction alone included the inability to correct shape and ptosis, making aesthetic results optimal only for young patients. In addition, there are concerns about the extent to which subsequent breast imaging may be impaired, and the possible spread of cancer cells. The authors recommended caution when considering use of this technique.

In summary, high quality evidence on the use of liposuction for reduction mammaplasty has not been identified; comparative trials of sufficient size and duration are needed before any conclusions can be made about the use of this technique for breast reduction.

PRACTICE GUIDELINE SUMMARY

AMERICAN SOCIETY OF PLASTIC SURGEONS

In 2011, the American Society of Plastic Surgeons (ASPS) released an evidence-based clinical practice guideline on the use of reduction mammaplasty.[10] Several clinical questions were addressed, including whether women who did not meet standard health insurance criteria for
volume of breast resection experience postoperative relief. On the basis of a single study which compared satisfaction outcomes of women who met standard insurance criteria with women who did not meet such criteria, the society concluded that, “resection volume is not correlated to the degree of postoperative symptom relief.” The society recommended extending the option of reduction mammaplasty to this category of patient. However, among women not meeting standard criteria for resection volume, no comparisons were made between surgical and standard conservative treatment, limiting interpretation of the above findings. Additionally, these recommendations did not specifically address the safety and effectiveness of reduction mammaplasty by liposuction.

SUMMARY

Female breast hypertrophy, or macromastia, is the development of abnormally large breasts in the female, which can cause medical problems. There is enough research to show that reduction mammaplasty can improve health outcomes for certain patients with this condition. Therefore, reduction mammaplasty may be considered medically necessary when policy criteria are met. Reduction mammaplasty as treatment for macromastia is considered not medically necessary when policy criteria are not met.

There is not enough research to show that liposuction mammaplasty can improve health outcomes more than traditional mammaplasty techniques. Therefore, reduction mammaplasty by liposuction alone is considered investigational.

Gynecomastia refers to the benign enlargement of the male breast, mainly due to excessive growth of glandular tissue. Reduction mammaplasty (partial removal) for the treatment of gynecomastia is considered not medically necessary as the current standard of care is for the removal of most or all glandular tissue.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>15877</td>
<td>Suction assisted lipectomy; trunk</td>
</tr>
<tr>
<td></td>
<td>19318</td>
<td>Breast reduction</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: January 1996
Vagus Nerve Stimulation

Effective: July 1, 2022

Next Review: April 2023
Last Review: May 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Vagus nerve stimulation (VNS) involves implantation of an infraclavicular pulse generator that sends weak electric impulses to the left vagus nerve within the carotid sheath in the neck. Transcutaneous (nonimplantable) vagus nerve stimulation has also been proposed as a treatment of a number of conditions.

MEDICAL POLICY CRITERIA

Note: This policy does not apply to vagus nerve blocking therapy. See Cross References.

I. Implantable vagus nerve stimulation (VNS) may be considered medically necessary as a treatment of medically refractory seizures. Patients must have tried and been unresponsive to or intolerant of at least two antiepileptic drugs.

II. Revision(s) to an existing stimulator may be considered medically necessary after the device has been placed.

III. The replacement of all or part of an existing stimulator and/or generator is considered medically necessary when the existing stimulator and/or generator is malfunctioning, cannot be repaired, and is no longer under warranty.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
IV. Replacement of all or part of an existing stimulator and/or generator is considered **not medically necessary** when Criterion III. is not met.

V. Implantable VNS is considered **investigational** when Criterion I. is not met and for all other indications, including but not limited to essential tremors.

VI. Transcutaneous and non-implantable vagus nerve stimulation devices are considered **investigational** for all indications.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

The information below **must** be submitted for review to determine whether policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Current Symptomology
- Antiepileptic medications given and response

CROSS REFERENCES

1. [Gastric Electrical Stimulation](#); Surgery, Policy No. 111
2. [Vagus Nerve Blocking Therapy for Obesity](#); Surgery, Policy No. 200
3. [Responsive Neurostimulation](#), Surgery, Policy No. 216

BACKGROUND

An implanted VNS device delivers mild electronic impulses via two electrodes connected to the generator and wrapped around the vagus nerve. The stimulator may be programmed in advance or may be activated on demand by placing a magnet against the generator implantation site.

While the mechanisms for the therapeutic effects of VNS are not fully understood, the basic premise of VNS in the treatment of various conditions is that vagal visceral afferents have a diffuse central nervous system projection, and activation of these pathways has a widespread effect on neuronal excitability. An electrical stimulus is applied to axons of the vagus nerve, which have their cell bodies in the nodose and junctional ganglia and synapse on the nucleus of the solitary tract in the brainstem. From the solitary tract nucleus, vagal afferent pathways project to multiple areas of the brain. VNS may also stimulate vagal efferent pathways that innervate the heart, vocal cords, and other laryngeal and pharyngeal muscles, and provide parasympathetic innervation to the gastrointestinal tract.

Other types of implantable vagus nerve stimulators that are placed in contact with the trunks of the vagus nerve at the gastroesophageal junction are not addressed in this evidence review.

REGULATORY STATUS

Implantable VNS Devices

Several VNS therapy systems by Cyberonics Inc. have pre-market approval (PMA) from the U.S. Food and Drug Administration (FDA) for treatment of refractory partial-onset seizures and...
chronic or recurrent depression, when certain criteria are met. For example, in 1997, the NeuroCybernetic Prosthesis (NCP®) system was approved for use in conjunction with drugs or surgery “as an adjunctive treatment of adults and adolescents over 12 years of age with medically refractory partial onset seizures.” The VNS Therapy™ System was approved in 2005 “for the adjunctive long-term treatment of chronic or recurrent depression for patients 18 years of age or older who are experiencing a major depressive episode and have not had an adequate response to four or more adequate antidepressant treatments.” FDA product code: LYJ

Non-implantable VNS Devices

Cerbomed has developed a transcutaneous VNS (t-VNS®) system, NEMOS®, that uses a combined stimulation unit and ear electrode to stimulate the auricular branch of the vagus nerve, which supplies the skin over the concha of the ear. Patients self-administer electric stimulation for several hours a day; no surgical procedure is required. The device has not been FDA approved for use in the US.

electroCore, LLC has developed a non-invasive VNS (gammaCore®) released for use by the FDA in April of 2017. The device is indicated for acute treatment of pain associated with episodic cluster and migraine headache in adults using noninvasive VNS on the side of the neck. Product code: PKR

EVIDENCE SUMMARY

VAGUS NERVE STIMULATORS

In order to assess the safety and effectiveness of vagus nerve stimulation (VNS), particularly for indications in which the primary outcomes are subjective (e.g., pain reduction, improved mood, improved functioning), well-designed, randomized controlled trials (RCTs) are necessary. Such trials include double-blinding, appropriate randomization, an appropriate control group (i.e., sham VNS or standard medical treatment), large study populations, adequate follow-up time, and adverse events reporting.

MEDICALLY REFRACTORY SEIZURES

The criteria for VNS for seizures are based on a 1998 BlueCross BlueShield Association (BCBSA) Technology Evaluation Center (TEC) assessment[1], a 2015 Cochrane review[2] which included the five published double-blind randomized controlled trials (RCTs)[3-5], and numerous case series, retrospective reviews, and other non-randomized studies on adult[6-11], pediatric,[12-19] or mixed[20-25] patient populations. More recently, a 2020 Washington Health Care Authority Health Technology Assessment prepared by the Oregon Health and Science University Center for Evidence-based Policy was published on vagal nerve stimulation for the treatment of epilepsy and depression. All three reviews concluded that VNS reduced seizure frequency in patients with drug resistant partial-onset seizures.

The RCTs were large, well-designed multicenter trials that reported an approximate 25% reduction in partial-onset seizure frequency following three months of VNS. Adverse effects were mild and consisted primarily of hoarseness or voice change during “on” periods of stimulation. The remaining literature is limited to numerous non-randomized trials. Although evidence from non-randomized studies are generally considered unreliable for assessing the safety and effectiveness of VNS, the findings from these numerous studies have consistently

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
shown significantly reduced seizure activity in patients with drug-resistant epilepsy. In addition, clinical practice guidelines from the American Academy of Neurology stated that “…sufficient evidence exists to rank VNS for epilepsy as effective and safe…”[26] Thus, despite the lack of RCTs in the published clinical evidence, VNS has become a recognized standard of care for treatment in selected patients with medically refractory seizures.

REFRACTORY DEPRESSION

Technology Assessments

The 2020 Washington Health Care Authority Health Technology Assessment discussed above in relation to epilepsy also evaluated the effectiveness of VNS in the treatment of refractory depression.[27] Five studies met inclusion criteria, two of which are RCTs. The RCTs were rated to be at moderate risk of bias, one of the nonrandomized studies was at moderate risk of bias, and the two remaining nonrandomized studies had a high risk of bias. Comparators were low-stimulation VNS, sham VNS, and treatment as usual. Two of the RCTs and one of the nonrandomized studies reported on depression severity. No statistically significant differences were reported in the RCTs. In the nonrandomized study, the reported difference in reduction in depressive symptoms was significantly significant, with a greater reduction in the in the VNS plus treatment as usual group. One RCT each reported that high-stimulation VNS had higher rates of response than low-stimulation VNS and VNS and sham VNS had similar rates of response, and a nonrandomized study reported that VNS with TAU may be associated with higher rates of response than TAU alone. Across studies, no differences were reported in rates of suicide, except for one nonrandomized study that reported that VNS may be associated with higher rates of attempted suicide or self-inflicted injury (very-low-quality of evidence). Harms that were noted to be higher in VNS than sham VNS were voice alteration or hoarseness and cough.

A 2006 BCBSA TEC Assessment[28], evaluated the effectiveness of VNS in the treatment of refractory depression compared with continued medical management. The evidence consisted of one case series, one observational study, and one randomized controlled trial. The assessment found that “overall, the evidence supporting efficacy of VNS is not strong.” The randomized controlled trial (RCT) of 221 patients that compared VNS with a sham control (implanted but inactivated VNS) did not show a statistically significant difference between VNS and continued medical therapy in relieving depression symptoms.[29-31] The trial was short and possibly underpowered to detect a smaller amount of VNS benefit. In addition, the adequacy of blinding was questionable. The observational study included a subset of 205 VNS treated patients from the RCT described above who were followed long-term. A separately recruited control group of 124 patients received ongoing treatment for depression.[29, 32] Although the study findings favored the VNS therapy group, this evidence is considered unreliable due to significant methodological limitations including but not limited to the following: 1) Non-randomized allocation of treatment does not control for possible between-group differences in individual patient characteristics; thus, it cannot be ruled out that these differences, rather than the treatments received, were responsible for the observed outcomes; 2) The lack of a sham study group does not control for the expected placebo effects; 3) The inadequate, non-concurrent comparison group does not permit conclusions on the efficacy of VNS compared with placebo or other treatment options, 4) The differences in sites of care between VNS treated patients and controls may introduce response bias. (Analysis performed on subsets of patients cared for in the same sites, and censoring observations after treatment changes,
generally showed diminished differences in apparent treatment effectiveness.); and 5) Differences in concomitant therapy changes cannot be ruled out as an explanation of the observed outcomes.

The case series (Study D-01) was a feasibility study of 60 patients receiving VNS; improvement was reported in depression scores.[33] It is uncertain whether loss to follow-up was addressed adequately in the analysis. In addition, the case series is limited by the lack of an appropriate comparison group.

Systematic Reviews

Bottomley (2020) reported results of a systematic review and meta-analysis of two RCTs (Rush [2005] and Aaronson [2013]), 16 single-arm studies, and four nonrandomized comparative studies of VNS for treatment-resistant depression.[34] The meta-analysis calculated overall pooled effect estimates for VNS and treatment-as-usual groups, respectively, but did not perform quantitative analysis of comparative treatment effects. There was statistically significant heterogeneity. Thus, this meta-analysis provides insufficient evidence to permit comparisons between VNS and the control groups.

In a meta-analysis that included 14 studies, Martin (2012) reported that among the uncontrolled studies in their analysis, 31.8% of subjects responded to VNS treatment.[35] However, results from a meta-regression to predict each study’s effect size suggested that 84% of the observed variation across studies was explained by baseline depression severity (p<0.0001). The authors concluded that current data was insufficient to determine whether VNS is an effective treatment for depression and noted that positive results from uncontrolled studies may be due to placebo effect.

A 2008 systematic review and meta-analysis for VNS of treatment-resistant depression identified no new RCTs since the pivotal RCT described above, which the authors determined to be inconclusive.[36] As noted above, RCTs are considered the appropriate design for studying VNS for any indication. However, this review also included 17 nonrandomized, open studies which found VNS to be associated with a reduction in depressive symptoms. The authors concluded that, while open studies have reported promising results, further clinical trials are needed to study the mechanism of action and cost-effectiveness, and to confirm the efficacy of VNS in treatment-resistant depression.

Randomized Controlled Trials

No randomized controlled trials published after the search dates of the Washington Health Care Authority Health Technology Assessment were identified.

Nonrandomized Studies

Numerous non-randomized studies evaluated the effectiveness of VNS for the treatment of refractory depression.[33, 36-42] It is not possible to reach reliable conclusions from these studies as they fail to control for the biases discussed above.

TREATMENT OF CHRONIC HEART FAILURE

Systematic Reviews
Sant'Anna (2021) conducted a systematic review and meta-analysis on clinical trials comparing VNS with medical therapy for the management of chronic heart failure with reduced ejection fraction.[43] Four RCTs and three prospective studies met inclusion criteria (n=1,263). Median follow-up was six months (range: 6 to 16 months). Only data from the RCTs were included in the meta-analysis. The certainty of the evidence based on GRADE characteristics was reported as high for all outcomes. The meta-analysis found significant improvements in New York Heart Association functional class, quality of life, six-minute walk test, and N-terminal-pro brain natriuretic peptide levels in patients treated with VNS compared to sham (Table 1). These studies are limited by a lack of long-term follow-up.

Table 1. Summary of systematic reviews.

<table>
<thead>
<tr>
<th>Study</th>
<th>Improvement in NYHA functional class</th>
<th>Quality of Life</th>
<th>6-minute walk-test</th>
<th>NT-proBNP levels</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sant'Anna (2021)[43]</td>
<td>Total N 969 (4 RCTs)</td>
<td>Quality of Life 450 (3 RCTs)</td>
<td>6-minute walk-test 728 (3 RCTs)</td>
<td>NT-proBNP levels 445 (3 RCTs)</td>
<td>Mortality 1206 (4 RCTs)</td>
</tr>
<tr>
<td>Pooled effect (95% CI)</td>
<td>OR, 2.72; (2.07 to 3.57); p<0.0001</td>
<td>MD, -14.18 (-18.09 to -10.28)</td>
<td>MD, 55.46 meters (39.11 to 71.81)</td>
<td>MD, -144.25 (-238.31 to -50.18)</td>
<td>OR, 1.24 (0.82 to 1.89)</td>
</tr>
<tr>
<td>I(^2) (p)</td>
<td>37% (p<0.0001)</td>
<td>49% (p<0.0001)</td>
<td>0% (p<0.0001)</td>
<td>65% (p=0.003)</td>
<td>0% (p=0.43)</td>
</tr>
</tbody>
</table>

Randomized Controlled Trials

No RCTs have been published since the search dates of the above SR.

Nonrandomized Studies

In the ANTHEM-HF study (2014), 60 patients with heart failure with reduced ejection fraction were implanted with VNS, randomly assigned to right- or left-sided implantation (n=29 and 31, respectively), and followed for six months.[44] Overall, from baseline to six month follow-up, LV ejection fraction improved by 4.5% (95% confidence interval (CI) 2.4 to 6.6), left ventricular end systolic volume (LVESV) improved by -4.1 mL (95% CI -9.0 to 0.8), LVESD improved by -1.7 mm (95% CI -2.8 to -0.7), heart rate variability improved by 17 ms (95% CI 6.5 to 28), and six-minute walk distance improved by 56 m (95% CI 37 to 75). Given there was no sham comparator group, it is unclear if the observed improvements may be attributed to VNS or some other confounding factor. A follow-up analysis to ANTHEM-HF by Nearing (2021) evaluated outcomes of VNS at 12, 24, and 36 months.[45] They found that LV ejection fraction improved by 18.7% (\textit{p}=0.008), 19.3% (\textit{p}=0.04), and 34.4% (\textit{p}=0.009) at 12, 24, and 36 months, respectively, with high-intensity VNS. Individuals with low-intensity VNS only had significant improvement in LV ejection fraction at 24 months (12.3%; \textit{p}=0.04). Although this data is promising, a lack of a no-VNS comparator group precludes drawing conclusions based on findings from the uncontrolled studies.

Several small case series describe VNS treatment outcomes in patients with heart failure; however, for the reasons noted above, evidence from non-randomized studies is considered unreliable in the study of VNS as a treatment for any indication.[46, 47]
TREATMENT OF UPPER-LIMB IMPAIRMENT DUE TO STROKE

Systematic Reviews

Zhao (2022) published a systematic review and meta-analysis of RCTs evaluating vagus nerve stimulation in conjunction with rehabilitation therapies for restoring upper extremity function following stroke.[48] A total of five RCTs (n=178) met inclusion criteria. A significant effect of VNS compared to the control was identified for the primary outcome of Fugl-Meyer Assessment for Upper Extremity (FMA-UE, MD=3.59; 95% CI 2.55 to 4.63; p<0.01). No significant difference between groups in adverse events associated with the device was identified (RR=1.10; 95% CI 0.92 to 1.32; p=0.29).

Randomized Controlled Trials

Dawson (2021) conducted a randomized controlled trial of VNS in patients with upper limb dysfunction after ischemic stroke.[49] Patients with upper-limb dysfunction after ischemic stroke (n=106) were randomly assigned 1:1 to either VNS plus rehabilitation or rehabilitation with sham stimulation. The Fugl-Meyer Assessment-Upper Extremity score increased by 5 points in the VNS group and 2.4 points in the control group (between-group difference, 2.6; 95% CI 1.0 to 4.2; p=0.0014). Ninety days after in-clinic therapy, a clinically meaningful response was achieved in 23 (47%) of 53 patients in the VNS group versus 13 (24%) of 55 patients in the control group (between-group difference, 24%; 95% CI, 6 to 41; p=0.0098). There was one adverse event of vocal cord paresis related to surgery in the control group.

A similar RCT with a smaller patient population was conducted by the same study group in 2016.[50] Twenty-one subjects were randomized to VNS plus rehabilitation or rehabilitation alone. The mean change in the outcome as assessed by a functional assessment score was +8.7 in the VNS group and +3.0 in the control group (p=0.064). Six patients in the VNS group achieved a clinically meaningful response and four in the control group (p=0.17).

Kimberley (2018) reported results of a randomized, pilot sham-controlled RCT in 17 patients (VNS n=8 and sham VNS, n=9) with arm weakness after ischemic stroke.[51] The mean Fugl-Meyer assessment–upper extremity scores increased by 7.6 with VNS versus 5.3 points with sham at day one (Difference=2.3 points; 95% CI, −1.8 to 6.4; p=0.20) and 9.5 points with VNS versus 3.8 with sham at day 90 (Difference=5.7 points; 95% CI, −1.4 to 11.5; p=0.055). A Fugl-Meyer assessment–upper extremity score change of six points or greater was defined as response; the response rate at day 90 was 88% with VNS versus 33% with sham (p<0.05). There were three serious adverse events related to surgery: wound infection, shortness of breath and dysphagia, and hoarseness because of vocal cord palsy.

Longer-term follow-up studies are needed to evaluate long-term efficacy and safety.

TREATMENT OF TINNITUS

Systematic Review

Stegeman (2021) performed a systematic review of the treatment of tinnitus with vagus nerve stimulation.[52] A total of nine studies were identified, of which five examined transcutaneous VNS and four examined implanted VNS treatment. Two were RCTs, five were cohort studies, and two were case series. Six of the studies used a combined VNS/sound therapy treatment. All included studies had serious risk of bias. Due to heterogeneity in methodology, inclusion
criteria, and assessed outcomes, no meta-analysis was completed. Most studies reported a small decrease in tinnitus distress or tinnitus symptom severity.

OTHER INDICATIONS

Nonrandomized Studies

Small case series (n≤40 patients) and one non-randomized comparison study described experiences with VNS in patients with bulimia, anxiety, Alzheimer’s disease[53, 54], essential tremor[55], and eating disorders including obesity and food cravings[56]. The utility of VNS added to behavioral management of autism and autism spectrum disorders has been posited but there are no RCTs. For the reasons noted above, evidence from non-randomized studies is considered unreliable in the study of VNS as a treatment for any indication.

NONINVASIVE (TRANSCUTANEOUS) VAGUS NERVE STIMULATORS

Only RCTs and systematic reviews of RCTs will be discussed, as case series are inadequate to determine the effect of the technology.

REFRACTORY EPILEPSY

Wu (2020) reported results of a systematic review and meta-analysis of three RCTs (n=280, range n=60 to 144) of transcutaneous VNS for the treatment of drug-resistant epilepsy.[57] All treatment groups underwent a cymba concha stimulus at a frequency of 20 to 30-Hz. The control groups received various kinds of sham stimulation at a frequency of 1 HZ, the same frequency stimulation as treatment but at the non-auricular vagus nerve area or no stimulation. Meta-analysis of all three included RCTs found that seizure frequency was significantly reduced with transcutaneous VNS (Mean Difference [MD]= -3.29; 95% CI -6.31 to -0.27). However, meta-analysis of the two RCTs that reported responder rates (undefined) did not find a significant difference between the transcutaneous VNS and control groups (n=238; Odds Ratio [OR]=1.47; 95% CI 0.54 to 4.02). All three RCTs assessed quality of life using the Quality of Life in Epilepsy Inventory (QOLIE)-31 scale, but found no significant differences between treatment and control groups. Important limitations of the RCTs include imprecision, risk of confounding due to potentially imbalanced use of important nonprotocol interventions (i.e., concomitant antiepileptic drugs), and unacceptable flaws in outcome assessment (i.e., unspecified definition of response, between-group differences in measurement timing, lack of electroencephalography data).

PSYCHIATRIC DISORDERS

Li (2022) published results of an RCT comparing transcutaneous auricular VNS with citalopram for the treatment of major depressive disorder.[58] A total of 107 patients from the outpatient departments of three hospitals in China were randomly assigned to receive t-VNS or citalopram. Treatment was eight weeks of t-VNS, twice per day, plus a four-week follow-up or 12 weeks of citalopram. For the primary outcome of the 17-item Hamilton Depression Rating Scale (HAM-D17) measured every two weeks by trained interviewers blinded to the treatment assignment, although both groups improved significantly, there was no significant group-by-time interaction (95% CI -0.07 to 0.15, p=0.79). There was a significant difference between groups for remission rate at four and six weeks (p=0.007 and p=0.01, respectively), but not at any other time point.
Hein (2013) reported results of two pilot RCTs of a t-VNS device for the treatment of depression, one which included 22 subjects and the other with 15 subjects. In the first study, 11 subjects each were randomized to active or sham t-VNS. At two weeks follow-up, Beck Depression Inventory (BDI) self-rating scores in the active-stimulation group decreased from 27.0 to 14.0 points (p<0.001), while the sham-stimulated patients did not show significant reductions in the BDI (31.0 to 25.8 points). In the second study, seven patients were randomized to active t-VNS and eight patients were randomized to sham t-VNS. In this study, BDI self-rating scores in the active stimulation group decreased from 29.4 to 17.4 points (p<0.05) after two weeks, while the sham-stimulated patients did not show significant change in BDI (28.6 to 25.4 points). The authors do not report direct comparisons in BDI change between the sham- and active-stimulation groups.

Hasan (2015) reported a randomized trial of t-VNS for the treatment of schizophrenia. Twenty patients were assigned either to active t-VNS or to sham treatment for 12 weeks. There was no statistically significant difference in the improvement of schizophrenia status during the observation period.

Shiozawa (2014) conducted a systematic review of studies evaluating the evidence related to transcutaneous stimulation of the trigeminal or vagus nerve for psychiatric disorders. They found four studies that addressed t-VNS for psychiatric disorders and included a total of 84 subjects. Three of the four studies evaluated physiologic parameters in healthy patients and one evaluated pharmaco-resistant epilepsy (Stefan, previously described). The authors also include a fifth study in a data table, although not in their text or reference list (Hein, previously described). Overall, the studies included were limited by small size and poor generalizability.

IMPAIRED GLUCOSE TOLERANCE

Huang (2014) reported results of a pilot RCT of a t-VNS device that provides stimulation to the auricle for the treatment of impaired glucose tolerance. The study included 70 patients with impaired glucose tolerance who were randomized to active or sham t-VNS, along with 30 controls who received no t-VNS treatment. After 12 weeks of treatment, patients who received active t-VNS were reported to have significantly lower two-hour glucose tolerance test results than those who received sham t-VNS (7.5 mmol/L vs 8 mmol/L; p=0.004).

TREATMENT OF UPPER-LIMB IMPAIRMENT DUE TO STROKE

Wu (2020) reported results of a pilot randomized sham-controlled trial of 21 patients (nVNS=10 and sham nVNS, n=11) treated with nVNS for upper limb motor function impairment following subacute ischemic stroke. The mean Fugl-Meyer assessment–upper extremity scores increased by 6.90 with nVNS versus 3.18 points with sham after 15 days of intervention (Difference= -3.72 points; 95% CI -5.12 to -2.32; p≤0.001). The improvement in the mean Fugl-Meyer assessment–upper extremity scores remained significantly higher at both the four-week (+7.70 vs. +3.36; p≤0.001) and the 12-week (+7.40 vs. +4.18; p= 0.038) follow-ups. There was only one adverse event noted, which was that one patient in the nVNS group developed skin redness at an electrode point of contact.

PAIN

Natelson (2021) reported results of a small RCT with limited follow-up of nVNS for the treatment of pain and migraine in Gulf War Veterans with Gulf War Illness. During the first 10 weeks, the 27 participants were randomized to receive active or sham nVNS, followed by
10 weeks of open-label trial. No significant differences between active and sham nVNS were identified.

Kutlu (2020) reported results of an RCT that compared a home-based exercise treatment program with or without auricular VNS in 60 female patients in Turkey with fibromyalgia syndrome (auricular VNS n=30 and no auricular VNS n=30). The VNS was delivered at Beykoz Public Hospital’s Department of Physical Therapy and Rehabilitation in 30-minute sessions on weekdays for four weeks. The home-based exercise program consisted of strengthening, stretching, isometric, and posture exercises that targeted the body and upper and lower extremities. When added to exercise, auricular VNS did not significantly improve mean scores on the Fibromyalgia Impact Questionnaire (37.27 vs. 41.93; p=0.378) or on any 36-Item Short Form Health Survey subscales (e.g., Physical Function: 80.00 vs. 85.00; p=.167). An important limitation of this RCT is the lack of a sham control group.

CLUSTER HEADACHE

Prevention of Cluster Headaches

Gaul (2016, 2017) reported the results of the PREVA study - a randomized open-label study of nVNS as a prophylactic therapy for chronic cluster headache (CH) in patients diagnosed at least one year prior to enrollment. The study was funded by the device manufacturer. In a two-week baseline period, all 97 participants received only their individualized standard of care (SoC). Patients were then randomized to a four-week period of SoC with nVNS (n=48) or SoC alone, i.e., control (n=49). Four participants from the SoC with nVNS chose to withdraw; one control participant was removed from the study for failing to meet enrollment criteria. In an optional four-week period following, all participants received SoC with nVNS (n=92); 70 completed the optional period (11 controls discontinued from each group).

Efficacy was evaluated by the mean number of CH attacks per week, defined as the number of attacks during the last two weeks of the randomized phase minus the number of attacks during baseline divided by two. Safety and tolerability were assessed in those who were assigned treatment; and the intent-to-treat (ITT) population was those who had more than one efficacy recording in their home diary after randomization.

In the ITT population (n=45 SoC plus nVNS, n=48 in control) authors reported a mean therapeutic gain of 3.9 fewer CH attacks per week (95% CI 0.5 to 7.2; p=0.02). However, the proportion of participants receiving SoC plus nVNS in the ITT population from the randomized phase with more than 50% response to treatment was 40.0, and in controls who went on to receive treatment in the extension phase, the proportion was 16.7.

During the randomization phase, 38% participants in the SoC plus nVNS group experienced adverse events (AEs), and 27% of controls experienced AEs. In the extension phase, 25% and 24% experienced AEs, respectively. Overall, the most common AEs for any treatment were CH attacks, headache, nasopharyngitis, dizziness, oropharyngeal pain, and neck pain. No serious AEs were considered related to the nVNS device.

The study is limited by a sham placebo control group, which may result in placebo response in the nVNS group. Additionally, the double-blind, study treatment period was less than one month, which limits inference about continued response.

Section Summary
Transcutaneous (or noninvasive) VNS has been investigated for preventing cluster headaches in one RCT. The PREVA study of prevention of cluster headache in patients with chronic cluster headache demonstrated a statistically significant increase in the proportion of patients with a 50% or greater reduction in the mean number of headache attacks and statistically significant reduction in the frequency of attacks for nVNS compared to standard of care with a treatment period of four weeks. There was also an improvement in quality of life as measured by the EQ-5D. However, the study was not blinded.

Treatment of Cluster Headaches

In 2016, Silberstein reported results from the manufacturer funded ACT1 study – a randomized, double-blind, sham-controlled study of nVNS as a treatment for cluster headache (CH). One hundred fifty subjects were randomized to receive sham control or nVNS treatment for less than or equal to one month; completers could enter a three-month nVNS open-label phase. Limitations of this study include that the enrolled population was not reflective of relevant diversity (3.3% Asian, 8% Black, 87.3% white, 1.4% race/ethnicity not reported), a lack of quality of life or functional outcomes, and short follow-up time. In addition, a considerable proportion of patients correctly guessed their treatment allocation after their first treatment, though blinding was found to have improved by the end of the one-month period. The primary end point was response rate, defined as the proportion of subjects who achieved pain relief (pain intensity of 0 or 1) at 15 minutes after treatment initiation for the first CH attack without rescue medication use through 60 minutes. Secondary end points included the sustained response rate (15 to 60 minutes). Subanalyses of episodic cluster headache (eCH) and chronic cluster headache (cCH) cohorts were prespecified.

During the randomized phase of one month, 14 participants discontinued participation from the treatment group, and 8 in the control group discontinued. In the three-month open label period, 17 and 11 discontinued from the treatment and control groups, respectively. Application site reactions and nervous system AEs occurred more frequently with sham treatment than with nVNS in the double-blind phase. Adverse device effects (ADEs) were reported by 35/150 (nVNS, 11; sham, 24) subjects in the double-blind phase and 18/128 subjects in the open-label phase.

Intent-to-treat analysis included 133 subjects: 60 nVNS-treated (eCH, n=38; cCH, n=22) and 73 sham-treated (eCH, n=47; cCH, n=26). Authors reported a response in 26.7% of nVNS-treated subjects and 15.1% of sham-treated subjects. Response rates were significantly higher with nVNS than with sham for the eCH cohort (nVNS, 34.2%; sham, 10.6%; \(p=0.008 \)) but not the cCH cohort (nVNS, 13.6%; sham, 23.1%; \(p=0.48 \)). Sustained response rates were significantly higher with nVNS for the eCH cohort and total population.

In 2018, Goadsby reported on the results of randomized, double-blind, sham-controlled study (ACT2) for the treatment of acute cluster headache attacks. Ninety-two patients with cluster headaches were randomized to nVNS or sham treatment. Patients were further identified as having episodc cluster headaches or chronic cluster headaches and randomized at approximately 1:1 to the nVNS and sham treatment groups. The primary efficacy end point was the ability to achieve pain-free status within 15 minutes of initiation of treatment without use of rescue treatment. There was no difference between nVNS-treated and sham-treated patients in the overall cluster headache study population. Subgroup analysis of the chronic cluster headache population showed no differences between nVNS-treated and sham-treated patients. For the episodic cluster headaches subgroup, nVNS demonstrated a 48% response
rate compared with 6% response rate for sham-treated \((p<0.01) \). The interaction p-value for the subgroup analysis was statistically significant \((p=0.04) \).

de Coo (2019) combined the data from ACT1 and ACT2 meta-analytically for the two primary outcomes reported in the two studies.\(^{[71]}\) The authors reported an interaction between treatment group and cluster headache subtype in the pooled analysis \((p<0.05 \text{ for both outcomes}) \).

Section Summary

The ACT1 and ACT2 RCTs compared nVNS to sham for treatment of acute cluster headache in patients including both chronic and episodic cluster headache. The RCTs reported slightly different outcome measures so that consistencies in magnitude of treatment effects cannot be assessed. In ACT1, there was no statistically significant difference in the overall population in the proportion of patients with pain score of 0 or 1 at 15 minutes into the first attack \((27\% \text{ vs. } 15\%, \ p=0.10) \) and no difference in the proportion of patients who were pain-free at 15 minutes in 50% or more of the attacks \((12\% \text{ vs. } 7\%, \ p=0.33) \). However, in the episodic cluster headache subgroup \((n=85) \) both outcomes were statistically significant favoring nVNS although the interaction p-value was not reported. In ACT2 the proportion of attacks with a pain intensity score of 0 or 1 at 30 minutes was statistically significant overall \((43\% \text{ vs. } 28\%, \ p=0.05) \). The proportion of attacks that were pain-free at 15 minutes was similar in the two treatment groups overall \((14\% \text{ vs. } 12\%) \) but a significant interaction was reported \((p=0.04) \). There was a statistically significantly higher proportion of attacks in the episodic subgroup that were pain-free at 15 minutes in the nVNS group compared to sham \((48\% \text{ vs. } 6\%, \ p<0.01) \). Quality of life and functional outcomes have not been reported. Treatment periods ranged from only two weeks to one month with extended open-label follow-up of up to three months. Studies designed to test the effect of nVNS in the episodic subgroup with longer treatment and follow-up and including quality of life and functional outcomes are needed.

There are few adverse events of nVNS and they are mild and transient.

MIGRAINE

Prevention of Migraine Headaches

Diener (2019) published results of the PREMIUM trial, a phase 3, multicenter, sham-controlled RCT conducted in several European countries. Patients who experienced 5 to 12 migraine days per month were included.\(^{[72]}\) The study began with a four-week run-in period during which no treatment was administered; 477 participants entered the run-in. The criteria to remain eligible after run-in were not described in the publication. After run-in, 341 participants were randomized \((nVNS, \ n=169 \text{ or sham, } n=172) \) to a 12-week double-blind treatment period followed by a 24-week open-label period of nVNS. Patients administered two 120-second stimulations bilaterally to the neck with gammaCore, three times daily. nVNS was not statistically significantly superior to sham with respect to the outcomes of reduction of at least 50% in migraine days from baseline to the last four weeks \((32\% \text{ vs } 25\%; \ p=0.19) \), reduction in number of migraine days from baseline to the last four weeks \((-2.3 \text{ vs } -1.8; \ p=0.15) \), or acute medication days \((-1.9 \text{ vs } -1.4; \ p=0.11) \) in the intention-to-treat population. Adverse events were reported in 44% of the nVNS group and 53% of the sham group.

The EVENT trial (Silberstein, 2016) was a feasibility study of prevention with a sample size of 59.\(^{[73]}\) It was not powered to detect differences in efficacy outcomes. About twenty percent of
participants discontinued treatment after the first two months. The study was supposed to be blinded, but the sham did not deliver electrical stimulation, which may have compromised the blinding. For the outcome of response, defined as 50% or more reduction in the number of headache days, 10% of the patients in the nVNS group versus 0% in the sham group were responders; statistically testing was not performed.

Section Summary

Two RCTs have evaluated nVNS for prevention of migraine. The EVENT trial was a feasibility study of prevention of migraine that was not powered to detect differences in efficacy outcomes. It does not demonstrate the efficacy of nVNS for prevention of migraine. The PREMIUM trial was a phase 3, multicenter, sham-controlled RCT including 341 randomized participants with a 12-week double-blind treatment period. The results of PREMIUM demonstrated that nVNS was not statistically significantly superior to sham. With respect to the outcomes of reduction of at least 50% in migraine days from baseline to the last four weeks, reduction in number of migraine days from baseline to the last four weeks or acute medication days.

Treatment of Migraine Headaches

The Prospective, Multi-centre, Randomized, Double-blind, Sham-controlled Study of gammaCore® Non-invasive Vagus Nerve Stimulator (nVNS) for the Acute Treatment of Migraine (PRESTO) trial was a multicenter, double-blind, randomized, sham-controlled trial of acute treatment of migraine with nVNS in 248 patients with episodic migraine with/without aura reported by Tassorelli (2018), Grazzi (2018), and Martelletti (2018). The primary efficacy outcome was the proportion of participants who were pain-free without using rescue medication at 120 minutes. There was not a statistically significant difference in the primary outcome (30% vs 20%; p = 0.07) although it favored the nVNS group. The nVNS group had a higher proportion of patients with decrease in pain from moderate or severe to mild or no pain at 120 minutes (41% vs 28%; p = 0.03) and a higher proportion of patients who were pain-free at 120 for 50% or more of their attacks (32% vs 18%; p = 0.02). PRESTO results did not include quality of life or functional outcomes and the double-blind treatment and follow-up period was 4 weeks. In the additional four weeks of acute nVNS in the open-label period, rates of pain-free response after the first treated attack (28%,) and pain relief (43.4%) were similar to the rates in the double-blind period. Given the marginally significant primary outcome, lack of quality of life or functional outcomes and limited follow-up, further RCTs are needed.

Section Summary

One RCT has evaluated nVNS for acute treatment of migraine with nVNS in 248 patients with episodic migraine with/without aura. There was not a statistically significant difference in the primary outcome of the proportion of participants who were pain-free without using rescue medication at 120 minutes (30% vs. 20%; p = 0.07). However, the nVNS group had a higher proportion of patients with decrease in pain from moderate or severe to mild or no pain at 120 minutes (41% vs. 28%; p = 0.03) and a higher proportion of patients who were pain-free at 120 for 50% or more of their attacks (32% vs. 18%; p = 0.02). There are few adverse events of nVNS and they are mild and transient. Quality of life and functional outcomes were not reported and the double-blind treatment period was four weeks with an additional four weeks of open-label treatment. Given the marginally significant primary outcome, lack of quality of life or functional outcomes and limited follow-up, further RCTs are needed.
OTHER INDICATIONS

Small studies of transcutaneous VNS have also been reported for gastrointestinal dysfunction in Parkinson’s disease[77] and systemic lupus erythematosus[78]. Larger studies are needed to know how well transcutaneous VNS works in these populations.

ADVERSE EVENTS

The most commonly reported adverse effects of VNS have been mild and consist primarily of hoarseness of voice during "on" periods of stimulation, transient throat pain, and coughing. More serious adverse events reported include, but are not limited to direct delivery of the current to the nerve due to generator malfunction; modified synchronization between cardiac and respiratory activity affecting the oxygen delivery to tissues; heart block with ventricular standstill; bradyarrhythmias and severe asystolia; and changes in respiration during sleep.[1, 29, 36, 79-82]

PRACTICE GUIDELINE SUMMARY

AMERICAN PSYCHIATRIC ASSOCIATION

The American Psychiatric Association (APA) (2010, reaffirmed 2015) has level III* recommendations regarding the use of vagus nerve stimulation (VNS) for patients with major depressive disorder.[83] Strategies to address nonresponse during an acute phase of depression include VNS as an additional option for individuals who have not responded to at least four adequate trials of antidepressant treatment, including ECT (electroconvulsive therapy). Maintenance treatment with VNS is also appropriate for individuals whose symptoms have responded to this treatment modality.

* [III] May be recommended on the basis of individual circumstances (As opposed to level I or II which are recommended with substantial and moderate clinical confidence, respectively.)

AMERICAN ACADEMY OF NEUROLOGY

The American Academy of Neurology (AAN) 2013 consensus statement (reaffirmed in 2016 and 2019) states VNS may be considered for seizures in children, for LGS (Lennox-Gastaut-syndrome)- associated seizures, and for improving mood in adults with epilepsy; and VNS may be considered to have improved efficacy over time.[84] These statements are based on Level C evidence, which is defined as, “possibly effective, ineffective or harmful (or possibly useful/predictive or not useful/predictive) for the given condition in the specified population.”

DEPARTMENT OF VETERANS AFFAIRS AND THE DEPARTMENT OF DEFENSE

A 2020 clinical practice guideline from the Department of Veterans Affairs and the Department of Defense (VA/DoD) addressed the primary care management of headache. The guideline included a recommendation with a weak strength of evidence which stated, “We suggest non-invasive vagus nerve stimulation for the acute treatment of episodic cluster headache.”

SUMMARY

Vagus nerve stimulation (VNS) has evolved to be a standard of care as a treatment of medically refractory seizures. Therefore, VNS for medically refractory seizures may be
considered medically necessary for patients who have had inadequate response to or are intolerant of at least two antiepileptic drugs.

In certain situations, a stimulator may require revision after it has been placed. In these cases, revision may be medically appropriate to allow for the proper functioning of the device. Therefore, revision(s) to an existing stimulator may be considered medically necessary after the device has been placed.

In certain situations, a stimulator may no longer be able to perform its basic function due to damage or wear. When a stimulator is out of its warranty period and cannot be repaired adequately to meet the patient’s medical needs, replacement of the device may be medically appropriate. Therefore, replacement of all or part of a stimulator may be considered medically necessary when device replacement Criteria are met.

When a stimulator is in its warranty period or can be repaired or adapted adequately to meet the patient’s medical needs, replacement of the device is considered not medically necessary.

There is not enough research to make conclusions about the benefit of VNS as a treatment for conditions other than medically refractory seizures. Therefore, VNS is considered investigational for all indications other than selected patients with refractory seizures.

There is not enough research to know if or how well transcutaneous and non-implantable vagus nerve stimulators (nVNS) work to treat people with any condition, including but not limited to cluster headache. This does not mean that they do not work, but more research is needed to know. No clinical guidelines based on research recommend these stimulators for people with cluster headache or any other condition. Therefore, transcutaneous and non-implantable vagus nerve stimulators are considered investigational as a treatment for all indications.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

CODES
<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>61885</td>
<td>Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to a single electrode array</td>
</tr>
<tr>
<td></td>
<td>61886</td>
<td>Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to two or more electrode arrays</td>
</tr>
<tr>
<td></td>
<td>61888</td>
<td>Revision or removal of cranial neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td></td>
<td>64553</td>
<td>Percutaneous implantation of neurostimulator electrode array; cranial nerve</td>
</tr>
<tr>
<td></td>
<td>64568</td>
<td>Open implantation of cranial nerve (eg, vagus nerve) neurostimulator electrode array and pulse generator</td>
</tr>
<tr>
<td></td>
<td>64569</td>
<td>Revision or replacement of cranial nerve (e.g., vagus nerve) neurostimulator electrode array, including connection to existing pulse generator</td>
</tr>
<tr>
<td></td>
<td>64570</td>
<td>Removal of cranial nerve (e.g., vagus nerve) neurostimulator electrode array and pulse generator</td>
</tr>
<tr>
<td></td>
<td>95970</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with brain, cranial nerve, spinal cord, peripheral nerve, or sacral nerve, neurostimulator pulse generator/transmitter, without programming</td>
</tr>
<tr>
<td></td>
<td>95971</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with simple spinal cord, or peripheral nerve (eg, sacral nerve) neurostimulator pulse generator/transmitter programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>95976</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with simple cranial nerve neurostimulator pulse generator/transmitter programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>95977</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with complex cranial nerve neurostimulator pulse generator/transmitter programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td>HCPCS</td>
<td>K1020</td>
<td>Non-invasive vagus nerve stimulator</td>
</tr>
<tr>
<td>L8679</td>
<td>Implanted neurostimulator, pulse generator, any type</td>
<td></td>
</tr>
<tr>
<td>L8680</td>
<td>Implanted neurostimulator electrode, each</td>
<td></td>
</tr>
<tr>
<td>L8681</td>
<td>Patient programmer (external) for use with implantable programmable neurostimulator pulse generator, replacement only</td>
<td></td>
</tr>
<tr>
<td>L8682</td>
<td>Implanted neurostimulator radiofrequency receiver</td>
<td></td>
</tr>
<tr>
<td>L8683</td>
<td>Radiofrequency transmitter (external) for use with implantable neurostimulator radiofrequency receiver</td>
<td></td>
</tr>
<tr>
<td>L8685</td>
<td>Implanted neurostimulator pulse generator, single array, rechargeable, includes extension</td>
<td></td>
</tr>
<tr>
<td>L8686</td>
<td>Implanted neurostimulator pulse generator, single array, non-rechargeable, includes extension</td>
<td></td>
</tr>
<tr>
<td>L8687</td>
<td>Implanted neurostimulator pulse generator, dual array, rechargeable, includes extension</td>
<td></td>
</tr>
<tr>
<td>L8688</td>
<td>Implanted neurostimulator pulse generator, dual array, non-rechargeable, includes extension</td>
<td></td>
</tr>
<tr>
<td>L8689</td>
<td>External recharging system for battery (internal) for use with implantable neurostimulator, replacement only</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: February 1998
Deep Brain Stimulation

Effective: July 1, 2022

Next Review: March 2023
Last Review: May 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Deep brain stimulation (DBS) involves the stereotactic placement of electrodes into the brain (e.g., hypothalamus, thalamus, globus pallidus or subthalamic nucleus [STN]).

MEDICAL POLICY CRITERIA

Note: The use of spinal cord stimulation as a treatment of chronic pain is addressed in a separate policy (see Cross References section below).

I. When a multidisciplinary evaluation has confirmed both the medical intractability of the patient’s symptoms and the potential value of deep brain stimulation (DBS), unilateral or bilateral DBS may be considered medically necessary when both of the following criteria (A. and B.) are met:

A. One of the following is met:

1. The request is for stimulation of the thalamus in patients with disabling, medically unresponsive tremor due to essential tremor or Parkinson’s disease. Disabling, medically unresponsive tremor defined as tremor causing significant limitation in daily activities AND inadequate symptom
control despite optimal medical management for at least three months before implant.

2. The request is for stimulation of the subthalamic nucleus or globus pallidus in patients with previously levodopa-responsive Parkinson’s disease and symptoms such as rigidity, bradykinesia, dystonia or levodopa-induced dyskinesias.

3. The request is for stimulation of the subthalamic nucleus or globus pallidus in patients seven years of age or above with disabling, medically unresponsive primary dystonias including generalized and/or segmental dystonia, hemidystonia and cervical dystonia (torticollis). Disabling, medically unresponsive dystonia defined as dystonia causing significant limitation in daily activities AND inadequate symptom control despite optimal medical management for at least three months before implant.

B. The patient does not have any of the following contraindications:

1. Patients who are not good surgical risks because of comorbid medical problems or because of the presence of a cardiac pacemaker; and
2. Patients who have medical conditions that require repeated MRI; and
3. Patients who have dementia that may interfere with the ability to cooperate.

II. Unilateral or bilateral deep brain stimulation revision(s) or replacement(s) may be considered medically necessary after the device has been placed

III. Deep brain stimulation is considered not medically necessary for essential tremor, Parkinson’s disease, medically unresponsive primary dystonias including generalized and/or segmental dystonia, hemidystonia and cervical dystonia (torticollis) when Criterion I. is not met.

IV. Deep brain stimulation is considered investigational for all other conditions (see Policy Guidelines).

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

Deep brain stimulation is considered investigational for indications that do not meet the policy criteria above including but not limited to the following:

- Cerebral Palsy
- Chronic pain (e.g., nociceptive pain; neuropathic pain)
- Cognitive decline/dementia due to Parkinson’s Disease
- Epilepsy/intractable seizures
- Huntington’s disease
- Multiple sclerosis
- Neuropsychiatric applications, including but not limited to the following:
 - Anorexia nervosa
 - Anxiety
• Bipolar Disorder
• Depression
• Obsessive-compulsive disorder
• Schizophrenia
• Tourette syndrome
• Other movement disorders
• Post-traumatic tremor
• Tardive dyskinesia and tardive dystonia
• Traumatic brain injury (TBI)

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

• History and physical/chart notes
• Multidisciplinary evaluations
• Indication for DBS
• Brain region to be stimulated

CROSS REFERENCES

1. Spinal Cord and Dorsal Root Ganglion Stimulation, Surgery, Policy No. 45
2. Implantable Peripheral Nerve Stimulation for Chronic Pain of Peripheral Nerve Origin, Surgery, Policy No. 205
3. Responsive Neurostimulation, Surgery, Policy No. 216

BACKGROUND

Deep brain stimulation (DBS) involves the stereotactic placement of an electrode into the brain (i.e., hypothalamus, thalamus, globus pallidus or subthalamic nucleus [STN]). The electrode is initially attached to a temporary transcutaneous cable for short-term stimulation to validate treatment effectiveness. Several days later the patient returns to surgery for permanent subcutaneous implantation of the cable and a radiofrequency-coupled or battery-powered programmable stimulator. The electrode is typically implanted unilaterally on the side corresponding to the more severe symptoms. However, the use of bilateral stimulation using two electrode arrays is also used in patients with bilateral, severe symptoms.

After implantation, noninvasive programming of the neurostimulator can be adjusted to the patient's symptoms. This feature may be important for patients with Parkinson's disease, whose disease may progress over time, requiring different neurostimulation parameters. Setting the optimal neurostimulation parameters may involve the balance between optimal symptom control and appearance of side effects of neurostimulation, such as dysarthria, disequilibrium or involuntary movements.

DBS has been investigated for a variety of indications as discussed below:

• Alternative to permanent neuroablative procedures, such as thalamotomy and pallidotomy

The technique has been most thoroughly investigated as an alternative to thalamotomy
for unilateral control of essential tremor, and tremor associated with Parkinson's disease (PD). More recently, there has been research interest in the use of deep brain stimulation of the globus pallidus or STN as a treatment of other Parkinsonian symptoms such as rigidity, bradykinesia or akinesia. Another common morbidity associated with PD is the occurrence of motor fluctuations, referred to as "on and off" phenomena, related to the maximum effectiveness of drugs (i.e., the "on" state) and the nadir response during drug troughs (i.e., the "off" state). In addition, levodopa, the most commonly used antiparkinson drug, may be associated with disabling drug-induced dyskinesias. Therefore, the optimal pharmacologic treatment of Parkinson's disease may involve a balance between optimal effects on Parkinson's symptoms vs. the appearance of drug induced dyskinesias. The effect of DBS on both Parkinson's symptoms and drug-induced dyskinesias has also been studied.

• Treatment of primary and secondary dystonia

Dystonia is defined as a neurological movement disorder characterized by involuntary muscle contractions, which force certain parts of the body into abnormal, contorted, and painful movements or postures. In primary dystonia, dystonia is the only symptom and is unassociated with other pathology. Secondary dystonia is a dystonia brought on by an inciting event, such as a stroke, trauma, or drugs. Tardive dystonia is a form of drug-induced secondary dystonia. Dystonia can be classified according to age of onset, bodily distribution of symptoms, and cause. Age of onset can occur during childhood or during adulthood. Dystonia can affect certain portions of the body (focal dystonia and multifocal dystonia) or the entire body (generalized dystonia). Torticollis is an example of a focal dystonia. Treatment options for dystonia include oral or injectable medications (i.e., botulinum toxin) and destructive surgical or neurosurgical interventions (i.e., thalamotomies or pallidotomies) when conservative therapies fail.

• Cluster headaches

Cluster headaches occur as episodic attacks of severe pain lasting from 30 minutes to several hours. The pain is usually unilateral and localized to the eye, temple, forehead, and side of the face. Autonomic symptoms that occur with cluster headaches include ipsilateral facial sweating, flushing, tearing, and rhinorrhea. Cluster headaches occur primarily in men and have been classified as vascular headaches that have been associated with high blood pressure, smoking, and alcohol use. However, the exact pathogenesis of cluster headaches is uncertain. PET scanning and MRI have shown the hypothalamic region may be important in the pathogenesis of cluster headaches. Alterations in hormonal-serotonergic function may also play a role. Treatment of cluster headaches includes pharmacologic interventions for acute episodes and prophylaxis, sphenopalatine ganglion (SPG) blockade and surgical procedures such as percutaneous SPG radiofrequency rhizotomy and gamma knife radiosurgery of the trigeminal nerve.

• Other Neurologic/Psychiatric Conditions

The role of DBS in treatment of other treatment-resistant neurologic and psychiatric disorders, particularly Tourette syndrome, epilepsy, obsessive-compulsive disorder (OCD), major depressive disorders, bipolar disorder, anorexia, and alcohol addiction, is also being investigated. Ablative procedures are irreversible and, though they have
been refined, remain controversial treatments for intractable illness. Interest has shifted to neuromodulation through DBS of nodes or targets within neural circuits involved in these disorders. Currently, a variety of target areas are being studied.

REGULATORY STATUS

The U.S. Food and Drug Administration (FDA) has approved the Activa® Tremor Control System (Medtronic Corp.) for deep brain stimulation. The Activa® Tremor Control System and the Activa® Dystonia Therapy System consist of the following components:

1. The implantable pulse generator
2. The deep brain stimulator lead
3. An extension that connects the lead to the power source
4. A console programmer
5. A software cartridge to set electrical parameters for simulation
6. A patient control magnet, which allows the patient to turn the pulse generator on and off or change between high and low settings

In February 2009, the FDA approved deep brain stimulation with the Reclaim device (Medtronic, Inc.) via the Humanitarian Device Exemption (HDE) process for the treatment of severe obsessive-compulsive disorder (OCD).

In June 2015, the FDA approved deep brain stimulation with the Brio Neurostimulation System, (St. Jude Medical) under the Premarket Approval Application (PMA) process (#P140009) for the following conditions:¹

- Bilateral stimulation of the subthalamic nucleus (STN) as an adjunctive therapy to reduce some of the symptoms of advanced levodopa-responsive Parkinson’s disease that are not adequately controlled by medications.
- Unilateral or bilateral stimulation of the ventral intermediate nucleus (VIM) of the thalamus for the suppression of disabling upper extremity tremor in adult essential tremor patients whose tremor is not adequately controlled by medications and where the tremor constitutes a significant functional disability.

In September 2016, the FDA approved the St. Jude Medical Infinity™ Deep Brain Stimulation (DBS) system under the PMA process (#P140009/S001) for the same indications above. The directional leads enable the clinician to “steer” current to different parts of the brain. This tailored treatment reduces side effects. The Infinity system can be linked to Apple’s iPod Touch and iPad Mini.

In December 2017, a second system with directional leads, the Vercise Deep Brain Stimulation System (Boston Scientific), was approved by FDA. This system is to be used as an adjunctive therapy from reducing motor symptoms of moderate-to-advanced levodopa-responsive PD inadequately controlled with medication alone.

In 2018, the FDA approved the Medtronic DBS System for Epilepsy (Medtronic, Inc) through the Premarket Approval (PMA) process. The pivotal study was the SANTÉ (Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy) study. The intended use is bilateral stimulation of the anterior nucleus of the thalamus as an adjunctive therapy for reducing the frequency of seizures in individuals 18 years of age or older diagnosed with epilepsy characterized by

¹ These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

SUR84 | 5
partial-onset seizures, with or without secondary generalization, that are refractory to three or more antiepileptic medications.

EVIDENCE SUMMARY

The principal outcome for deep brain stimulation (DBS) for any indication is symptom reduction and improved function. Assessment of the safety and efficacy of DBS requires well-designed and well-executed randomized controlled trials (RCTs) comparing DBS with sham or on-versus off-phases to determine the following:

- whether the benefits of DBS outweigh any risks
- whether DBS offers advantages over conventional treatments.

The evidence base is sufficient that deep brain stimulation (DBS) improves the net health outcomes of selected patients with symptoms related to Parkinson's disease, essential tremor, or primary dystonias. DBS has become a standard of care for these patients and may be considered medically necessary when criteria are met. Therefore, the evidence for DBS for these indications will not be reviewed in this policy. Below is a brief synopsis of the evidence for Parkinson's disease, essential tremor, or primary dystonias.

SYMTPOMS ASSOCIATED WITH PARKINSON'S DISEASE

Systematic Reviews and Technology Assessments

The policy for PD and tremor was initially based on two BlueCross BlueShield Association Technology Evaluation Center (TEC) Assessments; a 1997 TEC Assessment focused on unilateral deep brain stimulation of the thalamus as a treatment for tremor and a 2001 TEC Assessment focused on the use of deep brain stimulation of the globus pallidus and subthalamic nucleus for a broader range of Parkinson symptoms.

A number of large systematic reviews have been published on the use of DBS for PD and tremor confirming the efficacy of DBS in the control of motor signs and improvement of patients' functionality and quality of life.

Randomized Controlled Trials

There have been additional published RCTs of deep brain stimulation for PD, which continue to report overall positive results. Some of these trials suggest that subthalamic stimulation was superior to medical therapy in patients with Parkinson's disease and early motor complications, while others did not find significant differences in overall health outcomes for patients. Surgery related adverse effects addressed in these RCTs indicate that the most common adverse effect is infection.

Nonrandomized Studies

Two new DBS systems with directional leads are currently available (approved by the Food and Drug Administration [FDA] in 2016 and 2017). Directional leads potentially enable clinicians to target more specific areas of the brain to be treated with the direct current. Published evidence consists of several small observational studies, with sample sizes ranging from 7 to 13. The studies showed that patients experienced improved tremor scores and improved quality of life (QOL). Compared with historical data from conventional DBS systems, directional DBS widened the therapeutic window and achieved beneficial effects using lower...
current level. Comparative, larger studies are needed to support the conclusions from these small studies. Data from a large study of 292 patients are expected in 2018.

PRIMARY DYSTONIA

DBS for the treatment of primary dystonia received FDA approval through the Humanitarian Device Exemption (HDE) process. The HDE approval process is available for those conditions that affect less than 4,000 Americans per year. According to this approval process, the manufacturer is not required to provide definitive evidence of efficacy, but only probable benefit. As noted in the FDA’s analysis of risk and probable benefit, the only other treatment options for chronic refractory primary dystonias are neurodestructive procedures. DBS provides a reversible alternative. The FDA summary of Safety and Probable Benefit states, “Although there are a number of serious adverse events experienced by patients treated with deep brain stimulation, in the absence of therapy, chronic intractable dystonia can be very disabling and in some cases, progress to a life-threatening stage or constitute a major fixed handicap. When the age of onset of dystonia occurs prior to the individual reaching their full adult size, the disease not only can affect normal psychological development but also cause irreparable damage to the skeletal system. As the body of the individual is contorted by the disease, the skeleton may be placed under constant severe stresses that may cause permanent disfigurement. Risks associated with DBS for dystonia appear to be similar to the risk associated with the performance of stereotactic surgery and the implantation of DBS systems for currently approved indications Parkinson’s Disease and Essential Tremor), except when used in either child or adolescent patient groups.”

The FDA HDE approval was based on the results of DBS in 201 patients represented in 34 manuscripts. There were three studies that reported at least ten cases. Clinical improvement ranged from 50 to 88%. A total of twenty-one pediatric patients were studied; 81% were older than seven years. Among these patients there was approximately a 60% improvement in clinical scores.

Since the FDA approval, there have been additional published randomized controlled trials of deep brain stimulation for dystonia, which continue to report positive results. These trials included one with a long-term follow-up of five years. Two of the trials reported on the serious adverse effects of DBS, the majority of which were related to the implantation procedure. Dysarthria, involuntary movements and depression were common non-serious adverse events reported.

In 2017, Moro published a systematic review of literature published through November 2015 on primary dystonia (also known as isolated dystonia). Reviewers included studies with at least 10 cases. Fifty-eight articles corresponding to 54 unique studies were identified; most involved bilateral DBS of the GPi. There were only two controlled studies, one RCT (described below) and one study that included a double-blind evaluation with and without stimulation. Twenty-four studies reported data using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and were included in a meta-analysis. These studies enrolled a total of 523 patients (mean per study, 22 patients) and had a mean follow-up of 32.3 months (range, 6 to 72 months). In a pooled analysis of BFMDRS motor scores (scale range, 0 to 120) from 24 studies, the mean increase in scores at six months compared with baseline was 23.8 points (95% CI 18.5 to 29.1 points). The mean increase in the motor score at last follow-up compared with baseline was 26.6 points (95% CI 22.4 to 30.9 points). The mean percentage improvement was 59% at six months and 65% at last follow-up. Fourteen studies reported...
BFMDRS disability scores (scale range, 0 to 30). Compared with baseline, the mean absolute change in the score was 4.8 points (95% CI 3.1 to 6.6 points) at six months and 6.4 points (95% CI 5.0 to 7.8 points) at last follow-up. The mean percentage improvement was 44% at six months and 59% at last follow-up. Rodrigues (2019) performed a Cochrane systematic review of RCTs and identified the same two RCTs.[32]

The remaining literature review below will focus on the use of DBS for the investigational indications in this policy.

TARDIVE DYSKINESIA AND TARDIVE DYSTONIA

Systematic Review

Tardive dyskinesia and dystonia (TDD) are severe side effects of dopamine-blocking agents, particularly antipsychotics. Little is known about the possible psychiatric complications of DBS in psychiatric patients. The mean improvement of TDD of the combined patients 3 to 76 months after implantation was 77.5% (95% CI 71.4% to 83.3%; p<0.000) on the Burke-Fahn-Marsden Dystonia Rating Scale.[34] The data suggest DBS could be effective and relatively safe for patients with treatment-resistant TDD; however, these results should be interpreted with caution, as most of the data are from case reports and small trials.

Mentzel performed a systematic review to assess the effects and side-effects of deep brain stimulation (DBS) in patients that have developed a severe debilitating treatment-resistant form of TDD.[35] This review included 19 case-reports and small-scale trials without randomization or blinding (n=52 patients). Using the Burke Fahn Marsden Dystonia Rating Scale (BFMDRS), the Abnormal Involuntary Movement Scale (AIMS) and the Extrapyramidal Symptoms Rating Scale (ESRS), the investigators assessed the average improvement in the patients' condition, reporting that improvement as a result of DBS was statistically significant (p<0.00001) on all scales. However, limited conclusions can be drawn from this review on the efficacy and safety of DBS in this population, since there were no randomized controlled trials identified.

Randomized Controlled Trials

Stimulation of the globus pallidus has been examined as a treatment of tardive dyskinesia in a phase II double-blinded (presence and absence of stimulation) multicenter study.[36] The trial was stopped early due to successful treatment (greater than 40% improvement) in the first 10 patients.

Gruber (2018) assessed dystonia/dyskinesia severity using the Burke-Fahn- Marsden-Dystonia-Rating-Scale, BFMDRS at three months between active versus sham DBS.[37] Twenty-five patients were randomized. In the intention-to-treat analyses, the between group difference of dystonia severity was not significant at three months. Adverse events occurred in 10 of the 25 patients; three of the adverse events were serious. The study was originally powered to include 48 patients but only 25 were randomized and analyses may be underpowered.

Nonrandomized Studies

Pouclet-Courtemanche (2016) reported on a case series of 19 patients with severe pharmacoresistant tardive dyskinesia treated with DBS.[38] Patients were assessed after 3, 6, and 12 months after bilateral globus pallidus stimulation. At six months, all patients had experienced greater than 40% reduction in symptoms as measured on the Extrapyramidal Symptoms
Rating Scale (ESRS). At 12 months, the mean decrease in ESRS score was 58% (range, 21% to 81%). An additional small (n=9) case series reported improvement in motor and disability scores.\cite{39}

CEREBRAL PALSY

Koy (2013) reported data on the therapeutic outcomes of DBS in cerebral palsy.\cite{40} Twenty articles comprising 68 patients with cerebral palsy undergoing deep brain stimulation assessed by the Burke-Fahn-Marsden Dystonia Rating Scale were identified. Most articles were case reports reflecting great variability in the score and duration of follow-up. The mean Burke-Fahn-Marsden Dystonia Rating Scale movement score was 64.94 ± 25.40 preoperatively and dropped to 50.5 ± 26.77 postoperatively, with a mean improvement of 23.6% (p<0.001) at a median follow-up of 12 months. The mean Burke-Fahn-Marsden Dystonia Rating Scale disability score was 18.54 ± 6.15 preoperatively and 16.83 ± 6.42 postoperatively, with a mean improvement of 9.2% (p<0.001). There was a significant negative correlation between severity of dystonia and clinical outcome (p<0.05). Authors suggest DBS can be an effective treatment option for dyskinetic cerebral palsy. In view of the heterogeneous data, a prospective study with a large cohort of patients in a standardized setting with a multidisciplinary approach would be helpful in further evaluating the role of deep brain stimulation in cerebral palsy.\cite{41}

EPILEPSY/INTRACTABLE SEIZURES

DBS has been investigated for the treatment of intractable seizures in patients who are not surgical candidates. To date studies show promise but these early reports of therapeutic success are not confirmed by controlled clinical trials. Questions regarding the best structures to stimulate, the most effective stimuli, and the contrasting effects of high-frequency and low-frequency stimulation remain unanswered.

Systematic Review

A 2022 systematic review by Vetkas evaluated the effectiveness of DBS of the anterior thalamic nucleus, the centromedian thalamic nucleus, and the hippocampus.\cite{42} A total of 48 articles with 527 patients (sample sizes between 3 and 81) met inclusion criteria. For the anterior thalamic nucleus, centromedian thalamic nucleus, and hippocampus there were two, two, and three RCTs (including the SANTE trial described below) and 23, 8, and 13 total studies, respectively. There was moderate to high heterogeneity (I² 69 to 90%) for the anterior thalamic nucleus and the hippocampus and low heterogeneity for the centromedian thalamic nucleus. According to the meta-analysis, the mean seizure reduction after stimulation of the anterior thalamic nucleus, centromedian thalamic nucleus, and hippocampus was 60.8% (95% CI 55.72 to 65.89), 73.4% (95% CI 68.83 to 77.87), and 67.8% (58.14 to 77.46), respectively.

Two systematic reviews published in 2018 on the use of DBS for drug-resistant epilepsy assessed many of the same studies. The larger review, by Li (2018), identified 10 RCTs and 48 uncontrolled studies.\cite{43} The literature search date was not reported. Meta-analyses were not performed. Summaries of the studies were discussed by area of the brain targeted by DBS. A review of the studies showed that DBS might be effective in reducing seizures when DBS targets the anterior nucleus of the thalamus or the hippocampus. Across studies, more than 70% of patients experienced a reduction in seizures by 50% or more. However, there were very few RCTs and the observational studies had small sample sizes. Individual responses varied, depending on seizure syndrome, presence or absence of structural abnormalities, and electrode position. Results were inconclusive when DBS targeted the...
centromedian nucleus of the thalamus, the cerebellum, and the subthalamic nuclei. Safety data on DBS was limited due to the small population sizes. The RCT in which DBS targeted the anterior nucleus of the thalamus (Fisher [2010] described below) reported paresthesias (23%), implant site pain (21%), and implant site infection (13%). Reviewers concluded that more robust clinical trials would be needed.

In a 2014 Cochrane review, updated in 2017, the safety, efficacy and tolerability of DBS and cortical stimulation were assessed in patients with refractory epilepsy. The reviews included RCTs comparing DPS to sham stimulation, resective surgery or further treatment with antiepileptic drugs. Of the 10 RCTs identified for inclusion in the 2014 review, three trials were specific to DBS (one anterior thalamic DBS trial, n=109 treatment periods; two centromedian thalamic DBS trials, n=20, 40 treatment periods). The studies added in the 2017 update were a cross-over RCT of bilateral anterior thalamic stimulation (n=4) and a double blind RCT of hippocampal stimulation (n=6) that was not included in the meta-analysis due to missing detailed methodology. The primary outcome measures included the proportion of patients who were disease free and a 50% or greater reduction in seizure frequency after one to three months. The evidence was rated as moderate quality and no statistical or clinically significant differences were reported based upon the primary outcome measures. Authors concluded that there is insufficient evidence upon which to draw conclusions regarding the efficacy and safety of hippocampal DBS or centromedian DBS as a treatment for epilepsy.

Randomized Controlled Trials

Fisher (2010) reported results of a multicenter, RCT of bilateral stimulation of the anterior nuclei of the thalamus for epilepsy (SANTE). Fisher randomized patients who had failed at least three antiepileptic drugs to one of two groups, stimulation on or stimulation off. This was a 3-month double blind phase. After this phase, all patients received unblinded stimulation. During the first and second months of the blinded phase, the difference in seizure reduction between stimulation on and stimulation off was not significantly different (-42.1% vs. -28.7%, respectively). In the last month of the blinded phase, the stimulated group had a significantly greater reduction in seizures compared with the control group (-40.4% vs. -14.5%, respectively, p=0.0017). During the blinded phase, the stimulation group experienced significantly fewer seizure-related injuries than patients in the control group (7.4% vs. 25.5%, respectively p=0.01). Cognition and mood showed no group differences, but participants in the stimulated group were more likely to report depression (8 vs. 1, respectively) or memory problems (7 vs. 1, respectively) as adverse events. Depression symptoms resolved in four of the eight stimulated patients over an average of 76 days (range 14 to 145). There was a progressive reduction in seizure frequency over long-term follow-up. On intention-to-treat analysis, the median change in seizure frequency was -44% at 13 months and -57% at 25 months. By two years, 54% of patients had a seizure reduction of at least 50%, and 14 patients (13%) were seizure-free for at least six months. The most common device-related adverse events were paresthesias in 18.2% of participants, implant site pain in 10.9%, and implant site infection in 9.1%. Eighteen participants (16.4%) withdrew from the study after the implantation because of adverse events. There were five deaths, none of which were considered to be device-related. Although some patients appeared to have benefited from treatment during the extended follow-up phase, the difference between groups in the blinded portion of the study, while significant, was modest.

Troster (2017) assessed neuropsychological adverse events from the SANTE trial during the three-month blinded phase, and at seven-year follow-up during the open-label noncomparative...
At baseline, there were no differences in depression history between groups. During the three-month blinded phase of the trial, depression was reported in eight (15%) patients from the stimulation group and in one (2%) patient from the no stimulation group (p=0.02). Memory adverse events also occurred at significantly different rates between the treatment groups during the blinded phase (seven in the active group, one in the control group; p=0.03). At seven-year follow-up, after the treatment groups had been combined, there was no statistically significant difference in Profile of Mood State depression score compared with baseline and most cognitive function tests did not improve over baseline measurements.

A seven-year follow-up of SANTE was reported in the FDA SSED. Seventy-three (66% of implanted) patients completed the year seven visit. Reasons for withdrawals from the study after implantation were: death (6), withdrawal of consent (5), investigator decision (3), therapeutic product ineffective (13), implant site infection or pain (6), other adverse event (7) and elective device removal (1). Fifty patients were included in the year 7 analysis of responder rate. Seventy-four percent of the 50 patients were responders (50% or greater reduction in seizure frequency). QOLIE-31 scores (n=67) improved by a mean of 4.9 (SD=11) points at year 7. LSSS scores (n=67) improved by a mean of 18 points (SD=23) at year 7. As the FDA documentation notes, interpretation of the long-term follow-up is limited by several factors: patients were aware they were receiving DBS, only 66% of implanted patients completed the year 7 visit and those who did not do well may be more likely to leave the study, and changes in anti-epileptic drugs were allowed in long-term follow-up.

Cukiert (2017) conducted a double-blind, placebo-controlled randomized trial evaluating outcomes of hippocampal stimulation in 16 patients with refractory temporal lobe epilepsy. Prior to treatment, all patients had focal impaired awareness seizures (FIAS, complex partial seizures), and 87% had focal aware seizures (FAS, simple partial seizures). All patients underwent DBS device implantation, and were followed for six months. Patients were seen weekly to receive the treatment or placebo. To maintain double-blind status, programming was performed by a nontreating assistant. Patients kept a seizure diary during the study period. Patients were considered seizure-free if no seizures occurred during the last 2 months of the trial. Responders were defined as patients experiencing a reduction of 50% or more in frequency reduction. There was a significant difference in FIAS frequency from the first month of full stimulation until the end of the blinded phase (p<0.001) and FAS frequency for the same period except for the third month of the blinded phase.

Nonrandomized Studies

Kim (2017) conducted a retrospective chart review of 29 patients with refractory epilepsy treated with DBS. Patients’ mean age was 31 years, they had had epilepsy for a mean of 19 years, and had a mean preoperative frequency of tonic-clonic seizures of 27 per month. Mean follow-up was 6.3 years. Median seizure reduction from baseline was 71% at year one, 74% at year two and ranged from 62% to 80% through 11 years of follow-up. Complications included one symptomatic intracranial hemorrhage, one infection requiring removal and reimplantation, and two lead disconnections.

Long-term outcomes of the SANTE trial, described above, were reported by Salanova in 2015. The uncontrolled open-label portion of the trial began after three months and, beginning at 13 months, stimulation parameters could be adjusted at the clinician’s discretion. Of the 110 implanted patients, 105 (95%) completed the 13-month follow-up, 98 (89%) completed the three-year follow-up, and 83 (75%) completed five years. Among patients with
at least 70 days of diary entries, the median change in seizure frequency from baseline was 41% at one year and 69% at five years (p<0.001 for both). During the study, 39 (35%) of 110 patients had a device-related serious adverse event, most of which occurred in the first several months after implantation. The most frequently reported serious adverse events were implant site infection (10% of patients) and lead(s) not within target (8.2% of patients). Seven deaths occurred during the study and none were considered to be device-related. Depression was reported in 41 (37%) patients over the study; in three cases, this was considered device-related. Memory impairment (nonserious) was reported in 30 (27%) patients during the study, half of which had a history of the condition. Although some patients appear to have benefited from treatment during the extended follow-up phase, the difference between groups in the blinded portion of the study, while significant, was overall modest.

TRAUMATIC BRAIN INJURY

Central thalamic deep brain stimulation (CT-DBS) has been investigated as a therapeutic option to improve behavioral functioning in patients with severe traumatic brain injury (TBI)\(^{[41]}\); however, there are no RCTs for this indication.

NEUROPSYCHIATRIC APPLICATIONS

In addition to the areas of research discussed above, DBS is being investigated for the treatment of Tourette syndrome, depression, addiction, alcohol addiction, anorexia, and obsessive compulsive disorder.\(^{[52]}\) Evidence remains insufficient to evaluate the efficacy of DBS for these disorders due to small sample sizes and other limitations in the available studies.\(^{[53]}\)

Tourette Syndrome

Systematic Reviews

Wehmeyer (2021) conducted a pooled analysis of DBS for treatment-refractory Tourette syndrome.\(^{[54]}\) A total of 65 studies with 376 patients were included. The primary outcome was Yale Global Tic Severity Scale (YGTSS) scores, which were significantly reduced at maximum follow-up of median 25 months (p<0.001). The median scores decreased from 79.92 points (interquartile range [IQR], 13.25) to 34.69 points (IQR, 20.93) post-surgery, which represented a reduction rate of 56.59%. A majority of patients (69.4%) also experienced symptom reduction of more than 50% at maximum follow-up. In addition, other tic-related outcome measures (modified Rush video-based tic rating scale, YGTSS total tic score) and comorbidities (Yale-Brown Obsessive Compulsive Scale, Becks Depression Inventory), were also significantly reduced after deep brain stimulation.

Baldermann conducted a systematic review that included 57 studies on DBS for Tourette syndrome, four of which were randomized crossover studies. The studies included a total of 156 cases.\(^{[55]}\) Twenty-four studies included a single patient each and four had sample sizes of 10 or more (maximum, 18). Half of the patients (n=78) were stimulated in the thalamus and the next most common areas of stimulation were the global pallidus internus anteromedial part (n=44) and postventrolateral part (n=20). Two of the RCTs used thalamic stimulation, one used bilateral globus pallidus stimulation, and one used both. The primary outcome was YGTSS scores. In a pooled analysis of within subject pre-post data, there was a median improvement of 53% in the YGTSS, a decline from a median score of 83 to 35 at last follow-up. Moreover, 81% of patients showed at least a 25% reduction in the YGTSS and 54% and

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
more than a 50% improvement. In addition, data were pooled from the four crossover RCTs; there were a total of 27 patients receiving DBS and 27 receiving a control intervention. Targets included the thalamus and the globus pallidus. In the pooled analysis, there was a statistically significant between-group difference, favoring DBS (SMD=0.96; 95% CI 0.36 to 1.56). The authors noted that the effect size of 0.96 is considered to be a large effect.

A 2012 systematic review by Pansaon identified 25 published studies, representing data from 69 patients that reported on the efficacy of DBS in the treatment of Tourette syndrome. However, only three studies with methodological quality ratings of fair to poor met the inclusion criteria for evidence-based analysis. The authors recommend that DBS continues to be considered an experimental treatment for severe, medically refractory tics.

Randomized Controlled Trials

Kefalopoulou (2015) reported on double-blind crossover trial that included 15 patients with severe medically refractory Tourette syndrome. They received surgery for bilateral globus pallidus internus DBS and were randomized to the off-position first or the on-position first for three months followed by the opposite position for the next three months. Fifteen patients underwent surgery 14 were randomized and 13 completed assessments after both on- and off-phases. For the 13 study completers, the mean YGTSS scores were 80.7 (SD=12.0) in the off-stimulation phase and 68.3 (SD=18.6) in the on-stimulation phase. Mean difference in YGTSS scores was 12.4 (95% CI 0.1 to 24.7) which was statistically significant (p=0.048) after Bonferroni correction. There was no between-group difference in YGTSS scores in patients who were randomized to the on-phase first or second. Three serious adverse events were reported, two related to surgery and one related to stimulation. The authors noted that the most effective target for DBS in Tourette syndrome patients needs additional study.

Piedad (2012) analyzed patient and target selection for DBS of Tourette syndrome. The majority of clinical trials for DBS in Tourette syndrome have targeted the medial thalamus at the crosspoint of the centromedian nucleus, substantia periventricularis, and nucleus ventro-oralis internus. Other targets that have been investigated include the subthalamic nucleus, caudate nucleus, globus pallidus internus, and the anterior limb of the internal capsule and nucleus accumbens. The review found no clear consensus in the literature for the best target or for which patients should be treated. Additional study is needed to clarify these issues.

In 2011, Ackermans reported preliminary results of a double-blind crossover trial of thalamic stimulation in six patients with refractory Tourette syndrome. Tic severity during three months of stimulation was significantly lower than during the three months with the stimulator turned off, with a 37% improvement on the Yale Global Tic Severity Scale (mean 25.6 vs. 41.1) and a decrease in tic severity of 49% at one year after surgery compared to preoperative assessments (mean 21.5 vs. 42.2 – both respectively). Secondary outcomes (change in associated behavioral disorder and mood) were not altered by the stimulation. Serious adverse events included one small hemorrhage ventral to the tip of the electrode, one infection of the pulse generator, subjective gaze disturbances, and reduction of energy levels in all patients. The interim analysis led to the termination of the trial. The authors commented that further RCTs on other targets are urgently needed since the search for the optimal one is still ongoing.

Depression
The role of deep brain stimulation in treatment of other treatment-resistant depression, is also being investigated. Standard treatment modalities for treatment-resistant depression include psychotherapy, medication, and electroconvulsive therapy (ECT). However, even with a number of therapies being available, many patients can still remain symptomatic despite treatment. As an alternative therapy option, there have been multiple trials exploring deep brain stimulation in various cerebral targets for treatment-resistant depression.

Systematic Reviews

Wu (2021) conducted a meta-analysis of blinded studies that compared deep brain stimulation to control (placebo or sham stimulation). There were 17 studies included, with a total of 233 patients, however, the majority were open-label studies (n=15). Anatomic targets included subcallosal cingulate gyrus (n=8), ventral capsule/ventral striatum (n=2), epidural prefrontal cortical (n=2), nucleus accumbens (n=1), superior lateral branch of the medial forebrain bundle (n=2), posterior gyrus rectus (n=1) and ventral anterior limb of the internal capsule (n=1). The pooled response rate estimate for the two RCTs was 1.45 (95% CI 0.50 to 4.21) and for the open-label studies it was 0.56 (95% CI 0.43 to 0.69); there was significant heterogeneity ($I^2 = 73.6\%$; p<0.0001). The pooled estimate for remission rate in the open-label studies was 0.32 (95% CI 0.25 to 0.39) with no statistical heterogeneity ($I^2 = 30.3\%$; p=0.127); the pooled estimate for adverse events in the open-label studies was 0.67 (95% CI 0.54 to 0.80) with significant heterogeneity ($I^2 = 76.8\%$; p<0.0001).

Hitti (2020) conducted a meta-analysis and meta-regression of blinded studies that compared active deep brain stimulation to sham stimulation (12 trials, 186 patients). Anatomic targets included the ventral anterior limb of the internal capsule, ventral capsule/ventral striatum, subcallosal cingulate, inferior thalamic peduncle, medial forebrain bundle, and lateral habenula. The most common target was the subcallosal cingulate. Meta-analysis showed a modest reduction in depression rating scales (standardized mean difference $= -0.75; 95\% CI -1.13$ to $-0.36; p<0.001$) with moderate heterogeneity across studies ($I^2=59\%$). Meta-regression did not identify a significant difference between target areas. Adverse events included headache (26% of patients), visual disturbances (21%), worsening depression (16%), sleep disturbance (16%) and anxiety (14%).

In a recent systematic review, the literature was identified and reviewed for research findings related to treatment-resistant BD. Therapeutic trials for treatment-resistant bipolar mania are uncommon and provide few promising leads other than the use of clozapine. Far more pressing challenges are the depressive-dysthymic-dysphoric-mixed phases of BD and long-term prophylaxis. Therapeutic trials for treatment-resistant bipolar depression have assessed various pharmacotherapies, behavioral therapies, and more invasive therapies including electroconvulsive therapy (ECT), transcranial magnetic stimulation, and deep brain stimulation—all of which are promising but limited in effectiveness. Most studies identified in the review were small, involved supplementation of typically complex ongoing treatments, varied in controls, randomization, and blinding, usually involved brief follow-up, and lacked replication. Clearer criteria for defining and predicting treatment resistance in BD are needed, as well as improved trial design with better controls, assessment of specific clinical subgroups, and longer follow-up. Due to significant limitations within literature the effectiveness of DBS for bipolar treatment is not known at this time.

Controlled Trials
Crowell (2019) reported long-term follow-up of a within-subject trial with 28 participants with TRD or bi-polar II disorder who were treated with DBS of the subcallosal cingulate.[63] Patients were included who had depression for at least 12 months with non-response to at least three antidepressant medications, a psychotherapy trial, and electroconvulsive therapy (lifetime). Seventeen of the patients had a one-month sham-controlled period and 11 patients had a one-month open label period before the stimulation was turned on. Eight-year follow-up was available for 14 of the 28 participants. The primary outcome measure was the Illinois Density Index, which assesses the longitudinal area under the curve for behavioral measures; in this study these included response (>50% decrease from baseline) and remission (score <7) on the HAM-D. More than 50% of patients maintained a response and 30% in remission, over the eight years of follow-up. The physician-rated Clinical Global Impressions severity score improved from 6.1 (severely ill) at baseline to less than 3 (mildly ill or better) in this open label trial.

Obsessive-compulsive Disorder

The role of deep brain stimulation in treatment of OCD is also being investigated. This condition can be very debilitating and cause significantly reduced quality of life for patients. Conventional management strategies include cognitive-behavioral therapy, medications, and surgical intervention, however response to treatment may take months, and significant improvement with these therapies is not guaranteed. Deep brain stimulation may be an alternative therapy option for patients with treatment-refractory OCD, and some trials have explored safety and efficacy of this treatment in OCD.

Systematic Reviews

A systematic review by Raviv (2020) identified 28 studies that met their criteria on deep brain stimulation for OCD, including nine RCTs, one cohort study, one case-control study, one cross-sectional study, and 16 case series with more than two patients.[64] Only four studies were graded as low risk of bias, and the authors noted that there is no consensus on the optimal target. Striatal targets were the most common and included the anterior limb of the internal capsule, ventral striatum, nucleus accumbens, and caudate nucleus, but there was some discrepancy in nomenclature and overlap in stereotaxic coordinates. Additional targets included the subthalamic nucleus, bed nucleus of stria terminalis, inferior thalamic peduncle, and globus pallidus internus. The majority of studies utilized the Yale-Brown Obsessive Compulsive Scale; a score of 24 or more (of a possible 40) indicates severe illness. Responders were defined as at least 35% reduction in Yale-Brown Obsessive Compulsive Scale score and partial responders as a reduction between 25% and 35%. There was substantial variability in response for each target area, which may be related to the phenotypic diversity within the psychiatric diagnosis.

Vicheva (2020) conducted a systematic review and meta-analysis of the use of DBS for treatment-resistant OCD.[65] Eight studies including 80 patients total met inclusion criteria. There was significant heterogeneity across studies. A meta-analysis of Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores found a 38.68% pooled mean reduction. There were five severe surgery-related adverse events (intracerebral hemorrhage in three patients and infection in two patients) and eight severe mood-related serious adverse events (one completed suicide, three suicide attempts in two patients, and suicidal thoughts and depression in four). There were additional mild and transient adverse events.
Kisely conducted a systematic review and meta-analyses pooling study findings evaluating DBS for OCD, including only double-blind RCTs of active versus sham DBS.\[66\] Five trials (total N=50 patients) met eligibility criteria and data on 44 patients were available for meta-analysis. Three were parallel group RCTs with or without a crossover phase and two were only crossover trials. The site of stimulation was the anterior limb of the internal capsule (three studies), the nucleus accumbens (one study) and the subthalamic nucleus (one study). Duration of treatment ranged from 2 to 12 weeks. All studies reported scores on the Y-BOCS. This is a 10-item scale in which higher scores reflect more intense symptoms, and a score of 24 or more (of a possible 40) is considered severe illness. Most studies designate a therapeutic response as a Y-BOCS reduction of 35% or more from the pretreatment baseline, with a reduction of 25 to 35% or more considered a partial response. Only one of the five studies reported proportion of responders Y-BOCS as an outcome measure and that study did not find a statistically significant difference between active and sham stimulation groups. All studies reported the outcome measure, mean reduction in Y-BOCS. When data from the five studies were pooled, there was a statistically significantly greater reduction in the mean Y-BOCS in the active versus sham group (mean difference, -8.49; 95% CI 12.18 to -4.80). The outcome measure, however, does not allow conclusions on whether the difference between groups is clinically meaningful. Trial authors reported 16 serious adverse events including one cerebral hemorrhage and two infections requiring electrode removal. Additionally, nonserious transient adverse events were reported including 13 reports of hypomania, five of increase in depressive or anxious symptoms and six of headaches.

In 2014, the American Society for Stereotactic and Functional Neurosurgery and the Congress of Neurological Surgeons conducted a systematic review which served as the basis of their evidence-based guideline regarding DBS as a treatment of OCD.\[67\] The group made the following conclusions:

1. There is Level I evidence, based on a single Level I study, for the use of bilateral subthalamic nucleus DBS for the treatment of medically refractory OCD.
2. There is Level II evidence, based on a single Level II study, for the use of bilateral nucleus accumbens DBS for the treatment of medically refractory OCD.
3. There is insufficient evidence to make a recommendation for the use of unilateral DBS for the treatment of medically refractory OCD.

However, the Level I and II evidence used to support the groups conclusions were based upon studies with small sample sizes (n=18, 16) which limit the ability to rule out the possibility of chance as an explanation of findings.

Anorexia Nervosa

Anorexia nervosa is an eating disorder characterized by a chronic course that is refractory to treatment in many patients and has one of the highest mortality rates of any psychiatric disorder. In a systematic review by McClelland, two case series and two case reports that applied DBS to anorexic patients were identified and reviewed with mixed results.\[68\] There are no RCTs investigating DBS for this indication.

Alcohol Addiction

Alcohol dependency can be considered as a chronic mental disorder characterized by frequent relapses even when treated with appropriate medical or psychotherapeutic interventions.
A 2012 systematic review by Herremans and Baeken investigated several neuromodulation techniques including deep brain stimulation in the treatment of alcohol addiction. Previous studies investigating these neuromodulation techniques in alcohol addiction remain to date rather limited. Overall, the clinical effects on alcohol addiction were modest. Neuromodulation techniques have only recently been subject to investigation in alcohol addiction and methodological differences between the few studies restrict clear conclusions. Nevertheless, the scarce results encourage further investigation in alcohol addiction.

OTHER APPLICATIONS

There is interest in applications of DBS beyond that for essential tremors, primary dystonia and Parkinson’s disease. Clinical trials are being pursued; however, at this time, FDA approval is limited to the above indications and severe obsessive-compulsive disorder. The following discussion focuses on randomized controlled trials (RCTs) for the investigational indications noted in Policy Criteria II. above.

Chronic Pain, Pain Syndromes, and Cluster Headaches

DBS for the treatment of chronic pain was investigated and largely abandoned in the 1980’s due to poor results in two trials. With improved technology and surgical techniques there has been a resurgence of interest in DBS for intractable pain. DBS of the posterior hypothalamus for the treatment of chronic cluster headaches has also been investigated as functional studies have suggested cluster headaches have a central hypothalamic pathogenesis. Outcomes and treatment protocols have been heterogenous. Deer (2020) conducted a systematic review of deep brain stimulation for chronic pain. They identified one RCT from 2017 with 10 patients with post-stroke pain syndrome and one RCT from 2010 with 11 patients who had chronic cluster headaches (described above). Three early case series (1990 to 2017, n=12 to 48) included patients with a variety pain conditions, including phantom limb pain, cancer, brachial plexus injury, failed back surgery, and spinal cord injury. The location of the stimulation was variable. Publication bias was not assessed.

Due to the limited RCTs and small sample sizes, conclusions cannot be reached on the effectiveness of DBS as a treatment of any type of pain, including but not limited to cluster headaches, chronic spinal pain, failed back surgery syndrome, phantom limb pain, facial deafferentation pain, and central or peripheral neuropathic pain.

Morbid Obesity

The study of DBS of the hypothalamus and nucleus accumbens for cluster headache and obsessive-compulsive disorder (OCD) has prompted interest in DBS for obesity and addiction, which are thought to be associated with those brain regions. However, patients with unilateral subthalamic nucleus or globus pallidus internus DBS for PD were found to have gained a mean 4.86 pounds following initiation of DBS. Contreras (2022) performed a systematic review of the literature on DBS for the treatment of refractory obesity. A total of seven studies including 12 patients met inclusion criteria. The incidence of moderate side effects was 33%. Statistical was not possible due to the limited amount of data available in the articles and the small study populations do not permit conclusions on efficacy of DBS for obesity.

Multiple Sclerosis

No randomized controlled trials were found for DBS in the treatment of multiple sclerosis (MS) tremors. Brandmeir (2020) reported a meta-analysis of 13 studies of deep brain stimulation for
multiple sclerosis tremor (129 patients received deep brain stimulation and 132 received medical management).[73] Results were compared for tremor severity after deep brain stimulation versus tremor severity at baseline, and were combined across different target areas (ventral intermediate nucleus of the thalamus, ventral oralis nucleus of the thalamus, ventral caudal nucleus of the thalamus, zona incerta) and different levels of evidence. Four studies were rated as level II evidence, but the studies were not randomized and the number of subjects in these studies was small, ranging from 4 to 12. Meta-analysis showed an improvement in the mean tremor score of 2.86 (95% CI 2.03 to 3.70, p<0.001). However, heterogeneity was high, suggesting that meta-analysis is not appropriate, and no distinction was made for the different anatomical targets. There was also evidence of publication bias. The small study populations do not permit conclusions on efficacy of DBS for MS tremors.

PRACTICE GUIDELINE SUMMARY

AMERICAN ACADEMY OF NEUROLOGY

The 2019 guidelines from American Academy of Neurology (AAN) provide recommendations on the assessment for and use of deep brain stimulation in adults with severe, treatment-refractory tics.[74] AAN notes that patients with severe Tourette syndrome resistant to medical and behavioral therapy may benefit from DBS, but there is no consensus on the optimal brain target. Brain regions that have been stimulated in patients with Tourette Syndrome include the centromedian thalamus, the globus pallidus internus (ventral and dorsal), the globus pallidus externus, the subthalamic nucleus, and the ventral striatum/ventral capsular nucleus accumbens region. AAN concludes that DBS of the anteromedial globus pallidus is possibly more likely than sham stimulation to reduce tic severity.

In the 2013 AAN guidelines on the treatment for tardive syndromes (TDS), indicated there is insufficient evidence to support or refute DBS for TDS.[75] This recommendation is based on Level U evidence (evidence is insufficient to support or refute the use of any other treatment over another). The 2011 AAN guideline regarding essential tremor was reaffirmed in 2014 indicating that, “no high quality, long-term studies exist regarding the efficacy and safety of (DBS) for ET.”[76]

The AAN updated its guidelines on the treatment of essential tremor (ET) in 2011.[76] This update did not change the conclusions and recommendations of AAN 2005 practice parameters on DBS for ET.[77] The guidelines stated that bilateral DBS of the thalamic nucleus may be used to treat medically refractory limb tremor in both upper limbs (level C, possibly effective), but that there were insufficient data on the risk/benefit ratio of bilateral vs unilateral DBS in the treatment of limb tremor. There was insufficient evidence to make recommendations on the use of thalamic DBS for head or voice tremor (level U, treatment is unproven).

The 2010 guidelines from AAN on the treatment of nonmotor symptoms of PD found insufficient evidence for the treatment of urinary incontinence with DBS of the STN.[78] AAN found that DBS of the STN possibly improves sleep quality in patients with advanced PD. However, none of the studies performed DBS to treat insomnia as a primary symptom, and DBS of the STN is not currently used to treat sleep disorders.

AMERICAN PSYCHIATRIC ASSOCIATION
In a 2007 the American Psychiatric Association (APA) published an evidence-based guideline, which was reaffirmed in 2012, on the treatment of patients with obsessive-compulsive disorder.[79] The APA gave their lowest level recommendation for DBS, among a list of other therapies with limited published evidence, for OCD that remains refractory “after first- and second-line treatment and well-supported augmentation strategies have been exhausted.” In the 2010 APA guideline for the treatment of major depression, DBS is listed as a search term in the literature review; however, no recommendations for DBS are mentioned.[80]

CONGRESS OF NEUROLOGIC SURGEONS

2018 evidence-based guidelines from the Congress of Neurologic Surgeons (CNS) compared the efficacy of bi-lateral deep brain stimulation of the subthalamic nucleus and globus pallidus internus for the treatment of patients with Parkinson disease.[81]

Table 1. Recommendations of the Congress of Neurologic Surgeons for DBS for Parkinson Disease

<table>
<thead>
<tr>
<th>Goal</th>
<th>Most Effective Area of Stimulation (subthalamic nucleus or globus pallidus internus)</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improving motor symptoms</td>
<td>subthalamic nucleus or globus pallidus internus are similarly effective</td>
<td>I</td>
</tr>
<tr>
<td>Reduction of dopaminergic medication</td>
<td>subthalamic nucleus</td>
<td>I</td>
</tr>
<tr>
<td>Treatment of "on" medication dyskinesias</td>
<td>globus pallidus internus if reduction of medication is not anticipated</td>
<td>I</td>
</tr>
<tr>
<td>Quality of life</td>
<td>no evidence to recommend one over the other</td>
<td>I</td>
</tr>
<tr>
<td>Lessen impact of DBS on cognitive decline</td>
<td>globus pallidus internus</td>
<td>I</td>
</tr>
<tr>
<td>Reduce risk of depression</td>
<td>globus pallidus internus</td>
<td>I</td>
</tr>
<tr>
<td>Reduce adverse effects</td>
<td>insufficient evidence to recommend one over the other</td>
<td>Insufficient</td>
</tr>
</tbody>
</table>

SUMMARY

There is enough research to show that deep brain stimulation (DBS) improves health outcomes in select patients with symptoms related to Parkinson's disease, essential tremor, or primary dystonias. DBS has become a standard of care for these patients. Therefore, DBS, including revision(s) or replacement(s), may be considered medically necessary when policy criteria are met.

Deep brain stimulation (DBS) is not clinically appropriate in patients with symptoms related to Parkinson's disease, essential tremor, or primary dystonias when criteria are not met. Therefore, DBS is considered not medically necessary for these indications when criteria are not met.

There is not enough research to determine the safety and effectiveness of deep brain stimulation (DBS) for other conditions. Current practice guidelines do not recommend the use of deep brain stimulation for the treatment of various neurologic and psychiatric
disorders. Therefore, DBS is considered investigational for all other indications when policy criteria are not met.

REFERENCES

September 1, 2022

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

35. CL Mentzel, DE Tenback, MA Tijssen, PN van Harten. [Severe treatment-resistant tardive dystonia: is deep brain stimulation a treatment option]. *Tijdschr Psychiatr.* 2015;57:125-31. PMID: 25669951

47. AI Troster, KJ Meador, CP Irwin, RS Fisher. Memory and mood outcomes after anterior thalamic stimulation for refractory partial epilepsy. *Seizure.* 2017;45:133-41. PMID: 28061418

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>61850</td>
<td>Twist or burr hole(s) for implantation of neurostimulator electrode(s), cortical</td>
</tr>
<tr>
<td></td>
<td>61860</td>
<td>Cranietomy or craniotomy for implantation of neurostimulator electrodes, cerebral, cortical</td>
</tr>
<tr>
<td></td>
<td>61863</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy for stereotactic implantation of neurostimulator array in subcortical site (e.g., thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of intraoperative microelectrode recording; first array</td>
</tr>
<tr>
<td></td>
<td>61864</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy for stereotactic implantation of neurostimulator array in subcortical site (e.g., thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of intraoperative microelectrode recording; each additional array (List separately in addition to primary procedure).</td>
</tr>
<tr>
<td></td>
<td>61867</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy for stereotactic implantation of neurostimulator array in subcortical site (e.g., thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), with use of intraoperative microelectrode recording; first array</td>
</tr>
<tr>
<td></td>
<td>61868</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy for stereotactic implantation of neurostimulator array in subcortical site (e.g., thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), with use of intraoperative microelectrode recording; each additional array (List separately in addition to primary procedure).</td>
</tr>
<tr>
<td></td>
<td>61885</td>
<td>Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to a single electrode array</td>
</tr>
<tr>
<td></td>
<td>61886</td>
<td>;with connection to two or more electrode arrays</td>
</tr>
<tr>
<td></td>
<td>61888</td>
<td>Revision or removal of cranial neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td></td>
<td>95970</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulsewidth, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and</td>
</tr>
<tr>
<td>Codes</td>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>passive parameters) by physician or other qualified health care professional; with brain, cranial nerve, spinal cord, peripheral nerve, or sacral nerve, neurostimulator pulse generator/transmitter, without programming</td>
</tr>
<tr>
<td>95983</td>
<td></td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with brain neurostimulator pulse generator/transmitter programming, first 15 minutes face-to-face time with physician or other qualified health care professional (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>C1820</td>
<td></td>
<td>Generator, neurostimulator (implantable), with rechargeable battery and charging system</td>
</tr>
<tr>
<td>L8679</td>
<td></td>
<td>Implantable neurostimulator, pulse generator, any type</td>
</tr>
<tr>
<td>L8680</td>
<td></td>
<td>Implantable neurostimulator electrode, each</td>
</tr>
<tr>
<td>L8681</td>
<td></td>
<td>Patient programmer (external) for use with implantable programmable neurostimulator pulse generator, replacement only</td>
</tr>
<tr>
<td>L8682</td>
<td></td>
<td>Implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td>L8683</td>
<td></td>
<td>Radiofrequency transmitter (external) for use with implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td>L8685</td>
<td></td>
<td>Implantable neurostimulator pulse generator, single array, rechargeable, includes extension</td>
</tr>
<tr>
<td>L8686</td>
<td></td>
<td>Implantable neurostimulator pulse generator, single array, nonrechargeable, includes extension</td>
</tr>
<tr>
<td>L8687</td>
<td></td>
<td>Implantable neurostimulator pulse generator, dual array, rechargeable, includes extension</td>
</tr>
<tr>
<td>L8688</td>
<td></td>
<td>Implantable neurostimulator pulse generator, dual array, nonrechargeable, includes extension</td>
</tr>
<tr>
<td>L8689</td>
<td></td>
<td>External recharging system for battery (internal) for use with implantable neurostimulator</td>
</tr>
</tbody>
</table>

Date of Origin: April 1998
IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Radiofrequency ablation kills cells using the heat produced by radiofrequency energy delivered into the tumor via a probe.

MEDICAL POLICY CRITERIA

Note: This policy does not address liver tumors (primary or metastatic). See Cross References.

I. Radiofrequency ablation may be considered **medically necessary** to treat tumors when one or more of the following criteria are met:

A. Localized renal cell carcinoma that is no more than 4 cm in size when one or both of the following criteria are met:
 1. Preservation of kidney function is necessary (i.e., the patient has one kidney or renal insufficiency defined by a glomerular filtration rate (GFR) of less than 60 mL/min per m²) and standard surgical approach (i.e., resection of renal tissue) is likely to substantially worsen kidney function; or
 2. Patient is not considered a surgical candidate.
B. Osteoid osteomas that are unresponsive to initial medical treatment.

C. To palliate pain in patients with osteolytic bone metastases who have failed or are poor candidates for standard treatments (e.g., radiation).

D. Isolated peripheral non-small cell lung cancer (NSCLC) lesion that is no more than 3 cm in size when both of the following criteria are met:
 1. Surgical resection or radiation treatment with curative intent is considered appropriate based on stage of disease, however, medical co-morbidity renders the individual unfit for those interventions; and
 2. Tumor is located at least 1 cm from the trachea, main bronchi, esophagus, aorta, aortic arch branches, pulmonary artery and the heart.

E. Malignant non-pulmonary tumor(s) metastatic to the lung that are no more than 3 cm in size when all of the following criteria (1. – 3.) are met:
 1. In order to preserve lung function when surgical resection or radiation treatment is likely to substantially worsen pulmonary status, or the patient is not considered a surgical candidate; and
 2. There is no evidence of extrapulmonary metastases; and
 3. The tumor is located at least 1 cm from the trachea, main bronchi, esophagus, aorta, aortic arch branches, pulmonary artery and the heart.

F. Renal angiomyolipomas when one or more of the following criteria are met:
 1. Symptomatic lesion (e.g., hemorrhage), or
 2. Asymptomatic lesion larger than 4 cm.

G. Benign thyroid nodules when the following criteria are met (1. – 2.):
 1. Nodule is symptomatic; and
 2. Nodule is confirmed as benign using fine needle aspiration (FNA)

II. Ultrasound-guided radiofrequency ablation (e.g., Acessa™, Sonata®) may be considered medically necessary for the treatment of symptomatic uterine fibroids when there are significant clinical manifestations or findings attributable to fibroids, including one or more of the following:
 A. Abnormal uterine bleeding
 B. Iron-deficiency anemia
 C. Dyspareunia
 D. Pelvic pain or pressure
 E. Urinary or bowel dysfunction

III. Radiofrequency ablation is considered investigational as a technique for ablating all other benign or malignant tumors other than liver tumors that do not meet the policy criteria above including but not limited to breast tumors, initial treatment of osteoid osteomas and painful bony metastases, and all primary or metastatic lung (pulmonary) tumors that do not meet medical necessity.
NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

1. Specific description of the tumor(s) targeted for treatment including the following:
 - Tumor type (primary vs. metastatic; primary tumor type)
 - The location of tumor(s)
 - The number and size(s) of lesion(s) being treated
2. For requests for ultrasound-guided radiofrequency ablation for the treatment of symptomatic uterine fibroids, documentation of significant clinical manifestations or findings attributable to fibroids
3. Rationale for the determination that the patient is not a surgical candidate or the tumor is unresectable
4. Whether the goal of treatment is curative or palliative
5. Comorbidities and any contraindicated treatments (e.g., surgery; radiation therapy)
6. Prior treatments, if any, and tumor response
7. Documentation of whether this treatment is to preserve organ function

CROSS REFERENCES

1. Radioembolization, Transarterial Embolization (TAE), and Transarterial Chemoembolization (TACE), Medicine, Policy No. 140
2. Cryosurgical Ablation of Miscellaneous Solid Tumors, Surgery, Policy No. 132
3. Magnetic Resonance (MR) Guided Focused Ultrasound (MRgFUS) and High Intensity Focused Ultrasound (HIFU) Ablation, Surgery, Policy No. 139
4. Microwave Tumor Ablation, Surgery, Policy No. 189
5. Ablation of Primary and Metastatic Liver Tumors, Surgery, Policy No. 204

BACKGROUND

Radiofrequency ablation (RFA) was initially developed to treat inoperable tumors of the liver (see Cross References). Recently, studies have reported on the use of RFA to treat other tumors. For some of these, RFA is being investigated as an alternative to surgery for operable tumors. Well-established local or systemic treatment alternatives are available for each of these malignancies. The hypothesized advantages of RFA for these cancers include improved local control and those common to any minimally invasive procedure (e.g., preserving normal organ tissue, decreasing morbidity, decreasing length of hospitalization).

Goals of RFA may include 1) controlling local tumor growth and preventing recurrence; 2) palliating symptoms; and 3) extending survival duration for patients with certain cancerous tumors. The effective volume of RFA depends on the frequency and duration of applied current, local tissue characteristics, and probe configuration (e.g., single vs multiple tips). RFA can be performed as an open surgical procedure, laparoscopically or percutaneously, with ultrasound or computed tomography guidance.
Potential complications associated with RFA include those caused by heat damage to normal tissue adjacent to the tumor (e.g., intestinal damage during RFA of kidney), structural damage along the probe track (e.g., pneumothorax as a consequence of procedures on the lung), and secondary tumors (if cells seed during probe removal).

REGULATORY ISSUES

The U.S. Food and Drug Administration (FDA) issued the following statement September 24, 2008 concerning the regulatory status of radiofrequency ablation. The FDA has cleared RF ablation devices for the general indication of soft tissue cutting, coagulation, and ablation by thermal coagulation necrosis. Some RF ablation devices have been cleared for additional specific treatment indications, including partial or complete ablation of nonresectable liver lesions and palliation of pain associated with metastatic lesions involving bone. The FDA has not cleared any RF ablation devices for the specific treatment indication of partial or complete ablation of lung tumors, citing lack of sufficient clinical data to establish safety and effectiveness for this purpose. The FDA has received reports of death and serious injuries associated with the use of RF ablation devices in the treatment of lung tumors.

In 2012, the Acessa™ System (Acessa Health, formerly Halt Medical) was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for percutaneous laparoscopic coagulation and ablation of soft tissue and treatment of symptomatic uterine fibroids under laparoscopic ultrasound guidance (K121858). The technology was previously approved in 2010, at which time it was called the Halt 2000GI™ Electrosurgical Radiofrequency Ablation System. In 2014, the ultrasound guidance system received marketing clearance from the FDA (K132744). FDA product code: GEI. In 2018, the third-generation Acessa™ ProVu System® was cleared for marketing by the FDA through the 510(k) process for use in percutaneous, laparoscopic coagulation and ablation of soft tissue, including treatment of symptomatic uterine fibroids under laparoscopic ultrasound guidance. (K181124). FDA product code: HFG.

In 2018, the Sonata® Sonography-Guided Transcervical Fibroid Ablation System (Gynsonics) was cleared for marketing by the FDA through the 510(k) process for diagnostic intrauterine imaging and transcervical treatment of symptomatic uterine fibroids (K173703). The Sonata system was previously known as Vizablate. FDA product codes: KNF, ITX, and IYO.

EVIDENCE SUMMARY

RENAL CELL CARCINOMA

BACKGROUND

Radical nephrectomy, partial nephrectomy, or nephron-sparing surgery remains the principal treatments of renal cell carcinoma (RCC).

RFA may be considered a treatment option when surgical excision is not an option such as the following:

- When preservation of renal function is necessary (e.g., in patients with marginal renal function, a solitary kidney, bilateral tumors)
- In patients with comorbidities that would render them unfit for surgery.
In patients at high risk of developing additional renal cancers (as in von Hippel-Lindau disease).

SYSTEMATIC REVIEWS

In their systematic review and meta-analysis, Uhlig (2019) compared oncologic, perioperative, and functional outcomes for partial nephrectomy (PN) with outcomes for various ablative techniques, including RFA and others, for small renal masses (mean diameter=2.53 to 2.84 cm). They identified 47 moderate-quality studies, mostly retrospective, published from 2005 to 2017, including one RCT. A total of 24,077 patients were included, of whom 15,238 received PN and 1,877 received RFA. The network meta-analysis used PN as the reference point. Cancer-specific mortality and local recurrence were calculated as incidence rate ratio. According to the meta-analysis, for RFA and PN, respectively, cancer-specific mortality was 2.03 and 1.00 (95% CI 0.81 to 5.08), local recurrence was 1.79 and 1.00 (95% CI 1.16 to 2.76), complications OR was 0.89 and 1.00 (95% CI 0.59 to 1.33), and renal function decline (mean difference in glomerular filtration rate) was 6.49 and 0.00 (95% CI 2.87 to 10.10). The overall results indicated that PN had better overall survival (OS) and local control over ablative techniques, but it was not significantly better for cancer-related mortality. In addition, ablation had fewer complications and better renal function outcomes. Across the studies included, patients treated by PN tended to be younger with less comorbidity compared with patients receiving thermal ablation—a consideration when assessing the outcomes for survival and local control.

A 2019 systematic review reported by Favi included a descriptive summary of ablative therapy for renal allograft tumors. The 28 studies that met inclusion criteria assessed RFA (n=78), cryoablation (n=15), MWA (n=3), HIFU (n=3), and irreversible electroporation (n=1) for mainly papillary renal cell carcinoma (RCC) and clear cell RCC. All but two neoplasms were stage T1a N0 M0. In this population, three cases of primary treatment failure, a single case of recurrence, and no cancer-related deaths were reported. Complication rate was mostly below 10% and graft function remained stable in the majority of patients. No meta-analyses were performed and due to the limited sample size the authors were not able to determine a clear benefit of one procedure over the others.

An AHRQ Evidence Report, most recently amended in 2016, included thermal ablation (RFA or cryoablation; surgical or image-guided) as an available management strategies for stage I or II RCC. The report noted that better oncologic outcomes were believed to be achieved with partial or radical nephrectomy; however, these procedures were associated with significantly higher complication rates than thermal ablation or active surveillance.

In 2014 Wang published a meta-analysis of 145 studies published through July 2013 comparing effectiveness and complications of radiofrequency ablation and partial nephrectomy (PN) for treatment of stage T1 renal tumors. The rate of local progression was greater with RFA than laparoscopic/robotic or open partial nephrectomy (4.6%, 1.2%, 1.9%, respectively; p<0.001.) RFA had more frequent minor complications than laparoscopic/robotic or open partial nephrectomy (13.8%, 7.5%, 9.5%, respectively; p<0.001). However, the rate of major complications was greater with open partial nephrectomy than laparoscopic/robotic partial nephrectomy or RFA (7.9%, 7.9%, 3.1%, respectively, p<0.001). Several limitations to this meta-analysis were discussed in the article. These included the limited follow-up duration of the included studies and the unavailability of the original study data. Despite the limitations, the data was sufficient for the authors to conclude that both RFA and PN were viable in terms of...
short-term outcomes and low complication rates. RFA showed a higher risk of local tumor progression but lower complication rates.

RANDOMIZED CONTROLLED TRIALS
Since the systematic reviews reported above, no additional randomized controlled trials evaluating RFA as a treatment for renal cell carcinoma were identified.

NONRANDOMIZED STUDIES
Published studies have consistently reported fairly high success rates at up to six years follow-up; two to five re-ablation sessions were often necessary to achieve 95% tumor necrosis.[6-29] Numerous case series, while unreliable, consistently suggest that the benefits of RFA outweigh the risks in patients for whom nephrectomy is not possible. Current studies suggest that physician specialty (i.e., interventional radiology, urology) and experience, and procedure approach (i.e., percutaneous, open, laparoscopic) may impact tumor recurrence and patient survival outcomes, and authors have recommended further study on these variables.

ADVERSE EVENTS
Reported complication rates have been low.[6-28, 30] Complications reported in the literature to date have included the following:

- Perinephric hematomas
- Hemorrhage
- Ureteral strictures
- Percutaneous urinary fistula
- Appendiceal perforation

BREAST TUMORS
BACKGROUND
The standard treatment for breast cancer is surgical excision by lumpectomy or mastectomy. Adjuvant radiation therapy, chemotherapy, and/or hormone therapy may also be used. If treated, fibroadenomas, benign tumors of the breast, are typically surgically excised.

SYSTEMATIC REVIEWS
Xia (2021) conducted a systematic review and meta-analysis of studies assessing RFA in patients with breast cancer and tumors that were 2 cm or smaller.[31] The primary endpoints of interest were technical success rate, complete ablation rate, and rate of complications. A total of 17 studies were identified, which accounted for 399 patients (401 lesions). Technical success rate ranged from 86.67% to 100% in the included studies; the pooled technical success rate was 99% (95% CI 98% to 100%). After RFA, the majority of patients underwent surgical tumor excision (65.74%, 261/397). The pooled complete ablation rate was 98% (95% CI 97% to 100%). The complication rate in the entire cohort was 6.8%; the most common complications were skin burn (2%), breast inflammation (1.5%), and infections (1%). The pooled complications rate was 2% (95% CI 1% to 4%). Local recurrence was reported in 10 studies (232 cases); there was no local recurrence reported after a median follow-up of 27 months in these patients. The authors noted that prospective studies evaluating the use of RFA alone are needed to validate the place in therapy.
In 2016, Chen reported results from a meta-analysis of clinical trials assessing the effect of radiofrequency ablation for breast cancer.[32] The authors pooled data from fifteen nonrandomized studies that were published between 2001 and 2012. Of the 15 studies, eight studies reported that the tumor size was <2 cm, five studies reported <3 cm, and the remaining two studies reported <5 cm; eleven studies reported complete ablation rate, from which pooled estimates were 89\% (95\% CI 85 to 93\%) of patients receiving RFA achieved a complete ablation. Five studies reported recurrence rate, from which pooled data suggest no local recurrence at a maximum follow-up of 76 months. A statistical test of publication bias showed no potential publication bias (Z=0.78, p=0.436). The analyses were limited by small sample size of the included studies, and heterogeneity in patient selection; the authors conclude large, well-designed studies are necessary.

In 2010, Zhao conducted a systematic review of 38 studies on ablation techniques for breast cancer treatment published from 1994 to 2009.[33] Nine of the studies reviewed focused on RFA for small breast tumors ranging in size from 0.5 – 7 cm. Tumor resection was performed immediately after ablation or up to four weeks after RFA. Complete coagulation necrosis rates of 76\% to 100\% were reported. These studies were limited to feasibility or pilot studies that were difficult to compare due to heterogeneous patient and tumor characteristics and energy sources. In addition, the studies were conducted in the research setting rather than in clinical practice. The authors concluded that RFA for breast cancer tumors was feasible but further studies with longer follow-up on survival, tumor recurrence and cosmetic outcomes are needed.

Similarly, another 2010 review of 17 studies by Soukup reported that RFA for the treatment of breast tumors was feasible and promising.[34] However, while minimal adverse effects and complications occurred with breast RFA, the authors noted that incomplete tumor ablation remained a concern. Additional studies of health outcomes and refinement of the procedure were recommended.

RANDOMIZED CONTROLLED TRIALS

No randomized controlled trials of RFA as a treatment for breast tumors were identified.

NONRANDOMIZED STUDIES

Ito (2018) retrospectively studied the safety and efficacy of percutaneous RFA of breast carcinomas in 386 patients from 10 institutions treated with RFA between 2003 and 2009.[35] Patients were followed for a median of 50 months and ipsilateral breast tumor recurrence was more frequent in patients with initial tumor sizes of 2 cm or more (10\% [3/30]) than those with initial tumors 2 cm or less (2.3\% [8/355]; p=0.015). Ipsilateral breast tumor recurrence rates five years after RFA were 97\%, 94\%, and 87\% in patients with initial tumor sizes of 1 cm or less, 1.1 to 2.0 cm, and greater than 2 cm, respectively. The authors concluded that RFA was safe for tumors of 2 cm or less. The retrospective design and lack of data on ipsilateral breast tumor recurrence for different types of chemotherapy and endocrine therapy and analyses to ascertain whether adjuvant chemotherapy or endocrine therapy influenced outcomes are the limitations of this study.

The efficacy and safety of using ultrasound-guided RFA for multiple breast fibroadenoma as an alternative to surgical resection were retrospectively analyzed by Li (2016).[36] From 2014 to 2016, 65 patients with 256 nodules were treated with ultrasound-guided RFA and complete ablation was achieved for 251 nodules (98.04\%) after the first month of treatment; after the first
and third months, tumor volume overall was reduced by 39.06% and 75.99%, respectively. The study reported minimal to no complications such as skin burns, hematoma, or nipple discharge. The retrospective design and short follow-up time limited the conclusions drawn from this study.

The remainder of the published evidence is primarily limited to nonrandomized studies with small numbers of patients. These studies preclude conclusions due to methodologic limitations such as non-random allocation of treatment and a lack of appropriate comparison groups.

Systematic reviews, retrospective studies, and observational studies have reported varied and incomplete ablation rates as well as concerns about postablation tumor cell viability. Long-term improvements in health outcomes have not been demonstrated. Additionally, available studies have not compared RFA with conventional breast-conserving procedures. For small breast tumors, further prospective study, with long-term follow-up, is needed to determine whether RFA can provide local control and survival rates compared with conventional breast-conserving treatment.

LUNG (PULMONARY) TUMORS

BACKGROUND

Surgery is the preferred treatment for primary non-small cell lung carcinoma (NSCLC). Patients with early-stage NSCLC who are not surgical candidates may be candidates for radiation treatment with curative intent. RFA is being investigated as a treatment of small primary lung cancers or lung metastases in patients who are not surgical candidates.

SYSTEMATIC REVIEWS

Chan (2021) published a systematic review and meta-analysis of CT-guided percutaneous ablation for stage I NSCLC. A total of eight studies with 792 patients met inclusion criteria. Statistically significant differences were identified for one- and two-year disease-free survival, favoring surgery OR 2.22, 95% CI 1.14 to 4.34; OR 2.60, 95% CI 1.21 to 5.57 respectively). No statistically significant differences between groups were identified for one- to five-year OS or cancer-specific survival or three- to five-year disease-free survival. According to the subgroup analysis, there was no statistically significant difference in OS between lobectomy and microwave ablation but patients treated with sublobar resection (wedge resection or segmentectomy) had significantly longer one- and two-year OS versus RFA (OR 2.85, 95% CI 1.33 to 6.10; OR 4.54, 95% CI 2.51 to 8.21, respectively).

In a 2013 Agency for Healthcare Research and Quality (AHRQ) Comparative Effectiveness Review on local nonsurgical therapies for stage I non–small-cell lung cancer (NSCLC), no comparative RFA studies were identified. The AHRQ report found available evidence is insufficient to draw conclusions on the comparative effectiveness of local nonsurgical therapies for NSCLC including RFA.

In a 2013 systematic review of RFA, surgical excision and stereotactic radiotherapy (SBRT) for colorectal cancer lung metastases, no randomized trials were identified and evidence was also insufficient to draw conclusions on the comparative effectiveness of these therapies.

A 2011 systematic review also reported low quality evidence consisting of nonrandomized observational case series with no control group. The review included 46 studies with a total of
2,905 ablations in 1,584 patients.\[52\] The mean tumor size of 2.8 ± 1.0 cm. Local recurrence occurred in 282 cases (12.2%) and ranged from 0% to 64% as reported in 24 studies. Overall survival rates ranged from 25% to 100% with a mean of 59.4% as reported in 21 studies with a mean of 17.7 ± 12.4 months follow-up. The mean cancer-specific survival rate was 82.6% as reported in 24 studies with a range of 55% to 100% with a mean of 17.4 ± 14.1 months follow-up. Mean overall morbidity was 24.6% and most commonly included pneumothorax, pleural effusion and pain. Mortality related to the RFA procedure was 0.21% overall. The authors concluded RFA for the treatment of lung tumors demonstrated promise but that higher quality studies comparing RFA to other local treatment options “are urgently needed.”

In a 2012 review of evidence from 16 studies, Bilal compared RFA to stereotactic ablative radiotherapy (SABR) in patients with inoperable early stage non-small cell lung cancer (NSCLC).\[53\] The authors found overall survival rates for RFA and SABR were similar in patients at one year (68.2 to 95% vs. 81 to 85.7%) and three years (36 to 87.5% vs. 42.7 to 56%). However, survival rates at five years were lower with RFA (20.1 to 27%) than with SABR (47%). Caution must be used in interpreting these findings drawn from comparisons of results from uncontrolled, case series and retrospective reviews.

RANDOMIZED CONTROLLED TRIALS

No randomized controlled trials of RFA as a treatment for pulmonary tumors were identified.

NONRANDOMIZED STUDIES

Current studies consist of small case series, retrospective reviews, or uncontrolled cohort studies which focused primarily on technical feasibility and initial tumor response.\[54-86\]

One larger nonrandomized case series was published in 2011. Huang prospectively followed 329 consecutive patients treated with RFA for lung tumors.\[87\] Complications were experienced by 34.3% (113) patients and was most commonly pneumothorax (19.1%). Overall survival at two and five years was 35.3% and 20.1%, respectively. The risk of local progression was not significantly different in tumors < 4 cm but became significant in tumors > 4 cm.

In 2015 de Baere review of a database from two cancer centers that included all consecutive patients (n=566) with lung metastases treated with RFA.\[88\] Median follow-up was 35.5 months (range 20 to 53 months) with 235 patients followed for more than two years. During follow-up, 176 patients died, of which 112 had progression of their lung tumor disease. Disease progression was also found in 227 of the 390 patients who were alive at last follow-up. Four year local efficacy was 89% and lung disease control was 44.1%. Median overall survival was 62 months. Limitations of this study included the lack of a control group, and the lack of consideration of the impact of adjuvant chemotherapy.

Study quality concerns include lack of long-term follow-up, significant interstudy heterogeneity in terms of study design, patient populations and RFA methods used, and non-uniformity of reporting and efficacy scoring criteria. Prospective comparison in an RCT would permit greater certainty for this finding but the studies are consistent with some effect of RFA on lung tumors.

ADVERSE EVENTS

Acute, delayed or recurrent pneumothorax is the most commonly reported complication of lung RFA for primary or metastatic tumors (30 to 56% of treatment sessions).\[79, 87, 89-92\] Most cases resolved without chest tube placement. Other complications reported in the literature to date...
OSTEOID OSTEOMAS

BACKGROUND

Osteomas usually heal spontaneously in three to four years and standard initial treatment includes medical management with NSAIDs. Invasive procedures including open surgery, laser photocoagulation, radiofrequency ablation, or core drill excision may be necessary if symptoms cannot be managed with NSAIDs.

SYSTEMATIC REVIEWS

Lindquester (2020) reported a systematic review of various thermal ablation techniques for the treatment of osteoid osteomas. Of the total of 36 studies that met inclusion criteria (n=1798 patients), 32 evaluated RFA, three evaluated cryoablation, and one evaluated microwave ablation. The overall success rate, defined as all ablations minus technical failures, clinical failures, and recurrences, was 91.9% (95% CI 91 to 93%). The rates of technical failure, clinical failure, and recurrence were 0.3%, 2.1%, and 5.6%, respectively. Complications occurred in 2.5% (95% CI 1.9 to 3.3%) of patients.

RANDOMIZED CONTROLLED TRIALS

No randomized controlled trials of RFA as a treatment for osteoid osteomas were identified.

NONRANDOMIZED STUDIES

Numerous nonrandomized uncontrolled case series have consistently suggested that the benefits of RFA outweigh the risks in patients who require treatment due to failed response to nonsurgical treatments.

SECTION SUMMARY

Despite the weaknesses in the published clinical evidence, RFA of osteomas has become a standard of care for osteomas that have failed standard treatments. This was based on the lower morbidity and quicker recovery time associated with the procedure compared with open surgery. The risk of osteoma recurrence with RFA is 5 to 10%; recurrent tumors can be retreated with RFA. There are minimal clinical trial data on the risks and benefits of RFA as initial treatment of osteoid tumors. Since most of these tumors heal spontaneously with medical treatment, the necessity of surgical intervention as initial treatment is unclear.

PALLIATION OF PAIN FROM BONE METASTASES

BACKGROUND

External beam irradiation is often the initial palliative therapy for osteolytic bone metastases. However, pain from bone metastases is refractory to radiation therapy in 20% to 30% of patients, while recurrent pain at previously irradiated sites may be ineligible for additional radiation due to risks of normal tissue damage. Other alternatives include hormonal therapy, radiopharmaceuticals such as strontium-89, and bisphosphonates. Less often, surgery or
Chemotherapy may be used for palliation and intractable pain may require opioid medications. RFA may be considered another alternative for palliating pain from bone metastases.

SYSTEMATIC REVIEWS

Mehta (2020) published a systematic review and meta-analysis of RFA for painful osseous metastases.[106] A total of 14 studies with 426 patients met inclusion criteria. The median pain reduction at a median follow-up of 24 weeks post-RFA was 67% (R²=-0.66, 95% CI -0.76 to -0.55, I²=71.24%). Pain scores were not significantly affected by primary tumor type or tumor size.

A systematic review reported by Gennaro (2019) assessed four percutaneous thermal ablation techniques for pain reduction in patients with bone metastases.[107] A total of eleven studies addressing RFA (n=3), MWA (n=1), cryoablation (n=2), and MRgFUS (n=5) were included (total n=364 patients). Mean pain reduction for all techniques combined ranged from 25 to 91% at four weeks and from 16 to 95% at 12 weeks. There were no complications in the MWA group while the MRgFUS group had the highest complication rate. Overall, the number of minor complications reported ranged from 0 to 59 and the number of significant adverse events ranged from 0 to 4.

RANDOMIZED CONTROLLED TRIALS

No randomized controlled trials of RFA as a treatment for palliation of pain from bone metastases were identified.

NONRANDOMIZED STUDIES

Levy (2020) conducted a global, multicenter, nonrandomized, prospective postmarketing study to evaluate the effectiveness of RFA in patients with painful osteolytic bone metastases.[108] Between October 2017 and March 2019, 134 ablations were performed in 100 patients (68% vs. 32% of the cohort had a single vs. multiple sites treated, respectively). The most common tumor location was thoracic (44%) followed by lumbar (33%). Patient outcomes including pain, pain interference, and quality of life were collected. Forty percent of the cohort did not participate through the six-month follow-up, with two additional discontinuations after six months. The most common reason for discontinuation was death (30 patients), which were all classified as related to the underlying malignancy. The primary endpoint evaluated was pain improvement, from baseline to three months. At baseline, the mean score for worst pain (measured by Brief Pain Inventory) for the entire cohort was 8.2. After RFA, worst pain significantly improved, with mean scores decreasing to 5.6, 4.7, 3.9, 3.7, and 3.5 at three days, one week, one month, three months, and six months, respectively (p<0.0001 for all visits). Immediate improvement in pain (≥ 2-point change in worst pain at the treatment site(s) three days after RFA) was achieved by 59% of patients. Four adverse events were reported, of which two resulted in hospitalization for pneumonia and respiratory failure, respectively.

Additional nonrandomized evidence is limited to data from small, poorly designed case series.[109-113] However, though small and uncontrolled, available studies consistently reported significant improvement in pain following RFA in patients who failed or were poor candidates for standard treatments. Clinical trial data is lacking for use of RFA as an alternative to conventional techniques for initial treatment of painful bony metastases.

ANGIOMYOLIPOMA
BACKGROUND

Angiomyolipomas (AMLs) or angiomyolipomata are rare benign tumors that contain blood vessels, smooth muscle, and fat. They are usually associated with the kidneys but may also be in the liver or other locations. They are more frequently seen in patients with tuberous sclerosis complex (TSC). These lesions are usually asymptomatic but may hemorrhage, particularly if large (4 cm or larger). Treatment consists of surveillance as long as the lesion remains small and asymptomatic. Treatment or prevention of hemorrhage may include surgical resection, arterial embolization, or laparoscopic or percutaneous ablation.

PUBLISHED STUDIES

Due to the rare nature of these tumors, there is limited published evidence on the tumor management. [114-119] The current studies have significant methodological limitations including retrospective records review, small size (n=4 to 32), heterogeneity of patients and treatment modalities, and short-term follow-up. However, the available studies consistently reported low rates of complications and high rates of successful ablation, generally without recurrence at mean follow-up ranging between 9 and 45 months. Some larger tumors (>3.5 cm) required two RFA sessions. Minor complications included transient perinephric hematoma, intercostal nerve transection. A patient in one early study developed a small skin metastasis at the electrode insertion site which was resected and did not recur.

SECTION SUMMARY

Because this is a rare tumor that is often identified incidentally and may not require treatment, it is unlikely that large randomized controlled trials or comparative studies will become available. Due to the risk of potentially life-threatening hemorrhage in large (≥4 cm) AMLs and the low rate of adverse effects, treatment of symptomatic or large lesions may be warranted.

HEAD AND NECK TUMORS

BACKGROUND

Tumors of the head and neck arise in the lip, oral cavity, pharynx, larynx, paranasal sinuses and salivary glands. Treatment depends on the location and extent of the disease. [120] Standard treatment for patients with early-stage disease (stage I or II) is single-modality with surgery or radiation therapy. The two modalities result in similar survival. Combined modality therapy is required for locally advanced disease. In patients with recurrent head and neck cancer, surgical salvage attempts are poor in terms of local control, survival and quality of life, and these recurrent tumors are often untreatable with standard salvage therapies. Palliative chemotherapy or comfort measures may be offered.

SYSTEMATIC REVIEWS RANDOMIZED CONTROLLED TRIALS

No systematic reviews or randomized trials evaluating the safety and effectiveness of RFA for treatment of head and neck tumors were identified.

NONRANDOMIZED STUDIES

Current published evidence is limited to poorly designed case series, feasibility, and retrospective studies that are considered unreliable due to lack of a control group for comparison and lack of randomization to control for bias. [121-125]
In addition to these methodological limitations, prospective case series included small numbers of patients. Small study populations limit the ability to rule out the role of chance as an explanation of study findings.

ADVERSE EVENTS

Complications and adverse events are reported to be uncommon, but are often severe. They are generally related to burning of local soft tissue (e.g., fistula formation).[121-124]

THYROID CANCER

BACKGROUND

Thyroid carcinoma is uncommon, with a lifetime risk of being diagnosed with thyroid carcinoma less than 1%. Thyroid carcinoma occurs two to three times more often in women than men. The main histological types of thyroid carcinoma include: 1) differentiated (including papillary, follicular, and Hürthle); 2) medullary; 3) anaplastic (aggressive undifferentiated tumor). All anaplastic thyroid carcinomas are considered stage IV and are almost uniformly lethal, however most deaths are from papillary, follicular, and Hürthle cell carcinomas, which account for nearly 95% of thyroid carcinoma cases. The treatment of choice for differentiated thyroid carcinoma is surgery followed by radioiodine in selected patients and thyroxine therapy in most patients. There is no effective therapy for anaplastic thyroid carcinoma; most are unresectable, but EBRT may improve local control and provide palliation. Surgical resection is the primary treatment choice for medically unresponsive, symptomatic benign thyroid tumors and thyroid carcinomas. However, techniques for ablation of thyroid tumors (eg, RFA, microwave ablation) are being investigated.

SYSTEMATIC REVIEW

Cho (2021) reported a systematic review and meta-analysis of five-year outcomes of thermal ablation for papillary thyroid microcarcinoma.[126] A total of three studies (including 207 patients) met inclusion criteria. No local tumor recurrence, lymph node metastasis, distant metastasis or delayed surgery were reported during a mean pooled 67.8-month follow-up. The pooled mean major complication rate was 1.2%, with no reported life-threatening or delayed complications. New tumors in the remaining thyroid gland were successfully treated by repeat thermal ablation in four patients.

Choi (2020) reported a systematic review of thermal ablation techniques for the treatment of primary papillary thyroid microcarcinoma.[127] A total of 11 studies of radiofrequency-, laser-, and microwave-ablation met inclusion criteria. The included 715 patients were pooled for analysis. There was significant between-study heterogeneity for complete disappearance (p<0.001, I² 99%), mean volume reduction (p<0.001, I² 93%), and volume reduction rate (p<0.001, I² 86%). A subgroup analysis showed heterogeneity of the complete disappearance proportion among the treatment modality (I² range 95 to 100%). The pooled estimates of complete disappearance, mean volume reduction, and volume reduction rate were 57.6% (95% CI 35.4 to 79.8), 73.5 mm³ (52.4 to 94.6 mm³), and 98.1% (95% CI 96.7 to 99.5), respectively. RFA showed the highest mean volume reduction rate (99.3%), followed by MWA (95.3%) and LA (88.6%; p<0.001). The pooled proportions of overall and major complications were 3.2% (95% CI 1.1 to 5.2) and 0.7% (95% CI 0 to 1.5), respectively.

RANDOMIZED CONTROLLED TRIALS

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
No new RCTs were published since those included in the systematic reviews summarized above.

NONRANDOMIZED STUDIES

Xiao (2021) published a retrospective study of RFA for solitary T1aN0M0 and T1bN0M0 papillary thyroid carcinoma.[128] The overall local tumor progression (LTP) rate was 3.82%. LTP and LTP-free survival rates were not significantly different between those with T1a and T1b disease. One patient with T1b disease developed transient recurrent laryngeal nerve injury. There was an 81.7\% rate tumor disappearance in those with T1a disease and 52.7\% in those with T1b disease (p<0.001).

Cao (2021) reported a multicenter retrospective study of thermal ablation for the treatment of solitary T1N0M0 papillary thyroid carcinoma.[129] A total of 847 patients were included, of whom 645 underwent MWA and 202 underwent RFA. Statistically significant reductions in tumor size were reported at six, nine, and twelve months (p<0.001). There was complete disappearance of tumors in 68\% of T1a patients and 64\% of T1b patients (p<0.001). Postablation disease progression occurred in 1.1\% of T1a patients and 1.7\% of T1b patients (p=0.54). The overall complication rate was 3.4\%.

In 2016, Kim reported on a comparative review of 73 patients with recurrent thyroid cancer smaller than 2 cm who had been treated with RFA (n=27) or repeat surgery (n=46).[130] RFA was performed in cases of patient refusal to undergo surgery or poor medical condition. Data were weighted to minimize potential confounders. The three-year recurrence-free survival rates were similar for RFA (92.6\%) and surgery (92.2\%, p=0.681). Posttreatment hoarseness rate did not differ between the RFA (7.3\%) and surgery (9.0\%) groups. Posttreatment hypocalcemia occurred only in the surgery group (11.6\%).

ADVERSE EVENTS

In 2017, Chung reported results of a systematic review and meta-analysis evaluating the safety of RFA for benign thyroid nodules and recurrent thyroid cancers.[131] Twenty-four studies were included, totalling 2,421 participants and 2,786 thyroid nodules. Overall, 41 major complications and 48 minor complications (as defined by the Society of Interventional Radiology) of RFA were reported, giving a pooled proportion of 2.38\% for overall RFA complications (95\% CI 1.42\% to 3.34\%) and 1.35\% for major RFA complications (95\% CI 0.89\% to 1.81\%). Subgroup analysis found major complication rates were significantly higher for malignant thyroid nodules than for benign. Major complications included voice change, nodule rupture, permanent hypothyroidism, and brachial plexus injury. Minor complications included pain, hematoma, vomiting, skin burns, and transient thyroiditis.

BENIGN THYROID TUMORS (NODULES)

Thyroid nodules that have been verified as benign using fine needle aspiration (FNA) may require treatment when they cause symptoms, such as compression. Multinodular thyroid or multinodular goiters are not addressed in this review.

SYSTEMATIC REVIEWS

In 2021, Monpeysen published a systematic review of RFA for the treatment of benign thyroid nodules.[132] The 17 included studies addressed RFA for the treatment of benign solid (nonfunctioning or autonomous) thyroid nodules with at least 18 months of follow-up. At 12-
months post-procedure, the volume reduction rate was 67% to 75% from a single procedure and 93.6% for nodules that received multiple ablations. The 12-month regrowth rate was reported between 0% and 34%.

Cho (2020) reported a systematic review of the efficacy of thermal ablation (RFA and laser ablation) for the treatment of benign thyroid nodules. The analysis demonstrated long-term maintenance (up to 36 months) of volume reduction. Further, RFA was found to be superior to laser ablation. The volume reduction rate for RFA at last follow up was 92.2%, whereas in the laser ablation group, the volume reduction rate peaked at 12 months (52.3%) and was at 43.3% at last follow up.

A 2019 systematic review and meta-analysis was reported by Trimboli on the efficacy of thermal ablation for benign non-functioning solid thyroid nodules. Twelve studies per therapy were identified addressing RFA and laser ablation, with three RCTs on RFA and four on laser ablation. The remainder were prospective and retrospective cohort studies. Overall there was high heterogeneity. Only studies with six months or longer follow-up were included and median follow-up was 12 months. The primary outcome was the volume reduction rate at 6, 12, 24, and 36 months. The volume reduction rate for the RFA group was 68%, 75%, and 87%, respectively, with insufficient 36-month reporting for analysis. The volume reduction rate for the laser ablation group was 48%, 52%, 45%, and 44%, respectively.

In 2014 Fuller reported on a systematic review and meta-analysis of studies on RFA for benign thyroid tumors. Included in the review were nine studies (five observational studies, four randomized studies) totaling 306 treatments. After RFA, statistically significant improvements were reported in nodule size reduction (29.77 mL; 95% CI -13.83 to -5.72), combined symptom improvement and cosmetic scores on the 0 to 6 scale (mean, -2.96; 95% CI -2.66 to -3.25) and withdrawal from methimazole (odds ratio, 40.34; 95% CI 7.78 to 209.09). Twelve adverse events were reported, two of which were considered significant but did not require hospitalization.

RANDOMIZED CONTROLLED TRIALS

No new RCTs were published since those included in the systematic reviews summarized above.

ADVERSE EVENTS

See the systematic review above by Chung (2017) that addressed the safety of RFA for benign thyroid nodules and recurrent thyroid cancers and reported significantly higher major complication rates for malignant thyroid nodules than for benign nodules.

CHOLANGIOCARCINOMAS

BACKGROUND

Cholangiocarcinomas are tumors that originate in the bile duct epithelium; 90% are adenocarcinomas. Intrahepatic cholangiocarcinomas (ICC) are located within the hepatic parenchyma and are reviewed under Ablation of Primary and Metastatic Liver Tumors, Surgery, Policy No. 204 (see Cross References for a link to the policy). They may also be referred to as peripheral cholangiocarcinomas. Extrahepatic cholangiocarcinomas (ECC) are more common than intrahepatic cholangiocarcinoma and are located within the extrahepatic bile duct. Complete resection with negative margin is potential curative, though recurrence is
common and most cases are unresectable due to advanced disease when diagnosed. For unresectable or metastatic cholangiocarcinomas at any location, the primary treatment may include chemotherapy, treatment within a clinical trial, or best supportive care. RFA and other locoregional therapies may be an option. Biliary drainage with biliary stenting may be warranted for unresectable or metastatic extrahepatic disease. Liver transplantation is potentially curative in carefully selected patients with lymph node negative, nondisseminated locally advanced hilar cholangiocarcinomas and otherwise normal biliary and hepatic function or underlying liver disease precluding surgery.

SYSTEMATIC REVIEWS AND RANDOMIZED CONTROLLED TRIALS

No systematic reviews or randomized controlled trials regarding radiofrequency ablation for the treatment of extrahepatic cholangiocarcinomas were identified.

NONRANDOMIZED STUDIES

The evidence for ECC consists of a single short-term case series.[145] This study included 11 patients with hilar ECC. At one-month follow-up after RFA, the reduction in tumor size was 30% in six tumors, 20% in two tumors, and size was unchanged in three tumors. At six months following RFA, the overall size reduction was 35%, with the largest reduction 60%. Overall survival ranged from 10-30 months.

UTERINE FIBROIDS (LEIOMYOMAS OR MYOMAS)

BACKGROUND

Uterine fibroids, also known as leiomyomas or myomas, are benign smooth muscle tumors of the uterus occurring in women during their reproductive years. They frequently occur in multiples, and the tumor location within the uterus is often used to describe the fibroids (intramural, submucosal, subserosal, or cervical myomas). Surgery, including hysterectomy and various myomectomy procedures, is considered the criterion standard treatment for symptom resolution. There has been long-standing research interest in developing minimally invasive alternatives for treating uterine fibroids, including procedures that retain the uterus and allow for future childbearing. Various techniques to induce myolysis have also been studied including Nd:YAG lasers, bipolar electrodes, cryomyolysis, and radiofrequency ablation. With these techniques, an energy source is used to create areas of necrosis within uterine fibroids, reducing their volume and thus relieving symptoms.

SYSTEMATIC REVIEWS

Arnreiter and Oppelt reported on the safety and efficacy of transcervical ultrasound-guided RFA using the Sonata system in a 2021 systematic review.[146] A total of 10 studies met inclusion criteria, all of which were rated as fair quality on the Newcastle Ottawa Scale (NOS). The reported reduction in total and perfused myoma volume was 63.2% and 64.5%. Clinically meaningful reduction in menstrual blood loss after 12 months was achieved in 87.2% of patients. Symptom Severity Scores dropped by 28.8 ± 19.3, 23.3 ± 23.7, and 23.7 ± 19.4 points at three, six, and twelve months and Health-Related Quality of Life Scores increased to 77.5 ± 22.0, 82.8 ± 19.0, and 83.3 ± 20.5 points. The reintervention rate at an average of 64 months post-ablation was 11.8%. Time to return to activities of daily life was 2.9 ± 2.5 days. There were three reported pregnancies following ablation, all of which were without complications.
Bradley (2019) performed a systematic review and meta-analysis of RFA for the treatment of uterine fibroids.\footnote{147} A total of 32 articles representing 20 studies of percutaneous laparoscopic (19 articles; Accessa device; n=461 patients), transvaginal (8 articles; n=579 patients), and transcervical RFA (5 articles; Sonata device; n=214 patients) met inclusion criteria. The number of patients ranged from 11 to 153 and the mean follow-up ranged from in-hospital to 64 months. Study quality was rated as good or fair for 19 of 20 studies. A meta-analysis was conducted of 1,283 patients at the 12-month follow-up. The weighted mean time to discharge was 8.2 hours (95% CI 6.3 to 10.0 hours) and the weighted mean time to normal activities was 5.2 days (95% CI 3.3 to 7.1 days). There was a decrease in fibroid volume of 66%, an increase in health-related quality of life by 39 points, and a decrease in symptom severity score of 42 points (all p<0.001 versus baseline). The annual cumulative rates of reintervention due to fibroid-related symptoms were 4.2%, 8.2%, and 11.5% at one, two, and three years, respectively. Complication reporting within the included studies was highly inconsistent and inadequate and therefore was not reported in this systematic review. However, the authors noted that no serious procedural complications such as death or iatrogenic injury to the bowel, bladder, or ureter were reported in any study. There were no statistically significant differences across RFA approaches for reintervention rates or fibroid volume reduction, but procedure time was significantly different (all pairwise comparisons p≤0.002), with laparoscopic being longest (73 minutes) followed by transcervical (44 minutes) and transvaginal (24 minutes).

A prospective observational study by Rey (2019) assessed the effectiveness of transvaginal ultrasound-guided RFA of myomas (TRFAM) in reducing tumor volume and eliminating metrorrhagia associated with myomas.\footnote{148} The study included 205 women with symptomatic type II/III uterine submucosal or intramural cavity-distorting myomas undergoing RFA. The preoperative mean standard deviation (SD) volume of the myomas was 122.4 (182.5) cm3 (95% CI 82.1 to 162.8). Mean myoma volume decreased significantly at one (85.2 \text{[147.9]} cm3; p=0.001), three (67.3 \text{[138.0]} cm3; p=0.001), six (59.3 \text{[135.3]} cm3; p=0.001, and 12 months (49.6 \text{[121.4]} cm3; p=0.001). At 12 months, the mean volume reduction was 60% compared with preoperative volume. All patients returned to normal menstruation at a mean follow-up of three months and 12 months. Of the 205 patients, 201 (98.04%) were satisfied with the procedure. The investigators conceded that a larger population with a longer follow-up is needed, but their study suggests that transvaginal ultrasound-guided RFA of myomas TRFAM is effective and safe for treating select patients with metrorrhagia secondary to myomas.

A systematic review and meta-analysis by Sandberg (2018) evaluated the risk of reintervention for hysterectomy and QOL after uterine-sparing interventions for fibroids.\footnote{149} Risk of reintervention at 12 months was 0.3% for radiofrequency volumetric thermal ablation (RFVTA) compared with 3.6% for UAE and 1.1% for myomectomy. Symptom severity and QOL scores were similar for the three treatments. Only one RFVTA study was identified on reintervention risk at 36 months; none was identified on reintervention risk at 60 months.

A systematic review by Havryliuk (2017) that did not separate outcomes by the length of follow-up found a reintervention rate of 5.2% after RFVTA (four studies, 12- to 36-month follow-up) compared to 4.2% after myomectomy (six studies, 12- to 52-month follow-up).\footnote{150} There was no significant difference in complication rates between RFVTA (6.3%) and myomectomy (7.9%). The length of stay after myomectomy was two days (range 0.5 to 6.0). No data were provided on length of stay after RFVTA.

Lin (2018) conducted a meta-analysis of improvement in symptom severity, QOL, and reintervention after laparoscopic radiofrequency ablation.\footnote{151} The review included one RCT
and seven non-comparative trials. The recurrence risk at a weighted mean follow-up of 24.65 months (range, 3 to 36 months) was 4.4%. Improvements in symptoms and QOL were maintained out to 24 months in three studies and out to 36 months in one study. No studies were identified that had follow-up longer than 36 months.

RANDOMIZED CONTROLLED TRIALS

In Germany in 2014, Brucker published a single-center manufacturer-sponsored randomized controlled trial (RCT) comparing radiofrequency volumetric thermal ablation (RFVTA) with the Acessa system to laparoscopic myomectomy. The trial included 51 premenopausal women at least 18 years old with symptomatic uterine fibroids less than 10 cm in any diameter and a uterine size of less than 17 weeks of gestation. Pregnancy and lactation were exclusion criteria. Prior to randomization, all women underwent laparoscopic ultrasound mapping. Data on 50 of the 51 women were analyzed. The primary study outcome, mean (SD) time to hospital discharge, was 10.0 (5.5) hours in the RFVTA group and 29.9 (14.2) hours in the myomectomy group. The criterion for noninferiority (no more than 10% longer hospital stay with RFVTA than laparoscopic myomectomy) was met at a significance level of p<0.001. All patients in the myomectomy group were hospitalized overnight; although not explicitly stated, this appeared to be the standard procedure at the study hospital. In the Acessa group, there was one unplanned hospitalization due to unexplained vertigo and four hospitalizations as standard procedure because the patients also underwent adhesiolysis.

Secondary outcomes of the RCT were reported in a 2015 publication by Hahn (12-month outcomes) and a 2016 publication by Kramer (24-month outcomes). Analysis was per protocol and 43 (84%) of 51 randomized participants were available for both the 12- and 24-month analyses. Each publication reported on 12 symptoms: heavy menstrual bleeding, increased abdominal gait, dyspareunia, pelvic discomfort/pain, dysmenorrhea, urinary frequency, urinary retention, sleep disturbance, backache, localized pain, and “other symptoms” (not specified). At 12 months, no participants reported four of the symptoms (dyspareunia, urinary retention, sleep disturbance, uterine pain) and there were no statistically significant between-group differences in the frequency of any of the remaining eight symptoms (at the p<0.05 level). The most commonly reported symptom at 12 months (heavy menstrual bleeding) occurred in seven (33%) of women in the RFVTA group and two (9%) of women in the laparoscopic myomectomy group (p=0.069) after controlling for baseline bleeding. At 24 months, no participants reported urinary retention or “other” symptoms, and there were no statistically significant between-group differences in any of the 10 reported symptoms. The most commonly reported symptom at 24 months (dysmenorrhea) occurred in eight (38%) in the RFVTA group and in seven (32%) in the laparoscopic myomectomy group (p=0.67). Patients were also assessed using several validated questionnaires (eg, the Uterine Fibroid Symptom and Quality of Life). There were no statistically significant between-group differences at 12 or 24 months on these validated questionnaires. In addition, the authors described pregnancy outcomes. Three patients in the RFVTA group conceived and all delivered a healthy neonate; the number of women who desired to become pregnant was not reported.

Limitations of the 12- and 24-month analyses included lack of intention-to-treat analysis and failure to describe secondary study hypotheses and statistical analyses clearly. The RCT was relatively small in size and thus may have been underpowered to detect clinically meaningful differences in secondary outcomes, so these results do not rule out potential differences between treatments.

NONRANDOMIZED STUDIES
Yüce (2020) reported on 35 patients treated with percutaneous RFA.[155] The fibroid volume was reduced significantly compared to baseline at 3, 6, and 12 months (p<0.001), and Visual Analogue Scores were significantly reduced at 6 and 12 months (p<0.01).

A large retrospective case series was published by Yin in 2015.[156] The study was conducted in China and used Chinese gynecologic radiofrequency ablation devices. It included 1216 consecutive patients treated at a single hospital over a 10-year period. All fibroids were less than 6 cm in size and mean diameter was 4.5 cm (range, 3.1 to 6.0 cm). Mean follow-up time was 36.5 months. Among the 476 premenopausal women, the mean reduction in myoma diameter was 2.7 cm at six months, 2.4 cm at 12 months, and 2.2 cm at 24 months. Among the 740 peri- or postmenopausal women, mean reduction was 3.3 cm at six months, 2.3 cm at 12 months, and 2.3 cm at 24 months. Myoma diameter was significantly lower at each of these time-points posttreatment compared with pretreatment. In the premenopausal subgroup, the proportion of women with dysmenorrhea decreased from 43.7% at baseline to 7.6% at 12 months and to 6.7% at 24 months; rates were significantly lower after treatment.

In 2013, Chudnoff published a prospective industry-funded multicenter study.[157] It included 135 premenopausal women at least 25 years old with symptomatic uterine fibroids, a uterine size of 14 weeks of gestation or less, and six or fewer treatable fibroids, with no single fibroid larger than 7 cm. In addition, women desired to preserve their uteri but not to have children in the future. RFVTA was conducted using the Acessa system. According to the study protocol, most fibroids less than 1 cm in diameter were not treated. The primary efficacy outcomes were change in the volume of menstrual bleeding and the surgical reintervention rate after 12 months. A total of 127 (94%) of 135 women completed the study. From baseline to 12 months, 53 (42%) of 127 women (95% confidence interval, 32% to 49%) experienced at least a 50% reduction in the volume of menstrual bleeding. Most women (104/127 [82%]) experienced a decrease in menstrual bleeding at 12 months. Only one woman underwent a surgical reintervention through 12 months (this woman had been lost to follow-up and was not included in the other efficacy analyses). Three-year outcomes were reported by Berman in 2014.[158] A total of 104 (77%) of the 135 women who participated in the study were evaluable at three years. Fourteen underwent reintervention over the three years to treat uterine fibroid symptoms. Eleven women had hysterectomies, two had myomectomies, and one had uterine artery embolization. Bleeding outcomes were not reported at three years, but the authors stated that quality-of-life variables improved from baseline to 36 months and that most of the improvement in quality of life occurred within three months of the procedure.

MISCELLANEOUS TUMORS

BACKGROUND

The standard treatment of miscellaneous tumors depends on the type, location, and extent of the cancer. A large number of phase II or III clinical trials involving the use of RFA in the treatment of primary or metastatic cancers are underway.[159]

PUBLISHED STUDIES

Nadeem (2021) published a systematic review of RFA for adrenal tumors. A total of 15 studies including 292 patients were included. No comparative results were reported. Overall, cumulative technical success, primary technique efficacy, and secondary technique efficacy rates were 99%, 95.1% and 100%, respectively. Local progression rates at three, six, and 12
months were 20.3%, 26.3%, and 29.3%, respectively, and overall survival rates at six, 12, and 18 months were 81.8%, 59.6%, and 62.9%. The intraprocedural complication rate was 30.2%. Imperatore (2020) and Dhaliwal (2020) performed systematic reviews of RFA of pancreatic neuroendocrine tumors and unresectable pancreatic ductal adenocarcinoma (PDAC), respectively.[160, 161] Zhang (2020) published a systematic review of various ultrasound-guided ablation techniques for the treatment of solid pancreatic tumors.[162] Additionally, a systematic review by Rombouts (2015) examined studies of ablative therapies, including RFA, in patients with locally advanced pancreatic cancer.[163] No RCTs were identified in any of these systematic reviews, and conclusions are limited by the sparse evidence available on RFA in this setting.

Thomson (2019) published a systematic review on non-surgical treatments for Morton’s neuroma.[164] A total of 22 studies, addressing nine non-operative treatment modalities, met inclusion criteria. In addition to RFA, treatment modalities included corticosteroid injection, alcohol injection, extra-corporeal shockwave therapy (ESWT), cryoablation, capsaicin injection, Botulinum toxin, orthosis and YAG laser therapy. All showed statistically significant improvements, but the pain-relieving results for alcohol injection were only short-term and orthotics, capsaicin injections, cryoablation, Botulinum toxin, RFA and ESWT had limitations to their application.

The remainder of the current published evidence on RFA for other tumors is limited to unreliable data from small case series and retrospective reviews. Evidence from these studies is considered unreliable due to methodological limitations such as non-random allocation of treatment and a lack of appropriate comparison groups.[121, 136, 137, 165-180]

PRACTICE GUIDELINE SUMMARY

NATIONAL COMPREHENSIVE CANCER NETWORK

The National Comprehensive Cancer Network (NCCN) guidelines for thyroid carcinoma (v.3.2021) state that for papillary, Hurthle Cell, or follicular carcinoma with locoregional recurrence, surgery is preferred if resectable, and/or local therapies when available, including RFA.[181] For the same subtypes of thyroid carcinoma, RFA may also be considered for structurally persistent/recurrent locoregional or distant metastatic disease when not amenable to RAI therapy. In addition, consideration of local therapies, including RFA, is recommended for bone metastases if symptomatic or asymptomatic in weight-bearing sites. (category 2A)

NCCN guidelines for colon cancer (v.3.2021) indicate that for metastases, “ablative techniques may be considered alone or in conjunction with resection. All original sites of disease need to be amenable to ablation or resection.”[182] The guidelines also state that “ablative techniques can also be considered [in patients whose primary colon tumor was resected for cure when metastatic lung tumors are] unresectable and amenable to complete ablation” (category 2A). “

NCCN guidelines for kidney cancer (v.4.2022) indicate RFA is an ablative option for the treatment of kidney cancer in select patients with clinical stage T1 lesions, though ablative techniques have shown higher local recurrence rates than surgery and may require more treatments.[183] RFA is also an option for relapse or Stage IV and in select patients (e.g., elderly patients, others) with competing health risks.
NCCN guidelines for the treatment of non-small cell lung cancer (v.1.2022) state: “For medically operable disease, resection is the preferred local treatment modality (other modalities include SABR, thermal ablation such as radiofrequency ablation and cryotherapy.”[184]

AMERICAN COLLEGE OF RADIOLOGY

The American College of Radiology (ACR) Appropriateness Criteria® (updated in 2019) consider RFA to be an alternative to partial nephrectomy for small (<4 cm) RCC tumors.[185]

The 2014 ACR Appropriateness Criteria on early-stage NSCLC that current evidence from a number of retrospective series involving varied patient populations reported a wide range of responses to RFA, ranging from 38% to 93%. Primary tumor relapse rate after RFA ranged from 8% to 43% and two-year cancer-specific survival after RFA ranged from 57% to 93%, with three-year OS of 15% to 46%. Predictors of complete response included smaller tumor size metastases, and ablation zone four times the tumor diameter. The document quoted the 2012 ACCP/STS guidelines[187] summarized below.

AMERICAN COLLEGE OF CHEST PHYSICIANS

The American College of Chest Physicians (ACCP) guidelines on the treatment of stage I and II NSCLC indicate RFA has been used effectively in clinical stage 1 NSCLC. Therefore, in medically inoperable patients, peripheral NSCLC tumors less than 3 cm may be treated with RFA.[188]

The ACCP also joined with the Society of Thoracic Surgeons (STS) to develop consensus guidelines on the treatment of high-risk patients with stage I NSCLC.[187] These consensus guidelines indicate RFA is an alternative treatment option in patients who are not surgical candidates due to severe medical comorbidity.

AMERICAN THYROID ASSOCIATION

The 2021 American Thyroid Association (ATA) Guidelines for Management Of Patients With Anaplastic Thyroid Cancer state that local therapy (including RFA) is a reasonable option for oligo-progressive metastases “to postpone the need to change otherwise beneficial systemic therapy.”[189]

AMERICAN UROLOGICAL ASSOCIATION

The 2017 American Urological Association (AUA) Guidelines state that “Physicians should consider TA [thermal ablation] as an alternate approach for the management of cT1a renal masses <3 cm in size.” and “Both radiofrequency ablation and cryoablation are options for patients who elect thermal ablation.” Both are rated as “Conditional Recommendation; Evidence Level Grade C.”[190]

AMERICAN COLLEGE OF OBSTETRICIANS AND GYNECOLOGISTS

The American College of Obstetricians and Gynecologists (ACOG) Practice Bulletin #96 (now #228), Management of Symptomatic Uterine Leiomyomas states “Laparoscopic radiofrequency ablation can be considered as a minimally invasive treatment option for the management of symptomatic leiomyomas in patients who desire uterine preservation and are counseled about the limited available data on reproductive outcomes.”[191]
The American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical published clinical practice guidelines, updated in 2016, for the diagnosis and management of thyroid nodules provides the following recommendations: “Consider laser or radiofrequency ablation for the treatment of solid or complex thyroid nodules that progressively enlarge, are symptomatic or cause cosmetic concern [BEL 2, GRADE C]. Repeat FNA for cytologic confirmation before thermal ablation treatment [BEL 3, GRADE B].” BEL2 indicates a level of evidence that includes RCTs with limited body of data and well-conducted prospective cohort studies and meta-analyses of cohort studies and BEL3 indicates a level of evidence that includes methodologically flawed clinical trials and observational studies.

SUMMARY

RENNAL CELL CARCINOMA

Although there are currently no high-quality studies of radiofrequency ablation (RFA) of renal cell carcinoma (RCC), the overall body of published evidence suggests RFA may be beneficial in the short- to mid-term for small (4 cm or smaller), localized RCCs in patients who are not considered candidates for partial or complete surgical removal of the kidney. Therefore, RFA may be medically necessary for small RCCs in patients who are not surgical candidates or when preservation of kidney function is necessary, such as in patients with only one kidney.

Surgical excision is the preferred treatment for renal cell carcinoma (RCC) in patients who are considered to be healthy enough for surgery. There is insufficient evidence to determine whether radiofrequency ablation (RFA) is effective as surgical excision for treatment of RCC tumors. Therefore, RFA is considered investigational for treatment of RCC tumors for which surgical resection is an option.

BREAST TUMORS

There is insufficient evidence to determine the effectiveness of radiofrequency ablation for treatment of benign or malignant breast masses. Therefore, this treatment is considered investigational for the treatment of these tumors.

LUNG TUMORS

Surgical resection is the treatment of choice for primary non-small cell lung cancer (NSCLC) or metastatic tumors in the lung. For those patients who are unable to tolerate surgery, radiofrequency ablation (RFA) may be a treatment option in certain cases. While available studies are limited by study design, accumulating evidence suggests that RFA may be similar to surgery in survival rates, and rates of procedure-related complications and mortality. Therefore, in patients with NSCLC or metastatic tumors in the lung who are ineligible for surgical treatment, RFA may be medically necessary when the policy criteria are met. There is not enough evidence to show that radiofrequency ablation (RFA) is effective as alternative treatments when criteria are not met. Therefore, RFA is considered investigational when the policy criteria are not met.
OSTEOID OSTEOMAS

Although the published evidence is limited to studies of lower methodological quality, radiofrequency ablation (RFA) of osteomas has become a standard of care based on expert opinion that the potential benefits of RFA outweigh risks in patients with osteoid tumors who have failed nonsurgical treatments. Therefore, RFA may be medically necessary for select patients when policy criteria are met.

The current preferred treatment of osteoid osteomas is non-surgical medical treatment. There is insufficient evidence to determine the effectiveness of radiofrequency ablation (RFA) for initial (first-line) treatment of osteoid tumors. RFA is, therefore, considered investigational as initial treatment of these tumors in patients who have not undergone standard medical management.

ANGIOMYOLIPOMAS

The current published evidence on radiofrequency ablation (RFA) of angiomyolipomas (AMLs) is limited to studies of lower methodological quality. However, because these tumors are rare, it is unlikely that evidence from large comparative studies will become available. Given the potential for life-threatening hemorrhage from large AMLs (4 cm or larger), and the consistent reports that the potential benefits of treatment outweigh any risks, RFA may be medical necessary to treat symptomatic or large asymptomatic AMLs. There is not enough evidence to show that radiofrequency ablation (RFA) is effective as alternative treatments when criteria are not met. Therefore, RFA of asymptomatic AMLs smaller than 4 cm is considered investigational.

PALLIATION OF PAIN FOR BONE METASTASES

The current evidence for radiofrequency ablation (RFA) for treatment of painful metastatic tumors in the bone is limited to studies of lower methodological quality; however, these studies have consistently reported significant improvement in pain following RFA in patients who have failed or are poor candidates for standard treatments. In light of this evidence, the unlikelihood of randomized controlled trials in these patients, and the lack of treatment options, the potential benefits of RFA appear to outweigh risks. Therefore, RFA may be medically necessary in patients with painful metastatic bone lesions who have failed or are poor candidates for standard treatments.

Because of the lack of data on the effectiveness of radiofrequency ablation (RFA) for initial (first-line) treatment of painful bony metastases, this indication is considered investigational.

HEAD AND NECK CANCERS

There is insufficient evidence to determine whether radiofrequency ablation (RFA) is effective for treatment of tumors of the head and neck. Therefore, RFA is considered investigational for the treatment of head and neck cancers.

THYROID TUMORS

Radiofrequency ablation (RFA) appears to be a safe alternative to more invasive surgical treatment for benign thyroid tumors. In addition, clinical guidelines based on evidence
recommend this treatment. Therefore, RFA may be considered medically necessary for the treatment of benign thyroid tumors (nodules) when criteria are met.

There is not enough evidence to show that radiofrequency ablation (RFA) is safe and effective for benign thyroid tumors that do not meet the criteria. Therefore, RFA is considered investigational for the treatment of benign thyroid tumors (nodules) when criteria are not met.

While radiofrequency ablation (RFA) has been shown to reduce the size of malignant thyroid tumors and improve clinical symptoms, complications can be common. The available evidence is insufficient to determine whether any beneficial effects of RFA outweigh the risks. Therefore, RFA for the treatment of malignant thyroid tumors is considered investigational.

UTERINE FIBROIDS

There is enough research to show that radiofrequency ablation (RFA) may improve health outcomes for people with uterine fibroids. Additionally, clinical guidelines based on evidence from the American College of Obstetricians and Gynecologists (ACOG) recommend this treatment option. Therefore, RFA may be considered medically necessary for treating uterine fibroids when criteria are met.

There is not enough research to show that radiofrequency ablation (RFA) improves health outcomes for people with uterine fibroids when policy criteria are not met. Therefore, RFA is considered investigational for the treatment of uterine fibroids when policy criteria are not met.

MISCELLANEOUS TUMORS

There is insufficient evidence to determine whether radiofrequency ablation (RFA) is effective for treatment of other tumors. Therefore, RFA is considered investigational for all other tumors.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

152. SY Brucker, M Hahn, D Kraemer, FA Taran, KB Isaacson, B Kramer. Laparoscopic radiofrequency volumetric thermal ablation of fibroids versus laparoscopic...

189. KC Bible, E Kebebew, J Brierley, et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid. 2021;31(3):337-86. PMID: 33728999

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>20982</td>
<td>Ablation therapy for reduction or eradication of 1 or more bone tumors (eg, metastasis) including adjacent soft tissue when involved by tumor extension, percutaneous, including imaging guidance when performed; radiofrequency</td>
</tr>
<tr>
<td></td>
<td>31641</td>
<td>Bronchoscopy, rigid or flexible, including fluoroscopic guidance, when performed; with destruction of tumor or relief of stenosis by any method other than excision (eg, laser therapy, cryotherapy)</td>
</tr>
<tr>
<td></td>
<td>32998</td>
<td>Ablation therapy for reduction or eradication of 1 or more pulmonary tumor(s) including pleura or chest wall when involved by tumor extension, percutaneous, including imaging guidance when performed, unilateral; radiofrequency</td>
</tr>
<tr>
<td></td>
<td>50542</td>
<td>Laparoscopy, surgical; ablation of renal mass lesion(s), including intraoperative ultrasound guidance and monitoring, when performed</td>
</tr>
<tr>
<td></td>
<td>50592</td>
<td>Ablation, one or more renal tumor(s), percutaneous, unilateral, radiofrequency</td>
</tr>
<tr>
<td></td>
<td>58674</td>
<td>Laparoscopy, surgical, ablation of uterine fibroid(s) including intraoperative ultrasound guidance and monitoring, radiofrequency</td>
</tr>
<tr>
<td></td>
<td>0404T</td>
<td>Transcervical uterine fibroid(s) ablation with ultrasound guidance, radiofrequency</td>
</tr>
</tbody>
</table>

Date of Origin: December 1998
Percutaneous Angioplasty and Stenting of Veins

Effective: January 1, 2022

Next Review: September 2022
Last Review: November 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Dilation and/or stent placement in veins is intended to restore blood flow in a narrowed or collapsed vein.

MEDICAL POLICY CRITERIA

Note: This policy addresses percutaneous angioplasty and stenting of veins only. This policy does not address percutaneous angioplasty and stenting of peripheral arteries, including repair of aneurysms, which may be considered medically necessary. Extracranial carotid angioplasty is addressed in a separate policy (see Cross References section).

I. Percutaneous transluminal angioplasty, with or without stenting, may be considered medically necessary for the treatment of venous stenoses in the following instances:

A. Stenotic lesions of arteriovenous dialysis fistulas and grafts, and ipsilateral venous stenosis in the outflow of a functioning dialysis fistula and graft

B. Superior or inferior vena cava syndrome with significant symptoms, from either extrinsic compression or intrinsic stenosis/occlusion [when standard treatments (i.e., radiation and/or chemotherapy) have failed]
C. Left iliac vein compression syndrome (May-Thurner Syndrome)
D. As an adjunct to prior or concurrent ipsilateral first rib resection for venous thoracic outlet syndrome due to persistent extrinsic compression (Paget-Schroetter syndrome) documented by pre-procedure imaging (i.e., ultrasound, venography, CT, or MRI)
E. Pulmonary vein stenosis
F. Thrombotic obstruction of major hepatic veins (Budd-Chiari syndrome)
G. Post-operative venous narrowing due to repair of sinus venosus atrial septal defect
H. Pulmonary artery stenosis and/or hypoplasia
I. Venous obstruction of an atrial baffle following Mustard or Senning repair of transposition of the great arteries
J. Symptomatic venous occlusion due to electrical device lead or central line placement
K. Portal vein stenosis in a liver transplant recipient

II. The use of angioplasty and/or endoprostheses for creation of intrahepatic shunt connections between the portal venous system and hepatic vein may be considered medically necessary.

III. Percutaneous transluminal angioplasty, with or without stenting, is considered investigational for all other venous indications, including but not limited to:
 A. Deep vein thrombosis, venous stenosis, or venous insufficiency that is not related to the medically necessary indications above (I.A.- K.)
 B. Chronic cerebrospinal venous insufficiency in multiple sclerosis or other conditions
 C. Venous sinus obstruction or occlusion in idiopathic intracranial hypertension

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Documentation of symptoms, associated diagnoses and treatments

CROSS REFERENCES

1. Extracranial Carotid Angioplasty/Stenting, Surgery, Policy No. 93

BACKGROUND

PERCUTANEOUS TRANSLUMINAL ANGIOPLASTY OF THE VEINS
Percutaneous transluminal angioplasty (PTA) of the veins is a procedure that has been used as an alternative to open vascular surgery in order to restore blood flow through narrowed veins. Techniques may include balloon angioplasty, laser angioplasty, and stent placement.

INTRAVASCULAR STENTS

Intravascular stents are used as an adjunct to angioplasty to prevent vessel wall collapse. They can be placed via transluminal catheters or placed with catheters during open vascular procedures. Drug-eluting stents are intended to prevent restenosis by reducing the growth of neointimal tissue. A number of different drugs are being evaluated for this use, including paclitaxel and sirolimus. These stents are coated with a mixture of synthetic polymers blended with the drug. A second coat of drug-free polymers is then added to serve as a diffusion barrier, thus allowing the gradual release of drug to the precise site of interest while avoiding systemic side effects.

ILIAC VEIN COMPRESSION SYNDROME

Iliac vein compression syndrome (IVCS) is deep vein thrombosis (DVT) that occurs as a result of compression of the left common iliac vein between the overlying right common iliac artery and the body of the fifth lumbar vertebra. This syndrome is relatively uncommon. If DVT occurs, it is treated with anticoagulation therapy. However, the underlying mechanical compression must be treated with surgery or stent placement. Left untreated it may result in recurrent DVT or postthrombotic syndrome (PTS) characterized by chronic swelling and pain in the affected extremity. Some patients also develop varicosities and stasis ulcers. This condition may also be referred to by other terms including but not limited to May-Thurner syndrome, non-thrombotic iliac vein lesions (NIVL), and Cockett syndrome.

PROXIMAL UPPER EXTREMITY VENOUS THROMBOSIS

Proximal upper extremity venous thrombosis occurs as a result of mechanical compression of the subclavian vein at the thoracic outlet. The natural history of the disorder is typically one of chronic venous obstruction with development of a painful, swollen extremity.¹ ² Thrombosis may affect the brachiocephalic, subclavian, and/or axillary veins. Typical management of this condition involves thrombolysis and surgical decompression after a variable interval of oral anticoagulation. Venous stent placement may be helpful in maintaining patency of the vein following thoracic outlet decompression surgery that includes first rib resection. This condition may also be referred to by other terms including but not limited to axillary-subclavian venous thrombosis, effort thrombosis, Paget-Schroetter syndrome, or venous thoracic outlet syndrome.

IDIOPATHIC INTRACRANIAL HYPERTENSION

Idiopathic intracranial hypertension (IIH) is characterized by elevated intracranial pressure (ICP). The most common symptoms are headache and papilledema. Other symptoms include transient visual obscurations, pulsatile tinnitus, diplopia, and sustained visual loss. Initial evaluation of patients presenting with headache and papilledema consists of CT or MRI scan for possible hydrocephalus or tumor. Occlusion of the venous sinus, particularly the transverse sinus, is considered an uncommon cause of increased ICP. There has been some debate as to whether this occlusion is the cause or the effect of ICP. The hypothesis is that obstruction of venous return decreases venous outflow from the brain which also decreases cerebrospinal fluid (CSF) outflow with subsequent increase in intracranial CSF pressure.
Medical treatment includes medications that lower CSF production and/or therapeutic lumbar puncture. Since most patients with IIH are obese, weight loss is commonly recommended. If medical treatment fails to control IIH, surgical treatments include ventriculoperitoneal shunting, optic nerve sheath fenestration (optic nerve decompression), and subtemporal decompression. Angioplasty with stenting has been proposed for maintaining venous sinus patency. IIH may also be referred to as pseudotumor cerebri or benign intracranial hypertension, though these terms are considered inadequate and IIH is the preferred term.

CHRONIC CEREBROSPINAL VENOUS INSUFFICIENCY IN MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is generally considered a chronic inflammatory demyelinating disease of the central nervous system (brain, spinal cord, and optic nerve) believed to be triggered by an autoimmune response to myelin. However, in part due to the periventricular predilection of the lesions of MS, vascular etiologies (CCSVI) have also been considered. The core foundation of this vascular theory is that venous drainage from the brain is abnormal due to outflow obstruction in the draining jugular vein and/or azygos veins. This abnormal venous drainage, which is characterized by special ultrasound criteria, is said to cause intracerebral flow disturbance or outflow problems that lead to periventricular deposits. In the CCSVI theory, these deposits have a similarity to the iron deposits seen around the veins in the legs of patients with chronic deep vein thrombosis. Balloon dilatation, with or without stenting, has been proposed as a means to treat the outflow problems, thereby alleviating CCSVI and MS complaints.

REGULATORY STATUS

While there are several types of stents that are approved by the U.S. Food and Drug Administration (FDA) for improvement of outflow for arteriovenous (A-V) access grafts in hemodialysis patients, and for the creation of intrahepatic shunt connections between the portal venous system and hepatic vein [i.e., transjugular intrahepatic portosystemic shunt (TIPS)], there are currently no stents with FDA approval for use in veins for any other indications.

In March 2017, the FDA issued a safety communication regarding the use of balloon angioplasty devices to treat autonomic dysfunction. This supplemented an earlier warning from the FDA concerning the potential for adverse events following endovascular interventions to treat chronic cerebrospinal venous insufficiency (CCSVI). Reports of adverse events obtained by the FDA included death, stroke, detachment and/or migration of stents, vein damage, thrombosis, cranial nerve damage, and abdominal bleeding. This communication included the caveat that clinical trials of this procedure require FDA approval and an investigational device exemption due to potential for harms.

EVIDENCE SUMMARY

The following discussion focuses on the investigational indications noted in Criterion III above.

DEEP VEIN THROMBOSIS (DVT)

There are several objectives for treatment of venous thromboembolism including:

- Prevention of pulmonary embolism;
- Restoration of unobstructed blood flow through the thrombosed vein;
• Preservation of venous valve function; and
• Prevention of recurrent thrombosis.

The current standard of treatment for achieving these goals is anticoagulant therapy (i.e., intravenous unfractionated heparin) to achieve a therapeutic partial thromboplastin time (PTT). After completion of an initial course of anticoagulation therapy, patients with venous thromboembolism (VTE) require continuing therapy to prevent recurrence. Thus, anticoagulation therapy is the standard against which percutaneous transluminal angioplasty (PTA) with or without stenting must be compared in order to evaluate the safety, efficacy, and final health outcomes. In addition, long-term follow-up is needed to determine the rates of restenosis, device failure, reoperation, and VTE recurrence.

The following literature appraisal is focused on the published evidence for DVT that is not related to left iliac vein compression syndrome or proximal upper extremity venous thrombosis.

Systematic Reviews
No systematic reviews were identified.

Randomized Controlled Trials
There are no randomized controlled clinical trials (RCTs) in which PTA with or without stenting was compared to standard medical management of DVT.

Nonrandomized Studies

- The bulk of the current literature investigating thrombolysis followed by angioplasty and stenting is limited to small (n<50), non-randomized, non-comparative retrospective reviews and case series of short- to medium-term duration.[4-9]
- The majority of studies are for DVT related to extrinsic compression (e.g., May-Thurner syndrome), or have heterogeneous patient populations that include both compression-related and non-compression-related DVT.

IDIOPATHIC INTRACRANIAL HYPERTENSION

Studies for the diagnosis and treatment of idiopathic intracranial hypertension (IIH) must answer the following questions:

1. Is venous sinus occlusion the cause or the effect of increased intracranial pressure (ICP)?
2. Is venous PTA with or without stenting safe and effective in reducing ICP compared with conventional treatment?

To assess the effectiveness and safety of intracranial venous stenting as a treatment of IIH, health outcomes must be compared with current standard treatments. The ideal clinical trial design is random allocation of similar patients to active or sham venous angioplasty, and/or conventional medical or surgical treatments.

Systematic Reviews

Kalyvas (2021) published a systematic review of controlled and observational studies on surgical treatments of IIH, including CSF diversion techniques, optic nerve sheath fenestration, bariatric surgery, and venous sinus stenting.[10] One hundred and nine publications were
included in the review, consisting of three prospective observational studies, 74 retrospective case series, and 31 case reports. No randomized controlled trials were identified for inclusion in the review. Of the 2302 predominately female (84.3%) patients included across studies, 825 underwent venous sinus stenting. Data specific to venous sinus stenting were from 47 studies, of which three were prospective, 29 were retrospective case series, and 14 were single case reports. Improved papilledema, visual fields and headaches following venous sinus stenting was reported as 87.1%, 72.7% and 72.1% of the patients respectively. Restenting or supplementary intervention was needed due to venography-documented restenosis in 3.4% of patients. Adequate data to generate estimates of 12-month failure rate for venous sinus stenting of 13.1% was available from 20 studies. Major complications were reported in 19 patients (2.3%) including subdural hematoma, intracerebral hematoma, subarachnoid hemorrhage, cerebellar hematoma, obstructive hydrocephalus, and death.

A 2015 updated Cochrane review evaluated the evidence for IIH interventions, and included RCTs in which any intervention used to treat IIH had been compared to placebo or another form of treatment.[11] Stenting of the transverse intracerebral venous sinus was assessed as a treatment, however the reviewers found no studies that met their inclusion criteria due to the lack of a control group for comparison. The review excluded five small case series, one retrospective review and two small clinical trials.

A 2014 systematic review of various treatments for IIH found only case series, of which 30 had extractable data.[12] Of the 332 total patients, 88 had venous sinus stenting. However, the studies only reported secondary outcomes related to symptoms of headache, papilledema, and visual acuity. The primary outcome of increased intracranial pressure was not reported. The authors concluded that the evidence was insufficient to recommend for or against any treatment modalities for IIH.

Randomized Controlled Trials

There are no randomized controlled clinical trials in which PTA with or without stenting was compared to standard medical or surgical management of IIH.

Nonrandomized Studies

Current evidence is limited to mainly small retrospective reviews and case series.[13-16] One of the largest studies was a retrospective review of 52 patients at a single center who underwent stenting due to IIH unresponsive to maximum acceptable medical treatment.[17] The follow-up period ranged from two months to nine years. All 52 patients were reported to have immediate elimination of the transverse sinus stenosis gradient and rapid improvement in IIH symptoms including resolution of papilledema. Six patients had relapse of symptoms (headache) and increased venous pressure with recurrent stenosis adjacent to the previous stent. In these patients, an additional stent was placed, with response similar to that following the first stent placement. Another retrospective study, published by Boddu (2019), included 70 consecutive patients who underwent venous sinus stenting for IIH and reported that 13% of the patients had impaired drainage of the vein of Labbé following treatment.[18]

ILIOFEMORAL VENOUS OBSTRUCTIVE DISEASE

Systematic Reviews

Ferreira (2021) published a systematic review of available data on mid-term (30 days to three years) stent patency rates and clinical outcomes of iliac stenting in post-thrombotic
syndrome. Data from 1008 patients reported in 18 publications were included. The pooled technical success rate was 96%. The pooled primary and secondary patency rates were 98.2% and 100% at 30 days, 78.1% and 94.5% at 12 months and 66.3% and 89.4% at 36 months, respectively. Pooled rates of ulcer healing, pain and edema relief were 98.2% and 100% at 30 days, 78.1% and 94.5% at 12 months and 66.3% and 89.4% at 36 months, respectively. Intraoperative venous injury was reported in four studies, with a pooled proportion rate of 28.0% (95% CI: 14.1-44.5, I²=91.4%). The most common minor complication, postoperative back pain, was reported in three studies at a rate of 57.1% (95% CI: 46.3-67.6, I²=73.9%). Two studies reported stent fracture at a rate of 5.9% (95% CI: 3.1-9.4, I²=18.6%). Stent migration was reported in one study. Bias at the outcome level was evaluated with the GRADE system in 14 of the studies; serious or very serious risk of bias was found in nine of the 14 studies assessed and the quality of all studies assessed was low or very low.

Nonrandomized Studies

A retrospective analysis of forty-two patients (27 women and 15 men with a mean age of 47.3 ± 17 (SD) years) who underwent venous recanalization, pre-dilatation and stenting of the narrowed or occluded iliac and/or femoral veins to treat chronic femoro-iliac venous obstructive disease was published by Guillen (2020). Severity of post-thrombotic syndrome (PTS) and quality of life were assessed at baseline and three months after the intervention respectively, using Villalta score and Chronic Venous Insufficiency Questionnaire (CIVIQ-20) scale. Results: Immediate technical success was achieved in 41/42 (97.6%) patients, without any major complications. Primary patency, primary assisted patency and secondary patency at the end of the median imaging follow-up of 18.1 months (IQR, 9.7—34.4) were achieved in 29/42 (66.7%) patients, 33/42 (78.6%) patients and 37/42 (88.1%) patients, respectively. Median Villalta and CIVIQ-20 scores decreased from 14 (IQR, 10—19) and 57 (IQR, 39—72) at baseline, respectively, to 5 (IQR, 2—9) and 30 (IQR, 24—50) 3 months after the procedure, respectively (p < 0.0001), indicating significant decrease in the severity of PTS and improvement in quality of life. Of note, early in-stent thrombosis within one month occurred in 9/42 (21.4%) patients. This study is limited by its retrospective design, heterogeneity in the stent used, and lack of long-term outcome data.

Results of the VIRTUS trial (VIRTUS Safety and Efficacy of the Veniti Vici Venous Stent System When Used to Treat Clinically Significant Chronic Non-Malignant Obstruction of the Iliofemoral Venous Segment) were published by Razavi (2019). This prospective, international, single-arm, FDA-IDE pivotal study evaluated the safety and effectiveness of a dedicated endovenous stent for symptomatic iliofemoral venous obstruction. One hundred and seventy patients (127 chronic post-thrombotic, mean age 54 years, 56.4% female) at 22 sites were treated with a self-expanding nitinol stent developed for dedicated use in the venous system (Vici Venous Stent System). Patients included those with ≥50% obstruction on venography and Clinical, Etiology, Anatomic, Pathophysiology clinical classification ≥3, or at least moderate leg pain with a Venous Clinical Severity Score of two or greater. Results: Freedom from a major adverse event through 30 days was 98.8%. Through one year, 54 device or procedure-related serious adverse events were reported in 28 (16.5%) of the patients. The one-year primary patency rate for the entire group was 84.0%. Venographic patency rates for the nonthrombotic and chronic post-thrombotic groups were 96.2% and 79.8%, respectively. At 12 months, 64% (85/132) of patients demonstrated at least a three-point reduction in Venous Clinical Severity Score. Long-term (five-year) outcomes are anticipated. This study was funded by both Veniti, Inc. and Boston Scientific, and at least one study author holds financial interest in the sponsoring company.
CHRONIC CEREBROSPINAL VENOUS INSUFFICIENCY (CCSVI) IN MULTIPLE SCLEROSIS (MS)

Systematic Reviews

A Cochrane review and five systematic reviews with critical analyses of the current literature concluded that there is insufficient evidence to verify a relationship between CCSVI and MS. The authors noted the high degree of heterogeneity between study outcomes, sensitivity, and specificity, and marked variability of odds ratios.

Two meta-analyses reported outcomes after exclusion of outlier studies (e.g., studies with a disproportionately high odds ratio (OR) and/or potential bias). Tsivgoulis (2014) reported on the association between CCSVI and MS and included 19 studies with a total of 1,250 MS patients and 899 healthy controls. When data from all 19 studies were pooled, CCSVI was associated with MS with an OR of 8.35 (95% confidence interval [CI] 3.44 to 20.31, p<0.001). However, in additional sensitivity analyses, the OR associating CCSVI and MS decreased. In the most conservative sensitivity analysis, which excluded eight outlier studies, MS was not associated with CCSVI with an OR of 1.35 (95% CI 0.62 to 2.93, p=0.453). The Zwischenberger (2013) meta-analysis of 13 studies with a total of 1141 MS patients and 738 healthy controls reported CCSVI and MS was associated with MS (OR 2.57; p<0.001). In a subsequent analysis of nine studies with four outliers (studies with disproportionately high ORs) removed, the OR decreased, but still associated CCSVI with MS.

A systematic review of the association between CCSVI and MS was published by Laupacis (2011). This review included eight studies that used ultrasound to diagnose CCSVI by the Zamboni criteria and compared the rate of CCSVI in patients with MS to those without MS. These studies were mostly small, with the median number of patients with MS of 50. A large degree of heterogeneity existed across studies in the rate of CCSVI among MS patients. Two smaller studies reported a rate of 0% for CCSVI in a total of 20 and 56 patients with MS. In contrast, the original study by Zamboni (2009a) reported a 100% rate of CCSVI in 109 patients with MS. A small study of 25 patients also reported a very high rate of CCSVI at 84% (21/25). There was no obvious reason identified for this large discrepancy in CCSVI rates; the authors hypothesized that the most likely reason was variability in ultrasound technique and interpretation. The analysis suggested a significant association of CCSVI with MS in combined analysis, with an OR of 13.5 (95% CI, 2.6 to 71.4). A substantial degree of heterogeneity existed in this measure as well, with a reported I2 of 89%. Several sensitivity analyses showed marked variability of the OR from a low of 3.7 to more than 58,000. However, in all cases the association of CCSVI with MS remained significant.

Another systematic review published in 2011 included a smaller number of studies (n = 4) but reached conclusions similar to the other analyses. The rate of CCSVI in MS patients ranged from 7% to 100%, and the rate in non-MS patients ranged from 2% to 36%. A significant association was detected between MS and CCSVI but with a high degree of heterogeneity (I²=96%) and an OR for association that varied widely, from approximately 2 to more than 26,000.

A recently updated Cochrane review evaluated the evidence for PTA to treat CCSVI in patients with MS and included three RCTs, described in greater detail below (total n=238). Two of the studies were judged to be at unclear risk of bias for one item (random sequence generation in one study and blinding in the other), but otherwise at low risk of bias. The authors concluded
that there was moderate-quality evidence that venous PTA did not improve health outcomes for patients with MS and that further study was not necessary.

Randomized Controlled Trials (RCT)

A randomized wait list study by Napoli (2019) included 66 MS patients with a diagnosis of CCSVI who were randomized to receive venous PTA immediately (vPTA-yes) or after six months (vPTA-no). A number of outcomes were assessed, including clinical-functional measures, evoked potentials and upper limb kinematic measures. While there were some statistically significant differences between groups for a composite functional outcome, there were no differences in evoked potential or upper limb kinematic measures.

The following three studies were included in the Cochrane review described above:

Traboulsee (2018) published a double-blind RCT of balloon (vs. sham) venoplasty for MS patients with narrowing of the extracranial jugular and azygos veins. The trial included 104 patients, 49 randomized to venoplasty and 55 to sham treatment, and 103 patients completed the trial with 48 weeks of follow-up. Narrowing of the veins >50% was confirmed by venography prior to randomization. The primary outcome of the trial was change in the MS Quality of Life-54 (MSQOL-54) questionnaire from baseline at 48 weeks. Additional clinical and MRI outcomes were also evaluated. There was no difference found between groups for any of the study’s outcomes, and the authors concluded that “for patients with MS, balloon venoplasty of extracranial jugular and azygous veins is not beneficial in improving patient-reported, standardized clinical, or MRI outcomes.”

Results from the Brave Dreams trial were published by Zamboni (2018). This was a double-blind, sham-controlled RCT conducted at six MS centers in Italy and included a total of 115 CCSVI patients. These patients were randomized to either venous PTA (n=76) or catheter venography without angioplasty (sham, n=39). There were two primary endpoints assessed at 12 months: the number of new or expanded cerebral lesions by MRI, and a functional measure that included walking control, manual dexterity, balance, postvoid residual urine volume, and visual acuity. There were no significant differences in these endpoints between groups, and no adverse events were reported. The authors concluded that venous PTA was “a safe but largely ineffective technique; the treatment cannot be recommended in patients with MS.”

Siddiqui (2014) published results from a prospective, double-blind, sham-controlled randomized clinical trial (RCT) of venous angioplasty in MS patients with CCSVI. This trial enrolled nine patients in intervention group and 10 in the sham-controlled group. All patients met the criteria for diagnosis of CCSVI. The primary end points of the trial included safety at 24 hours and 30 days postangioplasty; greater than 75% restoration of venous outflow at 30 days; the presence of new MS lesions; and relapse rate over six months. Secondary end points included changes in disability scores, brain volume, cognitive test scores, and quality-of-life measures. All patients tolerated the procedures well; no operative or postoperative complications were identified. One patient in the angioplasty group experienced an episode of symptomatic bradycardia. No significant differences were observed in venous outflow characteristics between the treated and control groups, nor were any significant improvements observed in clinical disease scores among treated patients compared with controls. The results of this RCT are limited by the small number of patients. However, the failure to show a beneficial effect of venous angioplasty on MS activity supports a lack of efficacy for this treatment.
Nonrandomized Studies

The studies that focused on the potential relationship between CCSVI and MS reported varying and contradictory outcomes. For example, while Zamboni (2009a) and other authors\[30, 37-39\] reported a strong association between CCSVI and MS, numerous studies have reported insignificant or no difference in the prevalence of CCSVI in MS patients compared to healthy controls, or no association between CCSVI and MS occurrence or symptoms\[36, 38, 40-46\].

The studies that focused on outcomes of PTA with or without stent placement reported few adverse events, but mixed efficacy outcomes.\[47-53\] For example, while Zamboni (2009b).\[48\] reported significant improvement in all measures for patients with relapsing-remitting MS, Kostecki (2011) reported a significant improvement only in heat intolerance and fatigue severity six months post endovascular treatment.\[47\] No trials were found that compared PTA with concurrent control groups. All authors noted the need for well-designed randomized clinical trials. Many authors asserted that PTA with or without stenting in these patients should not be performed outside the clinical trial setting.

Adverse Events

Burton (2011) described five patients who had undergone venoplasty and presented with complications of the procedure.\[54\] The complications were internal jugular vein stent thrombosis, cerebral sinovenous thrombosis, stent migration, cranial nerve injury, and injury associated with venous catheterization. There was not a denominator in these studies to determine the rate of these events.

Petrov (2011) reported on the safety profile of 495 venoplasty procedures performed in 461 patients with MS, including 98 stent implantations.\[49\] There were no deaths, major bleeding events, or acute exacerbations of MS. The most common procedure-related complication was vein dissection, which occurred in 3.0% of cases. Other complications included cardiac arrhythmias (1.2%), groin hematoma (1.0%), vein rupture (0.4%), and acute stent thrombosis (1.6%).

Mandato (2012) reported adverse events within 30 days of endovascular intervention for 240 patients with MS over an 8-month period.\[55\] Neck pain occurred in 15.6% of patients, most commonly following stent implantation. Headache occurred in 8.2% of patients and was persistent past 30 days in 1 patient (0.4%). Intraprocedural arrhythmias occurred in 1.3%, and one patient was diagnosed with a stress-induced cardiomyopathy following the procedure.

An FDA alert issued in May 2012 reported the potential for adverse events following endovascular interventions for MS. \[18\] Reports of adverse events obtained by FDA included death, stroke, detachment and/or migration of stents, vein damage, thrombosis, cranial nerve damage, and abdominal bleeding. This alert included the caveat that clinical trials of this procedure require FDA approval and an investigational device exemption because of the potential for harms.

PRACTICE GUIDELINE SUMMARY

DEEP VEIN THROMBOSIS

Two consensus-based clinical practice guidelines from the Society of Interventional Radiology and the American Heart Association, respectively, provided evidence appraisals and noted a benefit in venous stenting for DVT.\[56, 57\] However, the majority of the references listed were

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
related to May-Thurner syndrome which is caused by extrinsic compression for which stenting is considered medically necessary. Both guidelines graded the available evidence as very limited.

The American Society of Hematology

The American Society of Hematology published a 2020 guideline for the treatment of deep vein thrombosis and pulmonary embolism which does not discuss venous angioplasty or venous stenting.\[^{58}\]

Society of Vascular Surgery / American Venous Forum

In the 2014 joint guidelines published by Society of Vascular Surgery and American Venous Forum on the management of **proximal chronic total venous occlusion/severe stenosis**.\[^{59}\] The guideline states the following:

> In a patient with inferior vena cava or iliac vein chronic total occlusion or severe stenosis, with or without lower extremity deep venous reflux disease, that is associated with skin changes at risk for venous leg ulcer (C4b), healed venous leg ulcer (C5), or active venous leg ulcer (C6), we recommend venous angioplasty and stent recanalization in addition to standard compression therapy to aid in venous ulcer healing and to prevent recurrence.

This was a grade 1 recommendation (strong) but the evidence was considered low/very low quality which was primarily focused on May-Thurner syndrome.

American College of Radiology (ACR)

The 2012 ACR Appropriateness Criteria® for radiologic management of lower extremity venous insufficiency recommendation did not address angioplasty or stenting for these indications.\[^{60}\] However, they suggest that patients with venous insufficiency and associated venous occlusion or stenosis of the common iliac vein may require venous recanalization with angioplasty and stenting as an adjunctive treatment, based on three case reports and one small retrospective analysis.

CHRONIC CEREBROSPINAL VENOUS INSUFFICIENCY (CCSVI) IN MULTIPLE SCLEROSIS (MS)

Society of Interventional Radiology (SIR)

In 2010 the SIR published a position statement on the association of CCSVI with MS and the efficacy of endovascular treatments.\[^{61}\] Their recommendations included the following statements:

- At present, SIR considers the published literature to be inconclusive on whether CCSVI is a clinically important factor in the development and/or progression of MS, and on whether balloon angioplasty and/or stent placement are clinically effective in patients with MS.
- SIR strongly supports the urgent performance of high-quality clinical research to determine the safety and efficacy of interventional MS therapies, and is actively working to promote and expedite the completion.
SUMMARY

There is enough research to show that percutaneous venous angioplasty, with or without stenting, can improve health outcomes for patients with certain types of venous stenosis. Therefore, this angioplasty may be considered medically necessary for patients that meet the policy criteria. There is not enough research to show that percutaneous venous angioplasty, with or without stenting, can improve health outcomes for patients that do not meet the policy criteria, including patients with deep vein thrombosis that is not related to upper extremity venous compression requiring rib resection or iliac vein compression syndrome, or in patients with chronic cerebrospinal venous insufficiency venous sinus obstruction or occlusion in idiopathic intracranial hypertension. Therefore, this procedure is considered investigational when policy criteria are not met.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

SUR109 | 15

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>36481</td>
<td>Percutaneous portal vein catheterization by any method</td>
</tr>
<tr>
<td></td>
<td>36901</td>
<td>Introduction of needle(s) and/or catheter(s), dialysis circuit, with diagnostic angiography of the dialysis circuit, including all direct puncture(s) and catheter placement(s), injection(s) of contrast, all necessary imaging from the arterial anastomosis and adjacent artery through entire venous outflow including the inferior or superior vena cava, fluoroscopic guidance, radiological supervision and interpretation and image documentation and report</td>
</tr>
<tr>
<td></td>
<td>36902</td>
<td>with transluminal balloon angioplasty, peripheral dialysis segment, including all imaging and radiological supervision and interpretation necessary to perform the angioplasty</td>
</tr>
<tr>
<td></td>
<td>36903</td>
<td>with transcatheter placement of intravascular stent(s), peripheral dialysis segment, including all imaging and radiological supervision and interpretation necessary to perform the stenting, and all angioplasty within the peripheral dialysis segment</td>
</tr>
<tr>
<td></td>
<td>36904</td>
<td>Percutaneous transluminal mechanical thrombectomy and/or infusion for thrombolysis, dialysis circuit, any method, including all imaging and radiological supervision and interpretation, diagnostic angiography, fluoroscopic guidance, catheter placement(s), and intraprocedural pharmacological thrombolytic injection(s)</td>
</tr>
<tr>
<td></td>
<td>36905</td>
<td>with transluminal balloon angioplasty, peripheral dialysis segment, including all imaging and radiological supervision and interpretation necessary to perform the angioplasty</td>
</tr>
<tr>
<td></td>
<td>36906</td>
<td>with transcatheter placement of intravascular stent(s), peripheral dialysis segment, including all imaging and radiological supervision and interpretation necessary to perform the stenting, and all angioplasty within the peripheral dialysis circuit</td>
</tr>
<tr>
<td></td>
<td>36907</td>
<td>Transluminal balloon angioplasty, central dialysis segment, performed through dialysis circuit, including all imaging and radiological supervision and interpretation</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
interpretation required to perform the angioplasty (List separately in addition to code for primary procedure)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36908</td>
<td>Transcatheter placement of intravascular stent(s), central dialysis segment, performed through dialysis circuit, including all imaging radiological supervision and interpretation required to perform the stenting, and all angioplasty in the central dialysis segment (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>36909</td>
<td>Dialysis circuit permanent vascular embolization or occlusion (including main circuit or any accessory veins), endovascular, including all imaging and radiological supervision and interpretation necessary to complete the intervention (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>37238</td>
<td>Transcatheter placement of an intravascular stent(s), open or percutaneous, including radiological supervision and interpretation and including angioplasty within the same vessel, when performed; initial vein</td>
</tr>
<tr>
<td>37239</td>
<td>; each additional vein (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>37248</td>
<td>Transluminal balloon angioplasty (except dialysis circuit), open or percutaneous, including all imaging and radiological supervision and interpretation necessary to perform the angioplasty within the same vein; initial vein</td>
</tr>
<tr>
<td>37249</td>
<td>; each additional vein (List separately in addition to code for primary procedure)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2623</td>
<td>Catheter, transluminal angioplasty, drug-coated, non-laser</td>
</tr>
</tbody>
</table>

Date of Origin: January 1996
Transesophageal Endoscopic Therapies for Gastroesophageal Reflux Disease (GERD)

Effective: March 1, 2022

Next Review: November 2022
Last Review: January 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Transesophageal endoscopic therapies are a group of minimally invasive antireflux procedures being investigated as alternatives to medical management or fundoplication surgery in the treatment of GERD.

MEDICAL POLICY CRITERIA

Transesophageal endoscopic therapies are considered **investigational** for the treatment of gastroesophageal reflux disease (GERD). These procedures include but are not limited to the following:

I. Transesophageal endoscopic gastroplasty procedure (i.e., MUSE)
II. Transoral incisionless fundoplication (TIF) procedure, (i.e., EsophyX)
III. Transesophageal radiofrequency energy procedure (i.e., Stretta)
IV. Endoscopic submucosal implantation of a prosthesis or injection of a bulking agent (i.e., Durasphere, polymethylmethacrylate [PMMA] beads, the Gatekeeper Reflux Repair system)
NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

BACKGROUND

Gastroesophageal reflux disease (GERD) is a common disorder characterized by heartburn and other symptoms related to reflux of stomach acid into the esophagus. Nearly all individuals experience such symptoms at some point in their lives; a smaller number have chronic symptoms and are at risk for complications of GERD. The prevalence of GERD has been estimated to be 10% to 20% in the Western world, with a lower prevalence in Asia.[1]

The pathophysiology of GERD involves excessive exposure to stomach acid, which occurs for several reasons. There can be an incompetent barrier between the esophagus and stomach, either due to dysfunction of the lower esophageal sphincter (LES) or incompetence of the diaphragm. Another mechanism is abnormally slow clearance of stomach acid by the esophagus. In this situation, delayed clearance leads to an increased reservoir of stomach acid and a greater tendency to reflux.

In addition to troubling symptoms, some patients will have more serious disease, which results in complications such as erosive esophagitis, dysphagia, Barrett esophagus, and esophageal carcinoma. Pulmonary complications may result from aspiration of stomach acid into the lungs and can include asthma, pulmonary fibrosis and bronchitis, or symptoms of chronic hoarseness, cough, and sore throat.

Guidelines on the management of GERD emphasize initial medical management. Weight loss, smoking cessation, head of bed elevation, and elimination of food triggers are all recommended in recent practice guidelines.[1] Proton pump inhibitors (PPIs) have been shown to be the most effective medical treatment. In a Cochrane systematic review, PPIs demonstrated superiority to H2-receptor agonists and prokinetics in both network meta-analyses and direct comparisons.[2]

The most common surgical procedure used for GERD remains laparoscopic Nissen fundoplication, however, the utilization of this procedure steadily declined between 2009 and 2013 with the advancement of novel nonmedical (endoscopic and surgical) techniques.[3] Fundoplication involves wrapping a portion of the gastric fundus around the distal esophagus to increase LES pressure. If a hiatal hernia is present, the procedure also restores the position of the LES to the correct location. Laparoscopic fundoplication was introduced in 1991 and has been rapidly adopted because it avoids complications associated with an open procedure.

Although fundoplication results in a high proportion of patients reporting symptom relief, complications can occur, and sometimes require conversion to an open procedure. Patients who have relief of symptoms of GERD after fundoplication may have dysphagia or gas-bloat syndrome (excessive gastrointestinal gas).

Due in part to the high prevalence of gastroesophageal reflux disease, there has been interest in creating a minimally invasive transesophageal therapeutic alternative to open or laparoscopic fundoplication or chronic medical therapy. This type of procedure may be
considered natural orifice transluminal surgery. Three types of procedures have been investigated.

1. Transesophageal endoscopic gastroplasty (gastroplication, transoral incisionless fundoplication) can be performed as an outpatient procedure. During this procedure, the fundus of the stomach is folded, and then held in place with staples or fasteners that are deployed by the device. The endoscopic procedure is designed to recreate a valve and barrier to reflux.

2. Radiofrequency (RF) energy has been used to produce submucosal thermal lesions at the gastroesophageal junction. (This technique has also been referred to as the Stretta procedure). Specifically, RF energy is applied through four electrodes inserted into the esophageal wall at multiple sites both above and below the squamocolumnar junction. The mechanism of action of the thermal lesions is not precisely known but may be related to ablation of the nerve pathways responsible for sphincter relaxation or may induce a tissue-tightening effect related to heat-induced collagen contraction and fibrosis.

3. Submucosal injection or implantation of a prosthetic or bulking agent to enhance the volume of the lower esophageal sphincter has also been investigated.

One bulking agent, pyrolytic carbon-coated zirconium oxide spheres (Durasphere®), has been evaluated. The Gatekeeper™ Reflux Repair System (Medtronic) utilizes a soft, pliable, expandable prosthesis made of a polyacrylonitrile-based hydrogel. The prosthesis is implanted into the esophageal submucosa, and with time, the prosthesis absorbs water and expands, creating bulk in the region of implantation. However, the only identified RCT on this system was terminated early due to lack of efficacy (NCT00200044). Endoscopic submucosal implantation of polymethylmethacrylate (PMMA) beads into the lower esophageal folds has also been investigated.

REGULATORY STATUS

In 2007, EsophyX® (EndoGastric Solutions, Redmond, WA) was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for full-thickness plication. In 2016, EsophyX® Z Device with SerosaFuse Fasteners was cleared for marketing (K160960) by FDA through the 510(k) process for use in transoral tissue approximation, full thickness plication, ligation in the gastrointestinal tract, narrowing the gastroesophageal junction, and reduction of hiatal hernia of 2 cm or less in patients with symptomatic chronic gastroesophageal reflux disease (GERD).[4] In June 2017, EsophyX2 HD and the third-generation EsophyX Z Devices with SerosaFuse fasteners and accessories were cleared for marketing by FDA through the 510(k) process (K171307) for expanded indications, including patients who require and respond to pharmacologic therapy and in patients with hiatal hernias larger than 2 cm when a laparoscopic hiatal hernia repair reduces the hernia to 2 cm or less.[5] FDA product code: ODE.

The Medigus SRS Endoscopic Stapling System (MUSE, Medigus) was cleared for marketing by FDA through the 510(k) process in 2012 (K120299) and 2014 (K132151). MUSE is intended for endoscopic placement of surgical staples in the soft tissue of the esophagus and stomach to create anterior partial fundoplication for treatment of symptomatic chronic GERD in patients who require and respond to pharmacologic therapy. FDA product code: ODE.
In 2000, the CSM Stretta® System was cleared for marketing by FDA through the 510(k) process for general use in the electrosurgical coagulation of tissue and is specifically intended for use in the treatment of GERD. Stretta® is currently manufactured by Mederi Therapeutics (Greenwich, CT). FDA product code: GEI.

Durasphere® is a bulking agent approved for treatment of urinary and fecal incontinence. Use of this product for esophageal reflux would be considered off-label use. The website of Carbon Medical Technologies states that Durasphere GR is an investigational device in the United States “intended to treat problems associated with GERD.”

EVIDENCE SUMMARY

MULTIPLE ENDOSCOPIC PROCEDURES

Systematic Reviews

A 2005 report of the Agency for Healthcare Research and Quality (AHRQ), on “Comparative Effectiveness of Management Strategies for Gastroesophageal Reflux Disease,” indicated additional efficacy and safety data on new endoscopic approaches were needed.[6] A 2011 update of the AHRQ report excluded Enteryx and the NDO Plicator, since they were no longer available in the U.S., and added the EsophyX procedure (endoscopic fundoplication), which was commercialized after the 2005 review.[7] The 2011 update reported the following:

The AHRQ report concluded that for the 3 available endoscopic procedures (EndoCinch, Stretta, EsophyX), effectiveness remains substantially uncertain for the long-term management of GERD. While some clinical benefits were observed in patients who had these procedures, the studies were generally small, of variable quality, and of short duration. In addition, all of these procedures have been associated with complications, including dysphagia, infection/fever, and bloating; complications which are also side effects associated with laparoscopic fundoplication.[8] Higher quality studies are needed to determine the role and value of endoscopic procedures in the treatment of patients with GERD. A 2015 review of endoscopic treatment of GERD noted that EndoCinch is no longer manufactured.[9]

A systematic review was conducted in 2009 to examine 7 endoscopic treatments for GERD that included 33 studies, only 2 of which were RCTs.[10] The remainder were case series. The authors concluded, “…despite the potential benefits of these procedures, there is insufficient evidence at present to establish their safety and efficacy, particularly in the long term.”

TRANSESOPHAGEAL ENDOSCOPIC GASTROPLASTY AND TRANSORAL INCISIONLESS FUNDOPLICATION (TIF)

Systematic Reviews

Testoni (2021) published a systematic review with meta-analysis focusing on long-term (≥3 years) outcomes of patients with GERD undergoing TIF (using either EsophyX or MUSE).[11] Outcomes of interest included patient satisfaction, QOL, and PPI use. The mean follow-up time across studies was 5.3 years (range: 3 to 10 years). Daily PPI use was 100% in five studies, 97% in one study, and was not provided in the other two studies. Overall, the pooled proportion of patient-reported satisfaction before and after TIF was 12.3% and 70.6%, respectively. Additionally, the pooled rates of patients completely off, or on occasional, PPIs...
post-TIF was 53.8% and 75.8%. The analysis was limited by various factors including the nature of included studies, which involved only one open-label RCT among the eight studies included, and the high heterogeneity across studies for patient reported overall satisfaction after the TIF procedure.

McCarty (2018) published a systematic review of RCTs and nonrandomized studies that showed significant improvement in a number of clinical outcomes for patients treated with TIF.[12] For example, 89% of TIF patients discontinued PPI therapy after the procedure, and the Gastroesophageal Reflux Disease Health-Related Quality of Life (GERD-HRQL) questionnaire, Gastroesophageal Reflux Symptom Score, and Reflux Symptom Index (RSI) measures showed significant improvement. The review had several limitations, including the risk of heterogeneity bias, due to the inclusion of studies of first- and second-generation TIF devices and protocols.

Richter (2018) published a network meta-analysis of RCTs comparing TIF or laparoscopic Nissen fundoplication (LNF) with sham or PPIs.[13] The meta-analysis was limited by low-quality studies (one did not report randomization method, others lacked data on allocation concealment, blinding of outcome assessors, or other aspects of study protocol). It should be noted that a reason behind for scarcity of direct comparisons between TIF and LNF is the discrepancy in populations requiring the respective treatments: consequently, TIF studies included patients with mild esophagitis and small hiatal hernias (<2 cm), while LNF studies included patients with Los Angeles grade A, B, C, or D esophagitis and all sizes of hiatal hernias.

Randomized Controlled Trials

In 2018, Trad reported five-year outcomes on the manufacturer-sponsored TEMPO randomized controlled trial (RCT).[14] Three-year results were reported in 2016[15], other interim results were previously reported as well.[16, 17] Below are highlights from each publication:

- Participants with small or absent hiatal hernias (<2cm) and GERD symptoms while on PPI therapy for at least six months who also had abnormal esophageal acid exposure (EAE) were randomized to either EsophyX® (n=40) treatment or PPI therapy (n=23). After six months of evaluation, 21 remaining PPI therapy participants elected to crossover to EsophyX.
- At three years follow-up, 52 participants were assessed for (1) GERD symptom resolution, (2) healing of esophagitis using endoscopy, (3) EAE, and (4) discontinuation of PPI use. Two participants required revision surgery. As assessed by questionnaire (the Reflux Disease Questionnaire [RDQ], and the Reflux Symptom Index [RSI]), primary outcomes of GERD resolution and elimination of all troublesome atypical symptoms was observed in 37/40 participants, and 42/48 participants, respectively.
- At five years follow-up, data were available for 44 patients, of whom 37 (86%) showed elimination of troublesome regurgitation at 5 years. Twenty (43%) patients were completely off PPIs at the 5-year follow-up, and 31 (70%) patients expressed satisfaction with the procedure, as assessed by the GERD-HRQL scores. While data on pH normalization were available for 24 patients at the 3-year follow-up, at 5 years, 22% (n=5) of these patients could not be assessed for pH normalization.
• Although mean symptom scores were reportedly improved, standard deviations for primary (and secondary) outcomes suggest a wide range of responses and further well-designed studies may be warranted.

In 2015, four RCTs that compared the EsophyX® device to proton pump inhibitor (PPI) treatment or to a sham control were identified, two of which were industry sponsored. The studies differed in whether patients’ symptoms were or were not controlled on PPI therapy, in the control used (i.e., sham, sham plus PPI, PPI alone), whether patients were blinded to treatment, and in outcome measures. Included in the studies were patients on daily PPI therapy for moderate-to-severe GERD symptoms. Exclusion criteria common to the RCTs are body mass index (BMI) over 35 kg/m², hiatal hernia greater than 2 cm; esophagitis grade C or D; Barrett esophagus greater than 2 cm, and esophageal ulcer. Most studies allowed crossover to the other intervention with continued follow-up after the randomized portion of the study.

The largest RCT with the lowest risk of bias was an industry-sponsored, double-blind, sham-controlled multicenter study (RESPECT) that evaluated TIF in patients whose symptoms were not well controlled on PPIs.[18] Of 696 patients screened, 129 met inclusion and exclusion criteria and were randomized in a 2:1 ratio; 87 patients received TIF with EsophyX®-2 combined with 6 months of placebo (TIF/placebo) and 42 patients received sham surgery with 6 months of daily PPI therapy (sham/PPI). The primary outcome measure was elimination of troublesome regurgitation, defined as mild symptoms for 2 or more days per week or moderate-to-severe symptoms for more than 1 day per week. Crossover was allowed at 3 months in the case of treatment failure or at 6 months when the blind was broken. Lack of response at 3 months was observed in 36% of patients in the sham/PPI group compared with 11% in the TIF/placebo group (p=0.002). Self-reported regurgitation was eliminated in 22% more patients following TIF compared to continued PPI therapy patients (67% vs 45%, p=0.023), while reductions in GERD symptoms scores were similar in the 2 groups. The objective measure of control of esophageal pH was significantly reduced after TIF (mean percent time esophageal pH <4 decreased from 9.3% to 6.3%, p<0.001), but not after sham surgery (from 8.6% to 8.9%). By the 18-month follow-up, 71% of patients in the sham/PPI group had crossed over to TIF, compared with 28% of patients in the TIF/placebo group who resumed PPI therapy (p<0.001). There were 5 moderate-to-severe complications in the TIF group compared to one in the sham group. Strengths of this study include the use of both sham surgery and placebo control to maintain double-blinding, adequate power, objective as well as subjective outcome measures, and use of intention-to-treat analysis. A limitation is the relatively short duration of follow-up for most outcome measures.

Several other RCTs from 2015 have evaluated TIF in patients whose symptoms are at least partially controlled by PPI therapy.

Hakonsson reported a double-blind, sham-controlled randomized trial with 44 patients who had moderate-to-severe GERD symptoms without PPI therapy.[19] Controls received a sham procedure, and the primary outcome was the time in remission, which was longer following TIF than sham (197 days vs 107 days, p<0.0001). Secondary outcomes measuring GERD symptoms showed results consistent with more favorable outcomes in the TIF group, however, no statistical between-group analysis was reported for these outcomes. Dysphagia, bloating, and flatulence were reported in twice as many patients undergoing TIF (4, 4, and 2 respectively) compared with sham (2, 2, and 1, respectively). These were reported as not
statistically different, however, it is unlikely that the study was powered to detect differences in these outcomes.

Witteman reported an unplanned interim analysis of an RCT of 60 patients randomized to TIF using EsophyX®-2 or continued PPI therapy.\[20\] Sixty of the planned 120 patients had been recruited at the time of analysis. The patients’ symptoms were adequately controlled by PPIs but they wanted to avoid lifelong PPI therapy. At 6 months, subjective GERD symptoms improved to a greater extent in the TIF group (p<0.001), and satisfaction scores were higher (50% satisfied vs 0%), but there was no significant difference in esophageal acid exposure (p=0.228) or pH normalization (50% vs 63%) between the TIF and PPI groups, respectively. At 12 months after TIF, normalization of pH was achieved in only 29% of patients and there was deteriorated valve appearance at endoscopy; 61% of TIF patients had resumed use of PPIs.

Trad reported 6- and 12-month results of an industry-funded, multicenter RCT (TEMPO) that compared TIF using EsophyX®-2 (n=40) versus maximal dose PPI therapy (n=23) in partial responders to PPI therapy.\[16, 17\] At the 6-month follow-up, the subjective measure of troublesome regurgitation was eliminated in 97% of TIF patients versus 50% of PPI patients (relative risk, 1.9; p=0.006). At 6 months, 90% of patients in the TIF group had completely stopped PPI therapy. However, the objective measure of normalized esophageal acid exposure did not differ significantly between groups (TIF=54% vs PPI=52%, p=0.914). At 12 months after TIF, 77% of patients had symptom control, 82% had stopped PPI therapy, 100% had healed esophagitis, and 45% had normalized esophageal acid exposure.

Additional controlled trials (RCTs) comparing transesophageal endoscopic gastroplasty or plication procedures to sham or other endoscopic procedures have been identified.\[17, 21-26\] Though these studies showed a promising decrease in PPI use and symptom control at 3 to 12 months, they do not allow conclusions regarding long-term health outcomes, safety or durability of the procedure in patients with GERD for one or more of the following reasons:

Insufficient study durations – Only short-term follow-up of 3 to 12 months is available, which does not address the long-term safety and durability of the procedures.\[17, 22-27\] For example, there may be suture loss over time. One study reported up to 29 % of study subjects required a second procedure at 12-month follow-up.\[22\] Of these patients, 72% of sutures were still present but only 19% were judged functional. A second study noted marked loss of sutures with 67% remaining at 12 months.\[24\]

Small sample size – Given the prevalence of GERD in the general population, available randomized trials include very small sample sizes. The largest study of 159 patients had an almost 10% loss in reported data with an intention to treat analysis that did not include these patients. All other studies include sample sizes of 60 or fewer patients. It is unclear if these studies are adequately powered.\[17, 22, 24-28\]

Unreliable endpoints – The use of subjective, point in time GERD questionnaires as a primary endpoint may give variable results depending upon symptoms present at the time the subject completes the questionnaire.\[17, 22, 23\]

Improvement over the gold standard procedures was not demonstrated. In order to establish the efficacy of transoral procedures, an improvement in symptoms of gastric reflux over the current open or laparoscopic anti-reflux procedures, must be shown.\[17, 26, 28\]
There is a single randomized trial of the TIF procedure, which compares TIF to Nissen laparoscopic fundoplication. Although the authors reported comparable results at 12 months, conclusions based upon this trial are limited by the small sample size (n=52) and the different methods used for TIF (both the Plicator® and the EsophyX).

Nonrandomized Studies

Observational studies, registry data, nonrandomized comparative studies of gastroplication and fundoplication (specifically, transoral incisionless fundoplication) procedures do not allow conclusions about their long-term effectiveness and durability.

Harms

Although harms are not systematically reported across observational studies, there have been several publications on potential harms of TIF procedures.

Ramai (2021) published a report of complications associated with TIF from post-marketing surveillance data from the FDA Manufacturer and User Facility Device Experience (MAUDE) database from Jan 2011 through Jan 2021. During the period studied, approximately 95 event cases were reported to the FDA and approximately 131 patient complications were identified. The most common adverse events were perforation (19.8%), laceration 17.6%, bleeding (9.2%), and pleural effusion (9.2%). Patient complications were treated using endoscopic clips (12.3%), chest tube or drain insertion (12.3%), use of endoscopic retriever device (11.1%), esophageal stent (8.6%), and emergent or open surgery (11.1%).

Furnee reported an increased risk of gastric injury with laparoscopic Nissen fundoplication after failed EsophyX fundoplication. Of 88 patients in their database who underwent EsophyX fundoplication, 11 (12.5%) subsequently underwent Nissen fundoplication for persistent or recurrent symptoms at a mean 8.1 months after the primary procedure. Endoscopy showed partial or total disruption of fasteners in 8 of the 11 patients (72.7%). Nissen fundoplication after EsophyX resulted in gastric perforation (n=2), conversion to laparotomy (n=1), subphrenic abscess requiring surgical exploration (n=1) and symptom-worsening in four patients.

In 2017, Huang conducted a systematic review with meta-analysis of TIF for the treatment of GERD. Authors included 5 RCTs and 13 prospective observational studies, of which 14 were performed with the TIF 2 procedure. Efficacy results from the RCTs were combined for patients whose symptoms were controlled by PPIs and for those whose symptoms were not controlled by PPIs and are not further discussed here. Follow-up out to six years in prospective observational studies indicated a decrease in efficacy over time. The reported incidence of severe adverse events, consisting of gastrointestinal perforation and bleeding, was 19 (2.4%) out of 781 patients. This included seven perforations, five cases of post-TIF bleeding, four cases of pneumothorax, one case requiring intravenous antibiotics, and one case of severe epigastric pain.

TRANSESOPHAGEAL RADIOFREQUENCY ENERGY (I.E., THE STRETTA PROCEDURE)

Systematic Reviews

Xie (2021) published a systematic review and network meta-analysis of 10 RCTs that evaluated the comparative effects of Stretta, TIF, and PPIs in patients with GERD. Of the included RCTs, five compared Stretta to control (PPI or sham + PPI) and five compared TIF to...
control (PPI or sham + PPI). Results of the network meta-analysis revealed that improvements in the HRQoL score in patients treated by Stretta were not significantly different than the improvements seen with TIF (mean difference [MD], 2.45; 95% CI, -2.37 to 7.26); however, both Stretta and TIF were significantly superior to PPIs in this outcome. Additionally, both Stretta and TIF were significantly better than PPIs at improving heartburn scores. Regarding reduction in PPI use and esophagitis incidence, no significant difference between TIF and Stretta was observed. This network meta-analysis had several limitations including a lack of assessment of long-term efficacy, the inclusion of only 10 studies with even fewer studies evaluated for each individual outcome, and lack of RCTs directly comparing Stretta and TIF. Additionally, some of the comparisons were significantly affected by heterogeneity and the evidence quality of each outcome (as assessed by GRADE) ranged from moderate to very low.

Fass (2017) published a meta-analysis of cohort studies and RCTs evaluating the Stretta procedure for patients with GERD (N=2468 total, 9-558 per study).

A meta-analysis of four RCTs (total N=165 patients) was published by Lipka in 2015. Three trials compared Stretta with sham, and one trial compared Stretta with PPI therapy. Results of the individual sham-controlled trials were inconsistent, generally supporting some improvement in symptoms, but not in objective measures of esophageal acid exposure. For example, Corley (2008) reported improvement in heartburn symptoms, quality of life, and general physical quality of life in the active treatment group compared with the sham group, but there were no significant differences in medication use and esophageal acid exposure. Aziz (2010) found statistically significant improvements in GERD-HRQL in all treatment groups. Arts (2012) reported that the symptom score and quality-of-life score for bodily pain improved, but no changes were observed in PPI use, esophageal acid exposure, or lower esophageal sphincter pressure after RF. Pooled results of the meta-analysis showed no significant difference between Stretta and either sham treatment or PPI management for the measured outcomes, including the ability to stop PPI therapy. The overall quality of evidence was considered to be very low with a high risk of bias, and the meta-analysis was limited by heterogeneity in the included studies, which may be due to small sample sizes, differences in measures, and differences in follow-up time.

A 2014 systematic review and meta-analysis of four randomized trials; three reviewed previously and one trial which compared Stretta with PPI therapy, included a total of 165 patients. The overall quality of the evidence was considered to be very low with a high risk of bias. The pooled results showed no significant difference between Stretta and sham or PPI management for the measured outcomes. The meta-analysis was limited by heterogeneity in the included studies, which may be due to small sample sizes, differences in measures, and differences in follow-up time. The author also identified significant risks associated with Stretta, including pneumonia, gastroparesis, esophageal perforation, cardiac arrest, and at least 4 deaths from review of the Manufacturer and User Facility Device Experience database.

A meta-analysis completed by Perry, included 20 studies, only 2 of which were RCTs. This meta-analysis was limited by the inclusion of lower quality studies and by the analysis, which
only examined within-subject differences and did not include between-subject differences, as reported in the RCTs.\cite{76}

Randomized Controlled Trials

Zerbib (2020) published a double-blind RCT that compared Stretta plus PPI therapy (n=29) to sham plus PPI therapy (n=33) in individuals with PPI-refractory heartburn.\cite{77} The primary endpoint was clinical success at week 24, defined as an intake of fewer than seven PPI doses over the previous two weeks and adequate subjective patient-reported symptom control. Fewer patients achieved the primary endpoint in the Stretta group, but the difference was not statistically significant (3.4% vs 15.1%; odds ratio [OR]=0.20; 95% CI, 0.02 to 1.88). Severe adverse events were more frequent in the Stretta group (7 vs 2) and included epigastric pain (n = 3), delayed gastric emptying, vomiting, headache, and 1 leiomyoma. Limitations of this RCT include that pH-impedance monitoring was not performed either at enrollment or during follow-up. Thus, baseline status of GERD diagnosis is unclear and the physiologic effects of Stretta are unknown.

There are several randomized trials comparing transesophageal radiofrequency (RF) energy with a sham procedure that involved balloon inflation but no needle deployment or RF energy delivery.\cite{72-74}

Results of the first study failed to include 20% of the randomized patients in analysis of primary endpoints, and no intention to treat analysis was provided. Therefore, reported results of improved heartburn symptoms and GERD quality of life scores are not reliable.

Results of the second, third and fourth studies were flawed due to a small patient population and inadequate timeframe for follow up.

Other small RCT’s have been published. Two compared RF to PPI therapy. One trial showed promising short-term (6 months) results but does not permit conclusions about mid- to long-term effectiveness and durability.\cite{75} Another compared RF with PPI therapy to PPI therapy alone.\cite{78} Results at 3 months appeared favorable to the Stretta group, however, the study sample was small (N=20) and power calculations were not conducted.

Nonrandomized Studies

Other clinical studies concerning transesophageal radiofrequency are limited to observational case series that do not allow conclusions about long-term effectiveness and durability.\cite{79-91} Though several case series report up to 4-10 year outcomes, there was a significant loss to follow-up in these studies such that conclusions on durability and health outcomes cannot be made.\cite{92}

INJECTION OR IMPLANTATION OF BIOCOMPATIBLE POLYMERS

Randomized Controlled Trials

The available evidence for the Gatekeeper Reflux Repair System consists of one RCT.\cite{93} This industry-funded sham-controlled single-blind multicenter study randomized 118 patients into Gatekeeper (n=75) or sham (n=43) treatment. An additional 25 patients were treated as lead-ins during the initial training of investigators and included only in the safety analysis. The patients were implanted initially with 4 Gatekeeper prostheses. At three months, 44% of implanted patients received retreatment with up to four additional prostheses due to
unsatisfactory symptom control. The primary safety end point was reduction in serious device- and procedure-related adverse device effects, compared with a surgical procedure composite complication rate of 15%. Four serious adverse events were reported (2 perforations, 1 pulmonary infiltrate related to a perforation, 1 severe chest pain). The primary efficacy end point was reduction in heartburn symptoms using the GERD-HRQL questionnaire. Planned interim analysis after 143 patients were enrolled found that heartburn symptoms and esophageal acid exposure had improved significantly in both the Gatekeeper and sham groups at six months, but there was no significant difference between the two groups. The study was terminated early due to a lack of efficacy.

There is one randomized sham-controlled trial which reports results of patients randomized to receive either injection of Enteryx biopolymer or a sham procedure.[94] At 3- and 6-months follow-up, patients in the Enteryx group had greater reductions in PPI use and more improvement in GERD health-related quality of life heartburn scores. However, the small size and short duration of the study limit interpretation of findings.

Nonrandomized Studies

Other data on injectable or implantable polymers consists of very small case series.[21, 95] The small number of patients and lack of long-term follow-up precludes scientific analysis.

PRACTICE GUIDELINE SUMMARY

Several clinical practice guidelines consider the use of transoral fundoplication or other endoscopic procedures, although none were able to recommend this treatment based upon high level evidence.

AMERICAN SOCIETY OF GENERAL SURGEONS

The American Society of General Surgeons (ASGS) consensus-based position statement on transoral fundoplication states, “the ASGS supports the use of transoral fundoplication by trained General Surgeons for the treatment of symptomatic chronic gastroesophageal reflux disease (GERD) in patients who fail to achieve satisfactory response to a standard dose of Proton Pump Inhibitor (PPI) therapy or for those who wish to avoid the need for a lifetime of medication dependence.”[96]

AMERICAN GASTROENTEROLOGICAL ASSOCIATION

The 2008 Medical Position Statement of the American Gastroenterological Association (AGA), makes no recommendation for or against “the use of currently commercially available endoluminal antireflux procedures in the management of patients with an esophageal syndrome” based on insufficient evidence (Grade Insufficient).[97]

AMERICAN COLLEGE OF GASTROENTEROLOGY

In 2022, the American College of Gastroenterology (ACG) released updated guidelines for the diagnosis and management of gastroesophageal reflux disease.[98] The guidelines state the following:

- Because data on the efficacy of radiofrequency energy (Stretta) as an antireflux procedure is inconsistent and highly variable, we cannot recommend its use as an
alternative to medical or surgical antireflux therapies (conditional recommendation, low level of evidence).

- We suggest consideration of TIF for patients with troublesome regurgitation or heartburn who do not wish to undergo antireflux surgery and who do not have severe reflux esophagitis (LA grade C or D) or hiatal hernias >2 cm (conditional recommendation, low level of evidence).

- For patients who have regurgitation as their primary PPI-refractory symptom and who have had abnormal gastroesophageal reflux documented by objective testing, we suggest consideration of antireflux surgery or TIF (conditional recommendation, low level of evidence).

SOCIETY OF AMERICAN GASTROINTESTINAL ENDOSCOPIC SURGEONS

In 2021, the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) published guidelines for the surgical treatment of gastroesophageal reflux (GERD).[99] Although several recommendations regarding fundoplication were provided, the guideline does not mention transesophageal endoscopic approaches.

In 2017, SAGES updated its evidence-based guidelines on endoluminal treatments for GERD.[100] SAGES gave a strong recommendation based on moderate quality evidence that TIF with EsophyX can be performed with an acceptable safety risk in selected patients. SAGES concluded that EsophyX results in better control of GERD symptoms compared with proton pump inhibitor (PPI) treatment in the short term (six months) but leads to similar improvement in objective GERD measures compared with PPIs. TIF appears to lose effectiveness during longer term follow-up and is associated with moderate patient satisfaction scores. SAGES found no comparative, controlled trials between TIF and surgical fundoplication, but preliminary evidence suggested that the surgical fundoplication can be used safely after TIF failure. SAGES gave a strong recommendation based on moderate quality evidence that Stretta is safe for adults and significantly improves health-related quality of life score, heartburn scores, the incidence of esophagitis, and esophageal acid exposure in patients with GERD. Stretta is more effective than PPI, but less so than fundoplication.

SUMMARY

There is not enough research to show that transesophageal endoscopic therapies for the treatment of gastroesophageal reflux disease (GERD) improves health outcomes. Although clinical guidelines based on research may recommend treating GERD with one or more of the therapies mentioned, there is not enough research to know if or how well these procedures work to treat people with GERD. This does not mean that it does not work, but more research is needed to know. Therefore, the use of any of these procedures is considered investigational for the treatment of GERD.

REFERENCES

48. WE Barnes, KM Hoddinott, S Mundy, M Williams. Transoral incisionless fundoplication offers high patient satisfaction and relief of therapy-resistant typical and atypical...

58. PA Testoni, S Testoni, G Mazzoleni, C Vailati, S Passaretti. Long-term efficacy of transoral incisionless fundoplication with Esophyx (Tif 2.0) and factors affecting outcomes in GERD patients followed for up to 6 years: a prospective single-center study. *Surg Endosc.* 2014. PMID: 25480624

61. RCW Bell, K Freeman, R Heidrick, S Ayazi. Transoral incisionless fundoplication demonstrates durability at up to 9 years. *Therap Adv Gastroenterol.* 2021;14:17562848211004827. PMID: 33948113

63. RC Bell, PG Mavrelis, WE Barnes, et al. A Prospective Multicenter Registry of Patients with Chronic Gastroesophageal Reflux Disease Receiving Transoral Incisionless Fundoplication. *Journal of the American College of Surgeons.* 2012. PMID: 22939637

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>43192</td>
<td>Esophagoscopy; rigid, transoral; with directed submucosal injection(s), any substance</td>
</tr>
<tr>
<td></td>
<td>43201</td>
<td>Esophagoscopy; flexible, transoral; with directed submucosal injection(s), any substance</td>
</tr>
<tr>
<td></td>
<td>43210</td>
<td>Esophagogastroduodenoscopy, flexible, transoral; with esophagogastric fundoplasty, partial or complete, includes duodenoscopy when performed</td>
</tr>
<tr>
<td></td>
<td>43236</td>
<td>Esophagogastroduodenoscopy, flexible, transoral, with direct submucosal injections, any substance</td>
</tr>
<tr>
<td></td>
<td>43257</td>
<td>Esophagogastroduodenoscopy, flexible transoral; with deliver of thermal esophageal sphincter and/or gastric cardia, for treatment of gastroesophageal reflux disease</td>
</tr>
<tr>
<td></td>
<td>43499</td>
<td>Unlisted procedure, esophagus</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Date of Origin: February 2001
Gastric Electrical Stimulation

Effective: August 1, 2022

Next Review: April 2023
Last Review: June 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Gastric electrical stimulation (GES) is performed using an implantable device designed to treat chronic drug-refractory nausea and vomiting secondary to gastroparesis of diabetic or idiopathic etiology. Gastric electrical stimulation is also proposed as a treatment of obesity. The device may also be referred to as a gastric pacemaker or gastric pacing.

MEDICAL POLICY CRITERIA

I. Gastric electrical stimulation may be considered medically necessary in the treatment of chronic intractable nausea and vomiting secondary to gastroparesis of diabetic, idiopathic or post-surgical etiology when all of the following (A – C) Criteria are met:
 A. Significantly delayed gastric emptying as documented by standard scintigraphic imaging of solid food; and
 B. Patient is refractory or intolerant of 2 out of 3 classes of prokinetic medications and 2 out of 3 antiemetic medications. (see Appendices for classes); and
 C. Patient’s nutritional status is sufficiently low that weight has decreased to 90 percent or less of normal body weight for a patient’s height and age in comparison with pre-illness weight.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
II. The replacement of an existing gastric electrical stimulator and/or generator is considered **medically necessary** when the existing gastric electrical stimulator and/or generator is malfunctioning, cannot be repaired, and is no longer under warranty.

III. Replacement of a gastric electrical stimulator and/or generator is considered **not medically necessary** when Criterion II. is not met.

IV. Gastric electrical stimulation for the treatment of chronic intractable nausea and vomiting secondary to gastroparesis of diabetic, idiopathic or post-surgical etiology is **not medically necessary** when Criterion I. is not met.

V. Gastric electrical stimulation is **investigational** for all other indications including but not limited to the treatment of obesity.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Current Symptomology
- Prokinetic and Antiemetic Medications given and response
- Replacement and Revisions
 - Name and type of device requested
 - Documentation of specifically why the stimulator is no longer able to perform its basic function
 - Documentation that the current device cannot be repaired or adapted adequately to meet the patient’s needs

CROSS REFERENCES

1. [Bariatric Surgery](#), Surgery, Policy No. 58
2. [Vagus Nerve Stimulation](#), Surgery, Policy No. 74
3. [Vagus Nerve Blocking Therapy for Obesity](#), Surgery, Policy No. 200

BACKGROUND

A subcutaneously implanted pulse generator delivers electrical stimulation to the stomach via intramuscular leads that are implanted on the outer surface of the greater curvature of the stomach either laparoscopically or during a laparotomy. Stimulation parameters are typically programmed at an “on time” (ON) (e.g., 0.1 second) alternating with an “off time” (OFF) (e.g., 5.0 seconds).

GASTRIC STIMULATION FOR THE TREATMENT OF INTRACTABLE NAUSEA AND VOMITING DUE TO GASTROPARESIS

Gastroparesis is a chronic disorder of gastric motility characterized by delayed emptying of a solid meal. Symptoms include bloating, distension, nausea, and vomiting. When severe and chronic, gastroparesis can be associated with dehydration, poor nutritional status, and poor...
glycemic control in diabetics. While most commonly associated with diabetes, gastroparesis is also found in chronic pseudo-obstruction, connective tissue disorders, Parkinson disease, and psychological pathology. Idiopathic gastroparesis refers to symptoms of gastroparesis which are not associated with an identifiable cause. Treatment of gastroparesis includes prokinetic agents such as metoclopramide, and antiemetic agents such as metoclopramide, granisetron, or ondansetron. Severe cases may require enteral or total parenteral nutrition.

GASTRIC STIMULATION FOR THE TREATMENT OF OBESITY

GES has also been investigated as a treatment of obesity as a technique to increase a feeling of satiety with subsequent reduced food intake and weight loss. The exact mechanisms resulting in changes in eating behavior are uncertain but may be related to neurohormonal modulation and/or stomach muscle stimulation.

REGULATORY STATUS

The Enterra™ Therapy System (formerly named Gastric Electrical Stimulation [GES] System; manufactured by Medtronic) is the only device approved for treatment of chronic refractory gastroparesis. It received approval for marketing from the U.S. Food and Drug Administration (FDA) in 2000 through the humanitarian device exemption (HDE) process.[1] This process requires the manufacturer to provide adequate information for the FDA to determine that the device has “probable” benefit but does not pose an unreasonable or significant risk; it does not require data confirming the efficacy of the device. The HDE process is available for devices treating conditions that affect fewer than 4,000 Americans per year.

EVIDENCE SUMMARY

GASTRIC STIMULATION FOR THE TREATMENT OF INTRACTABLE NAUSEA AND VOMITING DUE TO GASTROPARESIS

Systematic Reviews

Several systematic reviews of studies of gastric electrical stimulation (GES) for gastroparesis have been published, the most recent and comprehensive of which was conducted by Levinthal in 2017.[2-4]

To be included in the Levinthal review, studies had to include adults with established gastroparesis, report patient symptom scores and administer treatment for at least one week. Five randomized controlled trials (RCTs) and 13 non-RCTs meeting criteria were identified. Pooled analysis of data from the five RCTs (n=185 patients) did not find a statistically significant difference in symptom severity when the GES was turned on versus off (standardized mean difference [SMD], 0.17; 95% confidence interval [CI], -0.06 to 0.40; p=0.15). Another pooled analysis did not find a statistically significant difference in nausea severity scores when the GES was on or off (SMD = -0.143; 95% CI, -0.50 to 0.22; p=0.45). In a pooled analysis of 13 open-label single-arm studies and data from open-label extensions of three RCTs, mean total symptom severity score decreased 2.68 (95% CI, 2.04 to 3.32) at follow-up from a mean of 6.85 (95% CI, 6.28 to 7.42) at baseline. The rate of adverse events in the immediate postoperative period (reported in seven studies) was 8.7% (95% CI, 4.3% to 17.1%). The in-hospital mortality rate within 30 days of surgery was 1.4% (95% CI, 0.8% to 2.5%), the rate of reoperations (up to 10 years of follow-up) was 11.1% (95% CI, 8.7% to 14.1%), and the rate of device removal was 8.4% (95% CI, 5.7% to 12.2%).

SUR111 | 3
Randomized Controlled Trials

The data presented to the FDA documenting the “probable benefit” of the GES (Enterra™) system was based on a multicenter double-blind cross-over study referred to as the Worldwide Anti-Vomiting Electrical Stimulation Study (WAVESS). The study included 33 patients with intractable idiopathic or diabetic gastroparesis. The primary endpoint of the study was a reduction in vomiting frequency, as measured by patient diaries. In the initial phase of the study, all patients underwent implantation of the stimulator and were randomly and blindly assigned to stimulation ON or stimulation OFF for the first month, with crossover to OFF and ON during the second month. The baseline vomiting frequency was 47 episodes per month, which significantly declined in both ON and OFF groups to 23 and 29 episodes, respectively. However, there were no significant differences in the number of vomiting episodes between the two groups, suggesting a placebo effect.

After the first two months of therapy, patients were asked which month of the cross-over stimulation they preferred. Twenty-one of the 33 patients selected the ON mode as their preferred month, compared to 7 who preferred the OFF mode, and 5 who had no preference. The greater preference for ON stimulation suggested some short-term effect that was not placebo.

In a continuing open phase of the trial, the patients then received the stimulation consistent with their preference. However, by four months all patients had the device turned ON (it was not clear whether this phase was by preference or design). At 6 and 12 months follow-up, the mean number of vomiting episodes continued to decline, although only 15 patients were followed for a period of 12 months. Data regarding quality of life were also obtained at 6 and 12 months and showed improvement. At 6 months, there was a significant improvement in 2-hour gastric retention (from 80% retention to 60% retention), but not in 4-hour gastric retention. (Fifty percent gastric retention at two hours was considered the upper limits of normal.)

The results of the randomized portion of the study suggest a placebo effect. Therefore, long-term results of GES must be validated in a longer-term randomized trial. It is interesting to note that GES did not return gastric emptying to normal in the majority of the patients tested. In as much as the device is intended to improve gastric emptying, as a proof of principle, it would be interesting to investigate the correlation between the degree of gastric emptying and symptom improvement.

In a 2003 update to WAVESS, Abell reported 12-month outcomes for all of the patients. Statistically significant improvements were found for weekly vomiting frequency, total abdominal symptom score, and scintigraphic solid food emptying. At baseline the median vomiting frequency was 17.3 episodes per week with gastroparetic symptoms over a mean of 6.2 years. All patients had scintigraphic evidence of delayed gastric emptying at 2 and 4 hours, all patients were refractory to prokinetic and antiemetic medications, and 14 required some form of parenteral or enteral feedings. Results at the end of phase 1 (the blinded phase) showed a 50% decreased vomiting frequency for patients whose devices were ON compared to patients whose devices were OFF (p=0.05).

Symptom severity trended toward improvement in the ON versus OFF period, although these changes did not reach statistical significance in phase 1. In a second phase of the study all patients were switched to the ON position with 6- and 12- months follow-up. Vomiting at 12 months was compared to baseline; 72% for the combined group, 63% for diabetics with gastroparesis, and 83% for patients with idiopathic gastroparesis. Total symptom score

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
improved significantly (p<0.05) at 6 and 12 months. Physical and mental quality of life scores improved significantly compared to baseline (p= less than 0.025). Baseline gastric retention was 78% at 2 hours. This decreased significantly with electrical stimulation to 65% at 6 months and 56% at 12 months for the combined group. The changes in 2-hour gastric emptying were not significant for the diabetic and idiopathic groups separately. Four-hour gastric emptying improved from 34% retention at baseline to 22% retention at 12 months. The difference was statistically significant for the combined group as well as the diabetic and idiopathic groups separately.

McCallum (2010) performed a multicenter prospective study to evaluate Enterra™ therapy in patients with chronic intractable nausea and vomiting from diabetic gastroparesis (DGP). In this study, 55 patients with refractory DGP (5.9 years of DGP) were implanted with the Enterra™ system. After surgery, all patients had the stimulator turned ON for 6 weeks and then were randomly assigned to groups that had consecutive 3-month cross-over periods with the device ON or OFF. After this period, the device was turned ON in all patients and they were followed up unblinded for 4.5 months. During the initial 6-week phase with the stimulator turned ON, the median reduction in weekly vomiting frequency (WVF) compared with baseline was 57%. There was no difference in WVF between patients who had the device turned ON or OFF during the 3-month cross-over period. At 1 year, the WVF of all patients was significantly lower than baseline values (median reduction, 68%; P < 0.001). One of the patients had the device removed due to infection; 2 patients required surgical intervention due to lead-related problems.

In a later study, McCallum (2013) evaluated GES (Enterra™ system) in patients with chronic vomiting due to idiopathic gastroparesis in a randomized, double-blind crossover trial. In this study, 32 patients with nausea and vomiting associated with idiopathic gastroparesis, which was unresponsive or intolerant to prokinetic and antiemetic drugs, received Enterra™ implants and had the device turned on for 6 weeks. Subsequently, 27 of these patients were randomized to have the device turned on or off for 2 consecutive 3 month periods. Twenty five of these subjects completed the randomized phase; of note, 2 subjects had the device turned on early, 2 subjects had randomization assignment errors, and 1 subject had missing diaries. During the initial 6-week on period, all subjects demonstrated improvements in their WVF, demonstrating a median reduction of 61.2% compared with baseline (17.3 episodes/week at baseline vs 5.5 episodes/week at 6 week postimplant, p<0.001). During the on-off crossover phase, subjects demonstrated no significant differences between the on and off phase in the study’s primary end point, median WVF (median 6.4 in the on phase vs 9.8 in the off phase; p=1.0). Among the 19 subjects who completed 12 months of follow up, there was an 87.1% reduction in median WVF compared with baseline (17.3 episodes/week at baseline vs 2 episodes/week at 12-month follow-up, p<0.001). Two subjects required surgical intervention for lead migration/dislodgement or neurostimulator migration.

Nonrandomized Studies

Laine (2018) published a retrospective, multicenter analysis of patients with severe, medically refractory gastroparesis who received GES. Fourteen patients (11 diabetic, 1 idiopathic, and 2 postoperative) treated in Finland between 2007 and 2015 were included; median follow-up was 3 years. Eight (57.1%) patients experience marked relief of gastroparesis symptoms, while 3 (21.4%) patients experience partial relief. There was a median weight gain of 5.1 kg in 11 (78.6%) patients after GES implantation, and, at last possible follow-up, 5 out of 10 (50%
patients were without medication for gastroparesis. The study was limited by its retrospective nature, small population size, and relatively short follow-up time.

Shada (2018) published a prospective study of patients with medically refractory gastroparesis who underwent implantation of GES between 2005 and 2016.[8] One hundred nineteen patients (64 diabetic, 55 idiopathic), with mean follow-up of 39.0 ± 32.0 months, were included in the analysis. Before GES placement, operatively placed feeding tubes were present in 22% of diabetic and 17% of idiopathic patients, however, after GES placement, 67% of feeding tubes were removed. Due to a perceived lack of benefit, 8 patients decided to have their GES device removed after a mean time of 36 ± 29 months. Also, there was significant improvement in GCSI scores for both diabetic (p=0.01) and idiopathic (p=0.003) subgroups at ≥2 years after implantation. The study was limited by its not all patients being administered the GCSI before GES, and a number of patients being lost to follow-up.

In 2016, Heckert reported on GES as a treatment for refractory symptoms of gastroparesis in 138 patients (65 diabetic, 68 idiopathic, and 5 other) with delayed gastric emptying at one-year follow-up (1.4 ± 1.0 years).[9] Patients reported their response to GES using the Clinical Patient Grading Assessment Scale (CPGAS), of which, 75% of patients felt their symptoms had improved, and 25% felt their symptoms were the same or worsened (diabetics had a greater response than idiopathic patients). Symptom severity was assessed by analyzing Patient Assessment of GI Symptoms (PAGI-SYM) questionnaires, before insertion of GES and at the last follow-up visit. PAGI-SYM scores were improved for all symptoms, though the authors report nausea, early satiety and loss of appetite to have been most improved; and constipation, diarrhea, and abdominal distension to have been least improved. In this selected group of patients, the authors concluded GES to be beneficial in the majority of patients.

In 2013, Keller reported complication rates and need for a second surgery in 233 patients who had GES implantation surgery over a ten year period at a single institution.[10] Additional surgery was required in 58% of patients. The majority of reoperations were due to the following complications: nutritional access (45 patients, requiring 77 procedures), subcutaneous pocket issues (n = 21), gastroparetic symptoms (n = 11), mechanical issues (n = 9) and infection (n = 4). The study reported that patient BMI was predictive of additional surgeries, with 4.45 overall increased risk of pocket revision surgery. Although 70% of patients reported improved symptoms of pain, bloating and nausea, GES had a significantly high reoperation rate due to complications associated with the initial procedure.

In 2007, Anand reported on a study of 214 consecutive drug-refractory patients with the symptoms of gastroparesis (146 idiopathic, 45 diabetic, 23 after surgery).[11] A GES device was implanted in 156 patients. The remaining 58 patients, designated as the control group, were either on the waiting list for permanent implantation or consented to not receive a permanent implant. At last follow-up (median 4 years), most patients who received implants (135 of 156) were alive with intact devices, significantly reduced gastrointestinal symptoms, and improved health-related quality of life, with evidence of improved gastric emptying. Also, 90% of the patients had a response in at least 1 of 3 main symptoms. Most patients that explanted, usually for pocket infections, were later successfully reimplemented.

GES placement using minimally invasive surgical approaches has also been evaluated in several publications. Laparoscopy has been reported in at least two studies as a feasible approach in placement of GES for patients with medically refractory diabetic or idiopathic gastroparesis.[12, 13]
Several small case series and retrospective reviews have been reported, some with long-term outcomes up to 5 years.[12, 14-30] The data indicate that GES may be associated with improvements in gastrointestinal symptom scores, nutrition and quality-of-life for patients; these improvements were sustained over time. However, gastric emptying rates were mixed.

Adverse Events

In 2017, Bielefeldt analyzed the number, severity and type of voluntarily reported adverse events related to EnterraTM in the Manufacturer and User Device Experience (MAUDE) databank of the FDA.[31] Data were retrieved for 2001 through October 31, 2015, of which 1472 reports were abstracted. Thirty-six perioperative complication reports were reviewed; six were serious events, including three deaths (one due to cardiac arrest, two due to septic complications with resulting multi organ failure), one stroke, and one myocardial infarction complicated further by a pulmonary embolism. Overall, most of the reports were regarding patient concerns, local complications, or system failure. Limitations of these findings include reporting bias (the MAUDE data are voluntarily submitted), and report misclassification bias (MAUDE data sources vary from patient reports to published articles and inconsistencies in reporting have been found). Risk-benefit could not directly be assessed given the nature of the MAUDE database, though the author cites other studies for outcomes measurement, most of which are included in the other sections of this evidence review. Overall, 35% of the reported adverse events prompted an additional surgery.

Section Summary

The evidence regarding the clinical utility of GES for gastroparesis due to intractable nausea and vomiting is limited to three small crossover RCTs. However, longer-term data suggest improvements in gastrointestinal symptom scores, nutrition, and quality-of-life scores, suggesting some benefit with GES treatment. Given the lack of alternative treatment options in this specific patient population, GES may be considered reasonable treatment of symptoms of gastroparesis.

GASTRIC STIMULATION FOR THE TREATMENT OF OBESITY

Systematic Review

In 2014, Cha published a review of 33 studies evaluating various methods of gastric stimulation as a treatment of obesity, including implantable GES.[32] The majority of included studies were small in nature with 24 studies evaluating 30 or fewer patients. In addition, many of the studies reported high dropout rates of more than 50% of patients at the end of the study follow-up period. A major limitation of the review was the inclusion of studies which did not include the treatment of obesity (i.e., BMI or weight loss) as a primary outcome measure. Furthermore, there were methodological difference in the patient inclusion criteria and most of the studies included in the review were limited by short-term follow-up of less than one year. The authors concluded that the level of evidence regarding GES as a treatment of obesity was low. Long-term RCTs which compare GES to other treatments of obesity and sham are needed in order to assess the safety and efficacy of GES in this population.

Randomized Controlled Trials

There is one published RCT on GES for the treatment of obesity. In 2009, Shikora reported on a randomized controlled, double-blind study (SHAPE trial) to evaluate GES for the treatment of obesity.[33] All 190 patients participating in the study received an implantable gastric stimulator

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
and were randomized to have the stimulator turned on or off. All patients were evaluated monthly, participated in support groups and reduced their diet by 500-kcal/day. At 12-month follow-up, there was no difference in excess weight loss between the treatment group (weight loss of 11.8% +/- 17.6%) and the control group (weight loss of 11.7% +/- 16.9%) using intention-to-treat analysis (p=0.717).

Nonrandomized Studies

Additional, small studies – including one patient population with comorbidities of gastroparesis and morbid obesity – have reported positive outcomes in weight loss and maintenance of weight loss along with minimal complications.[34-39] However, due to lack of long-term outcomes from well-designed randomized clinical trials, conclusions cannot be made concerning the safety and efficacy of chronic gastric stimulation as a treatment for morbid obesity.

PRACTICE GUIDELINE SUMMARY

AMERICAN COLLEGE OF GASTROENTEROLOGY[40]

The American College of Gastroenterology (ACG) published a clinical practice guideline on management of gastroparesis in 2013. The recommendations for this guideline were based on review of the evidence-base through 2011. The ACG concluded that GES treatment does not adequately address the clinical needs of these patients, but that, “GES may be considered for compassionate treatment in patients with refractory symptoms, particularly nausea and vomiting. Symptom severity and gastric emptying have been shown to improve in patients with diabetic gastroparesis (DG), but not in patients with idiopathic gastroparesis (IG) or postsurgical gastroparesis (PSG). (Conditional recommendation, moderate level of evidence.).”

SUMMARY

It appears that gastric electrical stimulation (GES) may improve intractable nausea and vomiting for patients with gastroparesis. Clinical guidelines based on research state GES may be considered for compassionate treatment in patients with refractory symptoms, particularly nausea and vomiting. Therefore, given the lack of treatment options in this very specific patient population, GES may be medically necessary in carefully selected patients with gastroparesis when policy Criteria are met. GES for the treatment of chronic intractable nausea and vomiting secondary to gastroparesis of diabetic, idiopathic or post-surgical etiology is considered not medically necessary when policy Criteria are not met.

There is limited evidence on the efficacy and safety gastric electrical stimulation for any other indication including but not limited to the treatment of obesity. There are no clinical practice guidelines that recommend the use of gastric electrical stimulation for any other indication. Therefore, the use of electrical gastric stimulation for all other indications including treatment for obesity are considered investigational.

In certain situations, a stimulator may require revision after it has been placed. In these cases, revision may be medically appropriate to allow for the proper functioning of the device. Therefore, revision(s) to an existing gastric electrical stimulator may be considered medically necessary after the device has been placed.
In certain situations, a gastric electrical stimulator may no longer be able to perform its basic function due to damage or wear. When a gastric electrical stimulator is out of its warranty period and cannot be repaired adequately to meet the patient’s medical needs, replacement of the device may be medically appropriate. Therefore, replacement of all or part of a gastric electrical stimulator may be considered medically necessary when device replacement Criteria are met.

When a gastric electrical stimulator is in its warranty period or can be repaired or adapted adequately to meet the patient’s medical needs, replacement of the device is not medically appropriate. Therefore, replacement of all or part of a gastric electrical stimulator is considered not medically necessary when device replacement Criteria are not met.

REFERENCES

2. DJ Levinthal, K Bielefeldt. Systematic review and meta-analysis: Gastric electrical stimulation for gastroparesis. Autonomic neuroscience : basic & clinical. 2017;202:45-55. PMID: 27085627

CODES

NOTES:
- The CPT coding manual indicates that procedures related to laparoscopic gastric stimulation electrodes for morbid obesity should be reported using code 43659 - Unlisted laparoscopy procedure, stomach
- HCPCS code C1823 is NOT the correct code to use for reporting these services. Please refer to the codes listed below for guidance.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>43647</td>
<td>Laparoscopy, surgical; implantation or replacement of gastric neurostimulator electrodes, antrum</td>
</tr>
</tbody>
</table>
Codes

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>43648</td>
<td></td>
<td>Laparoscopy, surgical; revision or removal of gastric neurostimulator electrodes, antrum</td>
</tr>
<tr>
<td>43659</td>
<td></td>
<td>Unlisted laparoscopy procedure, stomach</td>
</tr>
<tr>
<td>43881</td>
<td></td>
<td>Implantation or replacement of gastric neurostimulator electrodes, antrum, open</td>
</tr>
<tr>
<td>43882</td>
<td></td>
<td>Revision or removal of gastric neurostimulator electrodes, antrum, open</td>
</tr>
<tr>
<td>43999</td>
<td></td>
<td>Unlisted procedure, stomach</td>
</tr>
<tr>
<td>64590</td>
<td></td>
<td>Insertion or replacement of peripheral or gastric neurostimulator pulse generator or receiver, direct or inductive coupling.</td>
</tr>
<tr>
<td>64595</td>
<td></td>
<td>Revision or removal of peripheral or gastric neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td>95980</td>
<td></td>
<td>Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient measurements) gastric neurostimulator pulse generator/transmitter; intraoperative, with programming</td>
</tr>
<tr>
<td>95981</td>
<td></td>
<td>; subsequent, without programming</td>
</tr>
<tr>
<td>95982</td>
<td></td>
<td>; subsequent, with reprogramming</td>
</tr>
</tbody>
</table>

HCPCS

<table>
<thead>
<tr>
<th>HCPCS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1767</td>
<td>Generator, neurostimulator (implantable), nonrechargeable</td>
</tr>
<tr>
<td>C1778</td>
<td>Lead neurostimulator</td>
</tr>
<tr>
<td>C1883</td>
<td>Adaptor/Extension, pacing lead or neurostimulator lead (implantable)</td>
</tr>
<tr>
<td>C1897</td>
<td>Lead neurostimulator test kit (implantable)</td>
</tr>
<tr>
<td>E0765</td>
<td>FDA approved nerve stimulator, with replaceable batteries, for treatment of nausea and vomiting</td>
</tr>
<tr>
<td>L8679</td>
<td>Implantable neurostimulator, pulse generator, any type</td>
</tr>
<tr>
<td>L8680</td>
<td>Implantable neurostimulator electrode, each</td>
</tr>
<tr>
<td>L8685</td>
<td>Implantable neurostimulator pulse generator, single array, rechargeable, includes extension</td>
</tr>
<tr>
<td>L8686</td>
<td>; non-rechargeable, includes extension</td>
</tr>
<tr>
<td>L8687</td>
<td>Implantable neurostimulator pulse generator, dual array, rechargeable, includes extension</td>
</tr>
<tr>
<td>L8688</td>
<td>; non-rechargeable, includes extension</td>
</tr>
</tbody>
</table>

Appendix 1: Prokinetic Medications

<table>
<thead>
<tr>
<th>Class</th>
<th>Common Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholinergic Agonists</td>
<td>dextrophan (Ilopan®), bethanechol (Urecholine®)</td>
</tr>
<tr>
<td>Motolin receptor agonists</td>
<td>erythromycin</td>
</tr>
<tr>
<td>Dopamine receptor antagonists</td>
<td>metoclopramide (Reglan®)</td>
</tr>
</tbody>
</table>

Appendix 2: Antiemetic Medications

<table>
<thead>
<tr>
<th>Class</th>
<th>Common Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antihistamines</td>
<td>diphenhydramine (Benadryl®), dimenhydrinate (Dramamine®), meclizine (Antivert®), hydroxyzine (Vistaril®), trimethobenzamide (Tigan®)</td>
</tr>
<tr>
<td>Serotonin (5HT₃) receptor antagonists</td>
<td>ondansetron (Zofran®), granisetron (Kytril®), dolasetron (Anzemet®)</td>
</tr>
<tr>
<td>Dopamine receptor antagonists</td>
<td>Metoclopramide (Reglan®), perphenazine (Trilafon®), prochlorperazine (Compazine®), promethazine (Phenergan®), thieethylperazine (Torecan®), cyclizine (Marenez®)</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Transcutaneous Bone-Conduction and Bone-Anchored Hearing Aids

Effective: June 1, 2022

Next Review: March 2023
Last Review: April 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

External bone-conduction hearing aids function by transmitting sound waves through the bone of the skull to the inner ear.

MEDICAL POLICY CRITERIA

Notes:

- This policy applies *only* to bone-conduction hearing aid systems that are bone anchored (also called bone-anchored hearing aids (BAHAs) or osseointegrated implants) or transcutaneous (non-surgical, secured by a Softband or other method). It does *not* apply to cochlear implants, which are addressed in a separate medical policy (see Cross References), or to intraoral bone-conduction hearing aids.

- Both bone-anchored and transcutaneous bone-conduction systems are hearing aids. There may be specific member benefit language addressing coverage of hearing aids. Any specific contract language supersedes medical policy. Unless otherwise specified, the contract language addressing coverage of hearing aids applies to both bone-conduction hearing aids and externally worn air-conduction hearing aids.
• Oregon HB 4104 Coverage of Hearing Loss Treatments (Oregon Hearing Mandate), effective January 1, 2019, requires coverage of medically necessary hearing aids, including specified replacement supplies, for Oregon members meeting age and educational enrollment requirements. This coverage is detailed in applicable contracts. Note that contract language rather than Criterion IV. may apply for Oregon members meeting the parameters of the Oregon Hearing Mandate.

I. **Unilateral or bilateral transcutaneous bone-conduction or bone-anchored hearing aid(s)** may be considered medically necessary as an alternative to air-conduction hearing aid(s) for conductive or mixed hearing loss when all of the following criteria (A.-D.) are met:

A. Patients who meet any of the following criteria:
 1. Congenital or surgically induced malformations (e.g., atresia) of the external ear canal or middle ear; or
 2. Chronic external otitis or otitis media; or
 3. Tumors of the external canal and/or tympanic cavity; or

B. A bone-conduction pure tone average threshold at 0.5, 1, 2, and 3 kHz no poorer than (i.e. threshold average of 0.5, 1, 2, and 3 kHz no higher than) one of the following (see Policy Guidelines):
 1. 25 dB for ADHEAR; or
 2. 45 dB for OBC, Ponto 3, Ponto 4, BONEBRIDGE, Baha4 and Baha5 devices; or
 3. 55 dB for Ponto 3 Power, BAHA 5 Power, BAHA 6 Max, Osia, and Osia 2 devices; or
 4. 65 dB for Ponto 3 SuperPower and BAHA 5 SuperPower devices; or
 5. For a device not listed above, average threshold consistent with the device-specific FDA indication.

C. Meet one of the following age requirements:
 1. 12 years or older for BONEBRIDGE, Osia, or Osia 2; or
 2. 5 years or older for all other surgically implanted devices; or
 3. Any age for non-surgically implanted devices; or
 4. For a device not listed above, age consistent with the device-specific FDA indication (See Policy Guidelines).

D. Patients are to receive either:
 1. A unilateral bone-conduction hearing aid; or
 2. Bilateral bone-conduction hearing aids and have symmetrically conductive or mixed hearing loss (measured without augmentation) as defined by a difference between left- and right-side bone-conduction threshold of less than 10 dB on average measured at 0.5, 1, 2 and 3 kHz (and also 4 kHz for OBC,

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
II. A transcutaneous bone-conduction or bone-anchored hearing aid may be considered medically necessary as an alternative to an air-conduction contralateral routing of signals (CROS) hearing aid in patients five years of age and older with single-sided sensorineural deafness and normal hearing in the other ear.

III. Other uses of transcutaneous bone-conduction or bone-anchored hearing aids, including but not limited to when Criterion I. is not met and use in patients with bilateral sensorineural hearing loss, are considered investigational.

IV. Implant replacement, including replacement parts or upgrades to existing bone-anchored hearing aids and/or components, may be considered medically necessary when components are no longer functional, or for functional devices only in the small subset of patients whose response to existing components is inadequate to the point of interfering with activities of daily living, which would include school and work.

V. Implant replacement, including replacement parts or upgrades to existing bone-anchored hearing aids and/or components are considered not medically necessary when Criterion IV. is not met, including but not limited to when requested for convenience or technology upgrade. Replacement parts or upgrades include, but are not limited to batteries, processors, headbands or Softbands. This criterion may not apply to Oregon members who meet the parameters of the Oregon Hearing Mandate (see applicable contracts for details).

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

HEARING TESTS

Pure tone hearing tests measure the faintest level (hearing threshold) at which a tone can be heard at selected frequencies approximately 50% of the time. Lower thresholds represent better hearing.

Each ear is tested separately. The pure tone average threshold hearing level is calculated separately for each ear by averaging the hearing levels at each frequency. For example, if a patient's bone-conduction hearing threshold in the right ear at frequencies 0.5, 1, 2, and 3 kHz is 20, 20, 30, and 40 dB, respectively, the pure tone average for that ear is (20 + 20 + 30 + 40) divided by 4 = 27.5 dB.

Bone-conduction hearing is necessary for bone conduction hearing aids to provide value. The threshold required depends on the specific device, as listed in the policy criteria and in the FDA approval documentation. For example, given that lower thresholds represent better hearing, a bone-conduction pure tone average threshold of 40 dB would meet the criteria of no poorer than (no higher than) 45 dB (e.g. for the Ponto 3 device), while a bone-conduction pure tone average threshold of 50 dB would not meet the criteria of no poorer than (no higher than) 45 dB, but it would meet the criteria of no poorer than (no higher than) 55 dB (e.g. for the Ponto 3 Power device).

FDA APPROVAL
FDA-approved indications can be found by searching by device name in the FDA 510(k) Premarket Notification Database or the De Novo Database and viewing the Summary. Product codes for these devices include LXB, MAH, and PFO.

LIST OF INFORMATION NEEDED FOR REVIEW

SUBMISSION OF DOCUMENTATION

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and physical/chart notes
- Audiology test results

CROSS REFERENCES

1. Cochlear Implant, Surgery Policy No. 8

BACKGROUND

Conventional external hearing aids can be generally subdivided into air-conduction hearing aids and bone-conduction hearing aids. Air-conduction hearing aids require the use of ear molds, which may be problematic in patients with chronic middle ear and ear canal infections, atresia of the external canal, or an ear canal that cannot accommodate an ear mold. In these patients, bone-conduction hearing aids may be an alternative.

External bone-conduction hearing aids historically were closely applied to the temporal bone with either a steel spring over the top of the head or with the use of a spring-loaded arm on a pair of spectacles. These devices may be associated with either pressure headaches or soreness. Partially implantable bone-conduction hearing aids have been investigated as an alternative, and external bone-conduction hearing aids applied with less or no pressure have also become available.

The bone-anchored hearing aid (BAHA) implant systems, also called osseointegrated devices, work by combining a vibrational transducer coupled directly to the skull via a percutaneous abutment that permanently protrudes through the skin from a small titanium implant anchored in the temporal bone. The system is based on the process of “osseointegration” through which living tissue integrates with titanium in the implant over a period of three to six months, allowing amplified and processed sound to be conducted via the skull bone directly to the cochlea. The lack of intervening skin permits the transmission of vibrations at a lower energy level than required for external bone-conduction hearing aids.

The BAHA device has been used successfully in children younger than five years in Europe and the United Kingdom. (The most recent [1999] update of the U.S. Food and Drug Administration [FDA] notification lists age less than five years as a contraindication.) A number of reports describe experience with preschool children or children with developmental issues that might interfere with maintenance of the device and skin integrity. A two-stage procedure is used in young children with the fixture placed into the bone at the first stage and, after three to six months to allow for osseointegration, a second procedure to connect the abutment through the skin to the fixture.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Baha sound processors can also be used with the Baha® Softband™. With this application there is no implantation surgery. The sound processor is attached to the head using either a hard or soft headband. The band can be adjusted to the individual's head size. The amplified sound is transmitted transcutaneously to the bones of the skull for transmission to the cochlea. These devices have been suggested as a bridge to bone anchor implantation in young children who are not eligible for the implant due to young age and/or bone strength/thickness not yet adequate. The recently approved ADHEAR device attaches with an adhesive and no headband is required.

Partially implantable magnetic bone conduction hearing systems, also referred to as transcutaneous bone-anchored systems, are an alternative to bone conduction hearing systems connected percutaneously via an abutment. With this technique, acoustic transmission occurs transcutaneously via magnetic coupling of the external sound processor and the internally implanted device components. The bone conduction hearing processor contains a magnet that adheres externally to magnets implanted in shallow bone beds with the bone conduction hearing implant. Since the processor adheres magnetically to the implant, there is no need for a percutaneous abutment. To facilitate greater transmission of acoustics between magnets, skin thickness may be reduced to 4-5 mm over the implant when it is surgically placed.

REGULATORY STATUS

The following *Baha® sound processors, currently marketed by Cochlear™ (formerly called Cochlear™ Americas), have received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for use with the Baha auditory osseointegrated implant (hearing aid) systems (such as the Baha® Connect and Attract systems):

- Baha® 5 Sound Processor
- Baha® 5 SuperPower Sound Processor
- Baha® 5 Power Sound Processor
- Baha® 6 Max Sound Processor

The above devices are currently available from Cochlear™. However, predicate devices include the Baha® 4, Cordelle II, Divino®, Intenso™ and BP100™.

*Note: These devices may be referred to as Cochlear™ Baha® systems or Cochlear osseointegrated implants, reflecting the manufacturer’s name. These devices are bone conduction hearing aids and *should not* be confused with cochlear implants which are prostheses that replace a damaged or absent cochlea in the inner ear. Cochlear implants are addressed in a separate medical policy (see Cross References).

The FDA approved the Cochlear™ Baha® system (initially approved under the trade name Branemark Bone-Anchored Hearing Aid [BAHA™] by Entific Medical Systems, Inc.) for use in children aged five years and older, and in adults, for the following indications:

- Patients who have conductive or mixed hearing loss and can still benefit from sound amplification;
- Patients with bilaterally symmetric conductive or mixed hearing loss, may be implanted bilaterally;
- Patients with sensorineural deafness in one ear and normal hearing in the other (i.e., single-sided deafness, SSD);
- Patients who are candidates for an air-conduction contralateral routing of signals (AC

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
CROS) hearing aid but who cannot or will not wear an AC CROS device.

Baha sound processors can also be used with the Baha® Softband and Baha® SoundArc. The Baha® Softband received FDA clearance in 2002 for use in children under the age of five years. The Baha® SoundArc received FDA clearance in 2017 for use in people of any age.

Subsequent bone conduction hearing systems (listed below) share similar indications as the Cochlear™ Baha® devices:

- OBC Bone Anchored Hearing Aid System (Oticon Medical)
- Sophono® (S) (Cochlear) (predicate device was Otomag [Sophono])
- Ponto Pro, Ponto Plus, Ponto Plus Power, Ponto 3, Ponto 3 Power, Ponto 3 SuperPower, and Ponto 4 processors (Oticon Medical), to be used with the Oticon or BAHA osseointegrated implant.

The MedEl ADHEAR device, which has no implantable components, received FDA 510(k) clearance with the Contact Mini (audiofon) and BAHA 5 (Cochlear) as predicate devices.

The following partially implantable magnetic bone conduction devices have received FDA 510(k) clearance:

- Sophono® (M) (Cochlear) (predicate device was Otomag Alpha [Sophono])
- Sophono™ Alpha 2 MPO™ (Medtronic)
- Baha® Attract (Cochlear®)

The BoneBridge™ (MedEl) partially implantable bone-conduction hearing aid received FDA approval via the de novo pathway in 2018.

The Osia™ (Cochlear) bone-conduction hearing aid received FDA 510(k) approval with BoneBridge™ as the predicate device in July 2019. The Osia™ 2 received FDA 510(k) approval with Osia™ as the predicate device in November 2019.

EVIDENCE SUMMARY

Hearing results of semi-implantable bone-conduction hearing aids may be compared either to 1) external bone-conduction hearing aids in patients with atresias who are unable to use external air-conduction hearing aids, or 2) external air-conduction hearing aids in patients who are unable to tolerate air-conduction hearing aids due to chronic infection. Reported studies have suggested that the bone-anchored hearing aid (BAHA) is associated with improved hearing outcomes compared to external bone-conduction hearing aids and equivalent outcomes compared to conventional air-conduction hearing aids.[1-4] However, given the objectively measured outcomes and the largely invariable natural history of hearing loss in individuals who would be eligible for an implantable bone-conduction device, a within-subjects comparison of hearing before and after device placement may be a reasonable study design.

UNILATERAL DEVICES

Systematic Review

In 2017 Kim conducted a systematic review on the efficacy of BAHAs in single-sided deafness, including 14 studies (n=296 patients). The reviewers reported that in the six studies that dealt with sound localization, no significant difference was found after the implantation. However,
twelve studies showed the benefits of BAHAs for speech discrimination in noise. Regarding subjective outcomes of using the prosthesis in patients with SSD (abbreviated profile of hearing aid benefit [APHAB] and the Glasgow hearing aid benefit profile [GHABP], etc.), improvements in quality of life were reported in the majority of studies.

This systematic review has indicated that BAHAs may successfully rehabilitate patients with SSD by alleviating the hearing handicap to a certain degree, which could improve patients’ quality of life. This report has presented additional evidence of effective auditory rehabilitation for SSD and will be helpful to clinicians counseling patients regarding treatment options for SSD.

In a 2015 Peters published a systematic review of the literature through April 7, 2014 on the use of BAHA devices with contralateral routing of sound systems for single-sided deafness (SSD). Five of the six studies that met inclusion criteria were rated as moderate to high directness of evidence and low to moderate risk of bias and, thus, were included in the review. Significant heterogeneity was found in the 91 total patients included. For speech perception in noise there was not consistent improvement with aided hearing over unaided hearing in all environments. All studies reported equal sound localization in the aided and unaided conditions, and quality of life measures were similar for the aided and unaided conditions. Interpretation of these outcomes was limited by the methodological limitations of the included studies, including the lack of RCTs, unclear inclusion criteria, small sample sizes, use in some studies of headband devices which have different bone conduction thresholds in the higher frequencies than implanted devices, clinical heterogeneity of included populations (e.g., duration of deafness, grade of hearing loss), unexplained missing data, and lack of long-term audiometric follow-up. The authors also noted that the lack of recent studies was surprising considering the recent advances in these devices and recommended high-quality studies on the clinical outcome of current devices.

Randomized Controlled Trials

No RCTs of unilateral BAHAs have been published.

Nonrandomized Studies

One retrospective study (Wazen 2021) compared results of BAHA implantation for SSD based on bone-conduction pure tone average (PTA) of the better-hearing ear. Subjects were divided into three groups by bone conduction PTA of the better hearing ear, with the ranges of 0 to 20 dB, 21 to 40 dB, and 41 to 55 dB. All three groups showed statistically significant improvement in bone conduction PTA and quality of life.

Additionally, since publication of the Peters systematic review, the following prospective, interventional studies compared patient satisfaction with transcutaneous BAHA devices to CROS hearing aids for SSD.

Jakob (2021) compared long-term (one-year) results in patients with SSD who chose between a CROS, a BAHA, and a cochlear implant (CI) following a three-week test phase with CROS and a bone-anchored hearing system. At the one-year follow up, study results showed an improvement in speech comprehension when speech was delivered to the deaf ear and noise to the hearing ear for the BAHA (p=0.008; median unaided=0%, median 12 m=40.59) and CI (p<0.001), but the CROS group had poorer speech comprehension compared to the unaided situation (median unaided=98.58%; median 12 m=64.62%, p=0.603). Localization error was
significantly reduced in the CI group after 12 months (median unaided 26.36°, median CI 12 m=15.43°; p<0.001) compared to the unaided conditions. No differences in localization error were found for the BAHA or CROS groups.

den Besten (2019) assessed 54 adults with SSD, each of whom underwent a trial with the Baha Softband before a trial of the percutaneous, partially implantable Baha Attract device. No statistically significant difference in audiological outcomes was seen between the two devices (p>0.05). At a six-month follow-up after implantation, patients reported numbness (20%) and slight pain/discomfort (38%) associated with the device.

Choi (2019) compared the performance of contralateral routing of signal (CROS)/bilateral routing of signal (BiCROS) and soft-band bone-anchored hearing aid (BAHA) devices in 21 patients with unilateral sensorineural hearing loss. All participants were naïve to hearing devices. Sound localization, speech perception, psychoacoustic performance, and subjective assessments were analyzed. The subjects were assessed with each device and in the unaided condition. Sound localization was not improved in the soft-band BAHA condition and was significantly impaired with the CROS/BiCROS. Both devices significantly improved speech-in-noise perception when targeted to the impaired ear side. With regard to psychoacoustic performance, temporal resolution was significantly decreased with the BAHA compared to the unaided condition and CROS/BiCROS. There were no significant differences reported for preference between devices or subjective assessments of background noise or sound quality.

In 2017, Snapp reported a prospective single-center study of 27 patients with unilateral severe-profound sensorineural hearing loss who had either a CROS (n=13) or transcutaneous BAHA (n=14) device. Mean device use was 66 months for the BAHAs and 34 months for CROS devices. Both BAHA and CROS groups had significant improvement in speech-in-noise performance, but neither showed improvement in localization ability. There were no differences between the devices for subjective measures of posttreatment residual disability or satisfaction as measured by the Glasgow Hearing Aid Benefit Profile (GHABP).

Leterme (2015) assessed 24 adults with SSD, 18 of whom were evaluated with trials of both hearing aids with CROS and bone conduction-assisted hearing using the Baha Softband. Most patients (72%), after completing trials of both devices, preferred the BAHA device to hearing aid with CROS. Glasgow Benefit Index and Abbreviated Profile of Hearing Aid Benefit (APHAB) scores did not differ significantly between devices. Sixteen of the 18 subjects elected to undergo implantation of a percutaneous BAHA device. In general, hearing improvement with the Baha Softband trial correlated with hearing improvements following device implantation.

BILATERAL DEVICES

Use of bilateral devices has been evaluated in nonrandomized studies of patients with conductive or mixed hearing losses. In general, bilateral BAHAs seem to provide additional objective and subjective benefit compared with unilateral BAHAs.

Systematic Reviews

A systematic review by the Health Technology Assessment Program was published in 2011 on the use of bone-anchored hearing aids (BAHAs) for bilateral hearing impairment. The authors noted that the quality of available studies on the use of BAHAs is weak. No studies with control groups were identified for the review. Cohort pre-post studies and cross-sectional comparative studies demonstrated improvements in hearing with use of BAHAs over

SUR121 | 8

September 1, 2022
conventional bone-conduction hearing aids or unaided hearing. However, whether improvements in hearing with BAHAs are greater than air-conduction hearing aids is uncertain. Additionally, bilateral use of BAHAs improved hearing outcomes in some patients over unilateral use, but the evidence was uncertain. Implant loss was noted to be between 6.1% and 19.4%. The authors noted hearing-specific quality of life improved, but overall quality of life did not differ.

In 2012 Janssen reported similar findings in a systematic review that assessed the outcomes of bilateral versus unilateral BAHA for individuals with bilateral permanent conductive hearing loss (CHL).\[^{19}\] Their search strategy included studies of all languages published between 1977 and July 2011. Studies were included if subjects of any age had permanent bilateral CHL and bilateral implanted BAHAs. Outcome measures of interest were any subjective or objective audiologic measures, quality of life indicators, or reports of adverse events. Eleven studies met their inclusion criteria. All 11 studies were observational. There were a total of 168 patients in the 11 studies, 155 of whom had BAHAs and 146 of whom had bilateral BAHAs. In most studies, comparisons between unilateral and bilateral BAHA were intra-subject. Patients ranged from 5 to 83 years of age; 46% were male, and 54% were female. Heterogeneity of the methodologies between studies precluded meta-analysis, therefore a qualitative review was performed. Results from three studies were excluded from synthesis because their patients had been included in multiple publications. Adverse events were not an outcome measure of any of the included studies. In general, bilateral BAHA was observed to provide additional objective and subjective benefit compared to unilateral BAHA. For example, the improvement in tone thresholds associated with bilateral BAHA ranged from 2 to 15dB, the improvement in speech recognition patterns ranged from 4 to 5.4dB, and the improvement in the Word Recognition Score ranged from 1 to 8%. However, these results were based on a limited number of small observational studies consisting of heterogeneous patient groups that varied in age, severity of hearing loss, etiology of hearing loss, and previous amplification experience.

Randomized Controlled Trials

No RCTs of bilateral BAHAs have been published.

Nonrandomized Studies

No new studies have been published since the most recent systematic review.

BAHA IN CHILDREN UNDER AGE FIVE YEARS

Nonrandomized Studies

The literature on the use of these devices in children consists of a review article and several nonrandomized studies.

The largest series in children under five years identified for this review, described by Amonoo-Kuofi in 2015, which included 24 children identified from a single center’s prospectively maintained database.\[^{20}\] Most patients underwent a 2-stage surgical approach. The largest proportion of patients (52%) received the implant for isolated microtia, followed by Goldenhar syndrome (16%). Following implantation, 13 patients (54%) had grade 2 or 3 local reactions on the Holgers Scale (redness, moistness, and/or granulation tissue) and 7 (29%) had grade 4 local reactions on the Holgers Scale (extensive soft-tissue reaction requiring removal of the abutment). Quality of life scores (Glasgow Children’s Benefit Inventory [GCBI]; scoring range, -100 to 100) were obtained in 18 subjects/parents with a finale mean score change of +40
points. Audiologic testing indicated that the average performance of the device fell within the range of normal auditory perception in noisy and quiet environments.

Marsella (2012) reported on their center’s experience with pediatric BAHA in all 47 children implanted, seven of which were younger than five years of age.[21] The functional gain was significantly better with BAHA than with conventional bone-conduction hearing aids. There was no significant difference in terms of functional outcome between the seven patients younger than age five and the rest of the patient cohort. Based on these findings, the study authors suggested that implantation of children at an age younger than five years can be conducted safely and effectively in such settings. However, the conclusions from this study were limited by the small number of children younger than five years of age and the limited power to detect a difference between younger and older children.

A 2008 review article noted that for children younger than age five years, other solutions (such as a bone conductor with transcutaneous coupling) should be utilized.[22] This recommendation is in agreement with the FDA clearance of the osseointegration implant only for children five years of age and older, and adults.

McDermott (2008) reported on the role of BAHAs in children with Down syndrome in a retrospective case analysis and postal survey of complication rates and quality of life outcomes for 15 children aged 2 to 15 years.[23] All patients were using their BAHA devices after a follow-up of 14 months. No fixtures were lost, and skin problems were encountered in three patients. All 15 patients had improved social and physical functioning as a result of better hearing.

Davids (2007) at the University of Toronto provided BAHA devices to children less than five years of age for auditory and speech-language development and retrospectively compared surgical outcomes for a study group of 20 children five years or younger and a control group of 20 older children.[24] Children with cortical bone thickness greater than 4 mm underwent a single-stage procedure. The interstage interval for children having 2-stage procedures was significantly longer in the study group to allow implantation in younger patients without increasing surgical or postoperative morbidity. Two traumatic fractures occurred in the study group versus four in the older children. Three younger children required skin site revision. All children were wearing their BAHA devices at the time of writing.

BAHA SOFTBAND AND ADHESIVE HEARING DEVICE USE IN CHILDREN

Nonrandomized Studies

The current evidence consists of small retrospective studies and comparative studies. Externally worn AOD sound processors appears to consistently be beneficial for children under age five years with bilateral aural atresia who are too young to receive an implantable device.[25-27]

A 2014 report compared use of the Softband in 16 children (ages ranging from three months to six years) with bilateral aural atresia to 29 normal-hearing children (ages ranging from eight months to six years).[28] Auditory development was assessed at baseline, six months, and 12 months. The full text of the article was not available and the abstract did not provide data from the normal-hearing children for comparison. The authors concluded that the Softband was a suitable bridge to surgical implantation in infants and young children with bilateral atresia.

Ramakrishnan used the Glasgow Benefit Inventory (GBI) and Listening Situation Questionnaire to report quality of life findings in a retrospective cross-sectional survey.
administered to parents of 22 children (n=109 total participants), some with skull and congenital/chromosomal abnormalities from inherited syndromes that involve unilateral (hemifocal microsomia) or bilateral hearing impairment (Treacher-Collins Syndrome, n=4 of 22) due to microtia or aural atresia.[29] The youngest child utilizing an externally worn BAHA with Softband was six months of age. Overall, parents reported short-term satisfaction in the mean GBI scores for the children after three months of implanted BAHA or externally worn BAHA with Softband use. Despite the heterogeneous etiology of children in the study population, the authors suggest that the utility of BAHAs for children with syndromes and craniofacial anomalies is poorly recognized, resulting in delays in aid fitting and therefore in early hearing rehabilitation. In such cases, surgical reconstruction of the ear canal and middle-ear defects is not only technically challenging but also plagued by poor results (with a high rate of ear canal restenosis and limited functional hearing benefit). Hence, alternative treatment options such as Softband and BAHA may be of considerable benefit.

In 2010 Christensen reported on a retrospective chart review of 10 children (ages 6 months to 16 years) with bilateral conductive hearing loss.[30] Participants had been initially fit with a traditional bone-conduction hearing aid, then progressed first to the externally worn AOS with the Softband, then to the implanted BAHA. Functional gain was measured at 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz for each device. Both the external AOS and the implanted BAHA provided statistically significantly higher functional gain than the conventional BCHAs.

A number of the same authors for the Christensen study also reported the results of a retrospective chart review of 25 children aged 6 months to 18 years with craniofacial disorders and bilateral conductive hearing loss. It is unknown whether some of the children in the 2010 study were also included in these results. The focus of this study was on functional as measure by comparison of aided (using the Baha Softband) and unaided soundfield audiometric thresholds. Soundfield thresholds were improved with the Baha amplification, with over 80% of the thresholds meeting significant target levels. The authors concluded that this demonstrated the benefit of the Baha for children with bilateral congenital conductive hearing loss.

Hol (2008) evaluated the validity of a BAHA with Softband (fitted unilaterally and bilaterally) in two young children with severe bilateral conductive hearing loss due to CAA.[31] In a small multicenter comparative study, 12 children (including the two children in the Hol, 2005 study) with bilateral CAA with a pure conductive hearing loss of around 60 dB HL were fitted with the BAHA with Softband.[32] These children were retrospectively compared to a reference group of eight children selected from a database of those who had a conventional bone conduction hearing aid for bilateral CAA. The authors reported the mean aided hearing threshold of the children with the BAHA with Softband compared to the reference group was 27 dB HL, ± 6 dB HL to 25 dB HL ± 6 dB HL, respectively. Further results compared psychological and language development in 5 of the 12 children available from the BAHA with Softband group.

ADVERSE EFFECTS OF BAHAS

Systematic Reviews

Hernández (2021) reported a retrospective chart review the frequency of cutaneous complications due to surgically implanted BAHAs.[33] Of the 88 patients identified (a total of 104 devices) with a minimum of six months of follow-up, 49 (55.7%) developed at least one episode of inflammatory or infectious skin reaction at the surgical incision site (mostly mild in
severity), while 47 (53.4%) reported pain at the surgical site unrelated to clinically evident infection at some point during the follow-up.

Schwab (2020) completed a systematic review of adverse events associated with bone-conduction and middle-ear implants. The 10 most frequently reported adverse events for bone conduction hearing implants included skin reactions (Holgers grade 1 to 3), skin revision surgery due to overgrowth or cellulitis, minor soft tissue/skin overgrowth, skin infection, surgical revision, reimplantation, failure to osseointegrate, and minor skin complications.

In 2016, Verheij published a systematic review on complications of tissue preservation surgical techniques with percutaneous BAHA devices including 18 studies with 381 devices. The implantation techniques reported in the studies were as follows: punch method, four studies (81 implants); linear incision technique without soft tissue reduction, 13 studies (288 implants); and Weber technique, one study (12 implants). Indications for surgery were SSD (n=68), sensorineural hearing loss (n=4), mixed hearing loss (n=65), or CHL (n=66). The Holgers classification was used to grade soft tissue reactions (grade 0, no reaction; grade 2, red and moist tissue; grade 3, granulation tissue; grade 4, removal of skin-penetrating implant necessary due to infection). The incidence of Holgers 3 was 2.5% with the punch technique, 5.9% with the linear incision technique, and 0% with the Weber technique. Holgers 4 was reported in one patient implanted with the linear incision technique.

In 2014 Mohamad performed a systematic review focusing on the association between surgical technique and skin complications following BAHA implantation. Thirty randomized controlled trials and retrospective studies were included, which highlighted that the most common surgical techniques identified were full-thickness skin graft, dermatome and linear incision. The investigators reported that dermatome technique is associated with higher rate of skin complications and the use of a linear incision technique is associated with lower skin complications. However, the investigators concluded that the data to support these conclusions in limited and that higher quality studies are needed.

In 2013 Kiringoda reported on a meta-analysis of complications related to BAHA devices. Included in the meta-analysis were 20 studies that evaluated complication in 2134 adult and pediatric patients who received a total of 2310 BAHA devices. The quality of available studies was considered poor and lacking in uniformity. The most common complications related to BAHA devices were minor skin reactions. Holgers Grade 2 to 4 skin reactions were reported to occur from 2.4% to 38.1% in all studies. Zero to 18% of implants failed osseointegration in adult and mixed population studies while 0% to 14.3% failed osseointegration in pediatric population studies. Adult and mixed population studies reported revision surgery was required in 1.7% to 34.5% of cases while pediatric population studies reported required revision surgery in 0.0% to 44.4% of cases. Implant loss occurred in 1.6% to 17.4% in adult and mixed population studies and from 0.0% to 25% in pediatric studies.

Nonrandomized Studies

In 2016, Roplekar compared skin-related complications of the traditional skin flap method to the linear incision method performed by a single surgeon in 117 patients with at least one year of follow-up. Twenty-one (24%) patients experienced skin-related complications in the skin flap group (12 skin overgrowths, eight wound infections, one numbness) and three (10%) patients experienced complications in the linear incision group (three wound infections).

Four 2014 retrospective studies reported specific complication rates related to BAHA implants.
The rate of skin reaction (e.g., skin overgrowth, inflammation) ranged from 6% to 22%. Implant loss was 10-18% and were spontaneous while others required removal; the primary reasons for implant loss were loss of osseointegration, trauma, and soft tissue reactions or discomfort. In addition, a number of small studies reported the safety outcomes of various techniques for surgically implanting BAHA devices. These included skin flap versus full-thickness skin graft implantation, non-skin-thinning technique versus either flap or dermatome implantation, and techniques related to implant size.

Section Summary: Safety and Adverse Events Related to BAHA Devices

The quality of available data for adverse events is generally poor with high heterogeneity. The most frequently reported complication from surgical procedures for BAHA insertion are adverse skin reactions, with an incidence of Holgers grade 2 to 4 reactions ranging from less than 2% to more than 34%, and implant loss ranging from less than 2% to more than 17%. There is some evidence of improvement in complication rates and severity with newer surgical techniques such as linear incision.

PARTIALLY IMPLANTABLE MAGNETIC BONE CONDUCTION HEARING AIDS

A small body of literature addresses outcomes associated with transcutaneous, partially implantable bone-anchored devices. The majority of studies use a within-subjects comparison of hearing thresholds with and without the device. The indications for partially implantable systems are the same as those for transcutaneous bone-anchored devices.

Systematic Reviews

Bezdjian (2017) published a systematic review of noncomparative studies that assessed outcomes and adverse events in patients with Sophono implants. Thirteen articles were assessed for directness of evidence (DoE) and risk of bias (RoB) using predetermined criteria. Of these, eight studies (including 86 patients; 79.1% children) were considered to have high enough quality for data extraction. These studies all had medium or low risk of bias and high directness of evidence. A pooled analysis of all studies showed an average unaided pure tone average of 63.70 dB and an aided pure tone average of 31.60 dB. Four studies reported unaided and aided sound reception thresholds in raw dB scores. A pooled analysis of these studies showed a mean unaided score of 66.90 dB and a mean aided score of 33.34. No intra-operative complications were reported and 29% of patients reported post-operative complications. Of these, three were serious adverse events. No implant loss occurred, except in one patient who requested explantation due to severe headaches. While there were improvements in auditory functions, no statistical analyses were reported.

In 2016, Dimitriadis reported on a systematic review of observational studies of the BAHA Attract device including 10 studies (total n=89 patients; range, 1 to 27 patients). Seventeen (19%) of the patients were children, of whom five had unilateral sensorineural hearing loss and 4 had CHL. Of the 27 (45%) adults, 22 had unilateral sensorineural hearing loss and 11 (18%) had bilateral mixed hearing loss. Audiologic and functional outcome measures and the timing of testing varied greatly in the studies. Summary measures were not reported. In general, audiologic and functional outcomes measured pre- and postimplantation showed improvement, although statistical comparisons were lacking in some studies.

Nonrandomized Studies

Iseri (2015) described a retrospective, single-center study from Turkey comparing 21 patients...
treated with a transcutaneous, fully implantable BAHA with 16 patients treated with a percutaneous device (the BAHA Attract). Groups were generally similar at baseline, with most individuals undergoing BAHA placement for chronic otitis media. Operating time was longer in patients treated with the transcutaneous partially implantable devices (46 minutes vs 26 minutes, p<0.05). Three patients treated with percutaneous devices had Holger grade 2 skin reactions, and two had stopped using their devices. Mean thresholds for frequencies 0.5 to 4.0 kHz were 64.4 dB without the BAHA and 31.6 dB with the BAHA in the percutaneous device group, and 58.3 dB without the BAHA and 27.2 dB with the BAHA in the transcutaneous device group. Frequency-specific threshold hearing gains did not differ significantly between groups. Mean hearing gain measured by speech reception threshold was statistically significantly smaller in the percutaneous group (24 dB vs 36.7 dB, p=0.02).

There have been other, small nonrandomized studies that have assessed the outcomes of the BAHA Attract device, in comparison with other devices, or in single-center observational studies. In addition, one case series of 34 patients has reported on complications of the BAHA attract device, where only three patients reported moderate to severe complications, two of which required removal of the magnet.

In 2015, Denoyelle reported on a prospective trial of the Sophono device in children ages 5 to 18 years with uni- or bilateral congenital aural atresia with complete absence of the external auditory canal with pure CHL. The study included a within-subject comparison of hearing results with the Sophono devices to those obtained with the Baha Softband preoperatively. All 15 patients enrolled were implanted (median age, 97 months). At six-month follow-up, mean aided AC pure-tone audiometry was 33.49 (mean gain, 35.53 dB), with a mean aided sound reception threshold of 38.2 (mean gain, 33.47 dB). The difference in AC pure tone average (PTA) between the Baha Softband and the Sophono device was 0.6 dB (confidence interval upper limit, 4.42 dB), which met the study’s prespecified noninferiority margin. Adverse effects were generally mild, including skin erythema in two patients, which improved by using a weaker magnet, and brief episodes of pain or tingling in three patients.

The Otomag Sophono system has been studied in a number of very small (n=5 to 12) nonrandomized studies in pediatric patients.

Similarly, the Bonebridge partially implantable system has also been studied in a number of small (n=5 to 44) case series, summarized in table 1.

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Patient Population</th>
<th>Main Hearing Results</th>
<th>Safety Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seiwerth (2021)</td>
<td>31</td>
<td>• Seven cases age <16</td>
<td>• Mean sound-field threshold improvement at three and six months: 27 and 26 dB</td>
<td>No major complications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 30 unilateral implantations</td>
<td>• WRS in quiet improved from 11% preoperatively to 74% three months postoperatively</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 bilateral implantation</td>
<td>• Speech reception threshold in noise improved from -1.01 dB unaided to -2.69 dB best-aided</td>
<td></td>
</tr>
<tr>
<td>Garcier (2021)</td>
<td>24</td>
<td>• Adults with mixed hearing loss</td>
<td>• Average prosthetic gain in chronic otitis media vs. other</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>Patient Population</td>
<td>Main Hearing Results</td>
<td>Safety Outcomes</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Bravo-Torres (2018) | 15 | Pediatric patients with bilateral CHL (microtia associated with external auditory canal atresia) | etiologies: 43±4.8 dB and 50 ± 7.2, respectively
• Abbreviated Profile of Hearing Aid Benefit (APHAB) questionnaire global score improved: 32 ± 10.2% | Local pain on the analogue visual scale was 3.23 ± 3.2 (n = 16 reporting) and manipulation difficulties were 3.1 ± 3.69 |
| Schmerber (2017) | 25 | SSD (n=12)
• Bilateral CHL (n=7)
• Bilateral mixed HL (n=6) | SSD, in 5/7 patients speech reception threshold in noise lower with Bonebridge activated
• CHL and mixed, average functional gain: 26 dB HL; mean % of speech recognition in quiet improved from 74% unaided to 95% aided | No complications, device failures, revision surgery, or skin injury reported with one year follow-up |
| Rahne (2015) | 11 | SSD (n=6; 1 sensorineural, 3 mixed, 2 conductive)
• Bilateral CHL (n=2)
• Bilateral mixed HL or mixed/sensorineural (n=3) | Aided sound-field threshold improvement: 33.4 dB
• WRS improved from mean of 10% unaided to 87.5% aided | One case of chronic fibrosing mastoiditis requiring mastoidectomy and antrotomy; no other complications |
| Laske (2015) | 9 | Adults with SSD and normal contralateral hearing | Speech discrimination signal-to-noise improvement for aided vs unaided condition, sound presented to aided ear: 1.7 dB
• Positive improvements on quality-of life questions | Not reported |
| Riss (2014) | 24 | Combined HL (n=9)
• EAC atresia (n=12)
• SSD (n=3) | Average functional gain: 28.8 dB
• Monosyllabic word scores at 65-dB sound pressure increased from 4.6 to 53.7 | Not reported |
Study N Patient Population Main Hearing Results Safety Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Patient Population</th>
<th>PTA improvement: 35.62 dB (p=0.01)</th>
<th>Disyllabic word discrimination improvement: 20% (p=0.016)</th>
<th>No perioperative complications reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manrique (2014)[59]</td>
<td>5</td>
<td>Mixed HL (n=4) SSD (n=1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Ihler (2014)[60] | 6 | Mixed HL (n=4) CHL (n=2) | PTA functional gain (average, 0.5-4.0 kHz): 34.5 dB | Speech discrimination at 65 dB improvement:
 - In quiet: 63.3 percentage points
 - In noise: 37.5 percentage points | Prolonged wound healing in one case |
| Desmet (2014)[61] | 44 | All unilaterally deaf adults | Statistically significant improvement on APHAB and SHHIA | | Not reported |

APHAB: Abbreviated Profile of Hearing Aid Benefit; CHL: conductive hearing loss; EAC: external auditory canal; HL: hearing loss; PTA: pure-tone average; SHHIA: Short Hearing Handicap Inventory for Adults; SSD: single-sided deafness; WRS: Word Recognition Score.

Section Summary: Partially Implantable Magnetic BAHA Devices

Studies of transcutaneous, partially implantable BAHAs have typically used a retrospective within-subjects comparison of hearing thresholds with and without the device, although there have been two small (27 and 15 participants) prospective studies. There was heterogeneity in the audiologic and functional outcome measures used in the studies and the timing of testing. Studies of partially implantable BAHAs have generally demonstrated within-subjects improvements in hearing.

PRACTICE GUIDELINE SUMMARY

AMERICAN ACADEMY OF OTOLARYNGOLOGY-HEAD AND NECK SURGERY

In 2021, the American Academy of Otolaryngology – Head and Neck Surgery (AAO-HNS) updated its consensus-based position statement on the use of bone conduction hearing devices.[69] It considers bone conduction hearing devices (BCHD) appropriate, and in some cases preferred, for the treatment of conductive and mixed hearing loss. BCHD may also be indicated in select patients with single-sided deafness. BCHD include semi-implantable bone conduction devices utilizing either a percutaneous or transcutaneous attachment, as well as bone conduction oral appliances and scalp-worn devices. The recommendation for BCHD should be determined by a qualified otolaryngologist-head and neck surgeon. The statement indicates that the procedure should be performed by a qualified otolaryngologist-head and neck surgeon with devices which have been Food and Drug Administration (FDA)-approved, and “should adhere to the restrictions and guidelines specified by the appropriate governing agency, such as the Food and Drug Administration in the United States.”
SUMMARY

There is enough research to show that unilateral or bilateral transcutaneous bone-conduction or bone-anchored hearing aid(s) improve net health outcomes when used as an alternative to air-conduction hearing aids in select patients. Clinical guidelines based on research recommend bone conduction hearing devices for the treatment of conductive or mixed hearing loss and single-sided deafness. In addition, a binaural hearing benefit may be provided for patients with single-sided sensorineural deafness by the routing of signals to the hearing ear. Therefore, use of these devices is considered medically necessary for patients who meet the policy criteria.

There is not enough research to show that unilateral or bilateral transcutaneous bone-conduction or bone-anchored hearing aid(s) improve health outcomes for patients who do not meet the policy criteria due to a lack of, including but not limited to patients not meeting the age requirements and patients with bilateral sensorineural hearing loss. In addition, there are no evidence-based clinical practice guidelines that recommend these devices for patients who do not meet the criteria. Therefore, these devices are considered investigational for patients who do not meet the policy criteria.

Implant replacement, including replacement parts or upgrades, may be considered medically necessary only in the small subset of patients whose response to existing components is inadequate to the point of interfering with activities of daily living, which would include school and work; or when components are no longer functional.

Implant replacement, including replacement parts or upgrades to existing bone-anchored hearing aid components (for example, batteries, processor, headband or Softband) are considered not medically necessary when criteria are not met, including when requested for convenience or to upgrade to newer technology when the current components remain functional.

REFERENCES

8. MK Hol, SJ Kunst, AF Snik, CW Cremers. Pilot study on the effectiveness of the conventional CROS, the transcranial CROS and the BAHA transcranial CROS in adults with unilateral inner ear deafness. Eur Arch Otorhinolaryngol. 2010;267(6):889-96. PMID: 19904546

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE:</td>
<td>The following CPT codes describe semi-implantable electromagnetic bone conduction hearing aids:</td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>69710</td>
<td>Implantation or replacement of electromagnetic bone conduction hearing device in temporal bone*</td>
</tr>
<tr>
<td></td>
<td>69711</td>
<td>Removal or repair of electromagnetic bone conduction hearing device in temporal bone</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
The Audiant™ bone conductor is a type of electromagnetic bone conduction hearing device. While this product is no longer actively marketed, patients with existing Audiant devices may require replacement, removal, or repair.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>69714</td>
<td>Implantation, osseointegrated implant, skull; with percutaneous attachment to external speech processor **</td>
<td></td>
</tr>
<tr>
<td>69715</td>
<td>;with mastoidectomy** (Deleted 01/01/2022)</td>
<td></td>
</tr>
<tr>
<td>69716</td>
<td>Osseointegrated implant insertion with magnetic transcutaneous attachment to a speech processor</td>
<td></td>
</tr>
<tr>
<td>69717</td>
<td>Revision or replacement (including removal of existing device), osseointegrated implant, skull; with percutaneous attachment to external speech processor</td>
<td></td>
</tr>
<tr>
<td>69718</td>
<td>;with mastoidectomy (Deleted 01/01/2022)</td>
<td></td>
</tr>
<tr>
<td>69719</td>
<td>Osseointegrated implant revision or replacement with magnetic transcutaneous attachment to a speech processor</td>
<td></td>
</tr>
<tr>
<td>69726</td>
<td>Osseointegrated implant removal with percutaneous attachment to a speech processor</td>
<td></td>
</tr>
<tr>
<td>69727</td>
<td>Osseointegrated implant removal with magnetic transcutaneous attachment to a speech processor</td>
<td></td>
</tr>
</tbody>
</table>

These codes describe implantation of the Baha®, Ponto™, and similar devices.

<table>
<thead>
<tr>
<th>HCPCS</th>
<th>L8621</th>
<th>Zinc air battery for use with cochlear implant device and auditory osseointegrated sound processors, replacement, each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L8624</td>
<td>Lithium ion battery for use with cochlear implant device or auditory osseointegrated device speech processor, ear level, replacement each</td>
</tr>
<tr>
<td></td>
<td>L8625</td>
<td>External recharging system for battery for use with cochlear implant or auditory osseointegrated device, replacement only, each</td>
</tr>
<tr>
<td></td>
<td>L8690</td>
<td>Auditory osseointegrated device, includes all internal and external components***</td>
</tr>
<tr>
<td></td>
<td>L8691</td>
<td>Auditory osseointegrated device, external sound processor, excludes transducer/actuator, replacement only, each</td>
</tr>
<tr>
<td></td>
<td>L8692</td>
<td>Auditory osseointegrated device, external sound processor, used without osseointegration, body worn, includes headband or other means of external attachment</td>
</tr>
<tr>
<td></td>
<td>L8693</td>
<td>Auditory osseointegrated device abutment, any length, replacement only</td>
</tr>
<tr>
<td></td>
<td>L8694</td>
<td>Auditory osseointegrated device, transducer/actuator, replacement only, each</td>
</tr>
</tbody>
</table>

***These codes describe the Baha®, Ponto™, and similar devices.**

Date of Origin: July 2003
Cryosurgical Ablation of Miscellaneous Solid Tumors Outside of the Liver

Effective: March 1, 2022

Next Review: November 2022

Last Review: January 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Cryoablation kills cells by freezing the tissue using a coolant that is circulated via a probe inserted into the tumor.

MEDICAL POLICY CRITERIA

Note: This policy does not address liver tumors (primary or metastatic). See Cross References.

1. Cryosurgical ablation may be considered **medically necessary** for the treatment of any of the following indications:
 A. Malignant dermatologic tumors
 B. Uveal melanoma
 C. Kidney tumors
 D. Prostate tumors

SUR132 | 1
C. Cervical intraepithelial neoplasia

F. Lung cancer when either of the following criteria is met:
 1. For non-small cell lung cancer when the patient has early-stage (Stage I, and selected node negative Stage IIA) non-small cell lung cancer; or
 2. The patient requires palliation for a central airway obstructing lesion.

II. Cryosurgical ablation is considered investigational as a treatment for all solid tumors not meeting Criterion I, including desmoid tumors and malignant or benign tumors of the breast (including fibroadenoma), pancreas, and bone; and for metastases outside of the liver or prostate.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical
- Treatment plan including treatment area

CROSS REFERENCES

1. Radioembolization, Transarterial Embolization (TAE), and Transarterial Chemoembolization (TACE), Medicine, Policy No. 140
2. Radiofrequency Ablation (RFA) of Tumors Other than Liver, Surgery, Policy No. 92
3. Magnetic Resonance (MR) Guided Focused Ultrasound (MRgFUS) and High Intensity Focused Ultrasound (HIFU) Ablation, Surgery, Policy No. 139
4. Microwave Tumor Ablation, Surgery, Policy No. 189
5. Ablation of Primary and Metastatic Liver Tumors, Surgery, Policy No. 204
6. Focal Laser Ablation of Prostate Cancer, Surgery, Policy No. 222

BACKGROUND

Cryosurgical ablation (also called cryosurgery, cryotherapy, or cryoablation) kills cells (cancerous and normal) by freezing target tissues, most often by inserting a probe into the tumor through which coolant is circulated. Cryosurgery may be performed as an open surgical technique or as a closed procedure under laparoscopic or ultrasound guidance.

The goals of cryosurgery may include the following:

- Destruction or shrinkage of tumor tissue
- Controlling local tumor growth and preventing recurrence
- Palliating symptoms
- Extending survival duration for patients with certain tumors.

Potential complications associated with cryosurgery in any organ include the following:

- Hypothermic damage to normal tissue adjacent to the tumor (e.g., nerve damage)
- Structural damage along the probe track
- Secondary tumors if cancerous cells are seeded during probe removal.

REGULATORY STATUS

There are several cryoablation devices cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for use in open, minimally invasive or endoscopic surgical procedures in the areas of general surgery, urology, gynecology, oncology, neurology, dermatology, proctology, thoracic surgery and ear, nose and throat. Examples include:

- Cryocare® Surgical System by Endocare;
- CryoGen Cryosurgical System by Cryosurgical, Inc.;
- CryoHit® by Galil Medical;
- IceRod® CX, IcePearl® 2.1 CX and IceFORCE® 2.1 CX Cryoablation Needles by Galil Medical;
- IceSense3™, ProSense™, and MultiSense Systems (IceCure Medical);
- SeedNet™ System by Galil Medical;
- Visica® System by Sanarus Medical;
- Visual-ICE® Cryoablation System by Galil;
- ERBECRYO 2® Cryosurgical Unit, ERBE USA Incorporated

EVIDENCE SUMMARY

In order to understand the impact of cryosurgical ablation on local or distant tumor recurrence and disease-free and overall survival in patients with solid tumors, randomized trials are needed that compare this technique with current standard treatments. The standard treatment for most solid tumors is surgical resection. For unresectable solid tumors, alternatives to resection depend on the tumor type and location, and may include thermal ablation, percutaneous ethanol injection, chemoembolization, chemotherapy, and radiation therapy.

Despite the weaknesses in the published clinical evidence, cryosurgical ablation has become a recognized standard of care for tumors of the kidney, liver (addressed in Ablation of Primary and Metastatic Liver Tumors, Surgery, Policy No. 204), prostate, and carefully selected patients with tumors of the lung.[1-51]

The following literature appraisal focuses on the investigational indications noted in medical policy criteria above.

BREAST TUMORS

The standard treatment for breast cancer is surgical excision by lumpectomy or mastectomy, with or without adjuvant radiation therapy, chemotherapy, and/or hormone therapy. Fibroadenomas, benign tumors of the breast, generally do not require treatment. If treated, they are typically surgically excised.

Systematic Reviews

One systematic review, by Zhao (2010), was found that included cryoablation along with other minimally-invasive thermal ablation techniques (i.e., radiofrequency, microwave, cryoablation and high-intensity focused ultrasound) for treatment of early-stage breast cancer.[52] Zhao reported that studies on cryoablation for breast cancer were primarily limited to pilot and
feasibility studies conducted in the research setting. A wide range of 36-83% was reported for complete ablation of tumors. The authors concluded that, while promising, large randomized controlled trials are needed to further evaluate patient selection criteria, techniques to ensure complete tumor ablation, and long-term outcomes compared with surgical excision of breast tumors.

Randomized Controlled Trials

There are no prospective, randomized controlled trials comparing survival and recurrence rates following cryoablation of breast tumors with surgical excision or, for unresectable tumors, with nonoperative therapies.

Nonrandomized Studies

The remaining nonrandomized evidence does not permit reliable conclusions concerning the impact of cryosurgical ablation on breast cancer survival or recurrence due to a number of methodological limitations, including: heterogeneous or unreported patient selection criteria, the use of varied cryoablation techniques, nonrandomized allocation of treatment, lack of an appropriate surgical excision control group for comparison, small subject population, and limited data on long-term outcomes.[53-66]

PULMONARY TUMORS

Systematic Reviews

Lee (2011) conducted a systematic review of endoscopic cryoablation of lung and bronchial tumors.[67] Included in the review were 15 case studies and one comparative observational study. Cryoablation was performed for inoperable, advanced lung and bronchial cancers in most studies. Some studies included patients with comorbid conditions and poor general health who would not be considered surgical candidates. Complications occurred in 11.1% of patients (10 studies) and consisted of hemorrhage, mediastinal emphysema, atrial fibrillation, and dyspnea. Within 30 days of the procedure, death from hemoptysis and respiratory failure, considered to be most likely related to disease progression, occurred in 7.1% of patients. Improvements in pulmonary function and clinical symptoms occurred in studies reporting these outcomes. One published review reported the outcomes of 15 case series and one comparative observational study for endoscopic cryotherapy of endobronchial tumors. Most studies were for inoperable, advanced lung and bronchial cancers. A critical analysis of the studies was not provided. However, the authors noted the significant limitations in the available evidence due to lack of control groups, lack of random treatment allocation, and heterogeneity in study methodologies, participants' characteristics (e.g., comorbid conditions, general health, cancer grade), treatment protocols, operative techniques, and outcome measures. Complications occurred in 11.1% of patients from ten studies and consisted of hemorrhage, mediastinal emphysema, atrial fibrillation, and dyspnea. Within 30 days of the procedure, death from hemoptysis and respiratory failure, considered to be most likely related to disease progression, occurred in 7.1% of patients. Improvements in pulmonary function and clinical symptoms occurred in studies reporting these outcomes. Because the studies in the review did not include control groups or compare outcomes of cryosurgery to alternative strategies for managing similar patients, no conclusions can be made on the net health outcomes of cryosurgery for lung cancer.

Randomized Controlled Trials
One preliminary randomized trial studied 36 female patients with NSCLC who also had epidermal growth factor receptor gene mutations. All patients received six months treatment with molecular target therapy gefitinib, an epidermal growth factor receptor-tyrosine kinase inhibitor. Patients were randomized to either an experimental group and underwent cryoablation prior to receiving gefitinib, or to a control group in which cryoablation was not performed. At one-year follow-up, the survival rate in the cryoablation group was significantly higher than that of the control group. The findings of this preliminary study suggest that cryoablation may improve the effects of gefitinib in this patient population. Additional larger, long-term randomized trials are needed to validate these findings.

Nonrandomized Studies

The Study of Metastatic Lung Tumors Targeted by Interventional Cryoablation Evaluation (SOLSTICE) study assessed the safety and local recurrence-free survival after cryoablation for treatment of pulmonary metastases. Callstrom (2020) published this multicenter, prospective, single-arm, phase 2 study in 128 patients with 224 lung metastases ≤3.5 cm. Median tumor size was 1.0 cm. Local recurrence-free response was 85.1% at 12 months and 77.2% at 24 months. Secondary local recurrence-free response after retreatment with cryoablation for recurrent tumors was 91.1% at 12 months and 84.4% at 24 months. Overall survival at 12 and 24 months was 97.6% and 86.6%, respectively.

The ECLIPSE trial is prospective, multicenter trial of cryoablation for metastatic disease in the lungs, interim results at one-year follow-up were published in 2015. The trial enrolled 40 patients with 60 metastatic lung lesions who were treated with cryoablation and had at least 12 months of follow-up. Outcomes included survival, local tumor control, quality of life, and complications. Local tumor control was achieved in 94.2% (49/52) of treated lesions, and one-year OS was 97.5% (39/40). There were no significant changes in quality of life over the 12-month study. The most common adverse event was pneumothorax requiring chest tube insertion in 18.8% (9/48 procedures). Five-year results of the trial were published by de Baère (2021), which reported disease-specific survival rates of 74.8% at three years and 55.3% at five years. Five-year overall survival was 46.7% and there was no significant difference in quality-of-life measures.

BONE TUMORS

Systematic Reviews

A systematic review by Sagoo (2021) assessed percutaneous cryoablation of spinal metastases. Eight studies, seven of which were retrospective, were included in the review, with a total of 148 patients and 187 treated lesions (3 cervical, 74 thoracic, 37 lumbar, and 17 sacrococcygeal). At one-month follow-up, the pooled mean difference in pain scores (1-10 scale) was 5.03 (95% confidence interval [CI] 4.24 to 5.82). Reported tumor control rates varied from 60% to 100% and complications were reported in 12 patients, three of which were grade III-V.

Lindquester (2020) published a systematic review evaluating percutaneous thermal ablation technologies for osteoid osteoma, which included 36 case-series (total n=1,798). While the authors stated that the studies were evaluated for quality, the results of such an evaluation were not included in the publication. An overall success rate of 91.9% was reported, which included both technical and clinical success of the procedure as well as freedom from...
recurrence during follow-up, however median length of follow-up in these studies was not reported. The overall complication rate was 2.5% (95% CI 1.9% to 3.3%). No significant differences were found between radiofrequency and cryoablation, but only three of the 36 studies included cryoablation; most (32 studies) were for radiofrequency ablation.

Nonrandomized Studies

Jennings (2021) reported on a multicenter, single-arm prospective study of 66 patients with metastatic bone disease who were treated with cryoablation, all of whom were not candidates for or had not benefited from standard therapy.\(^{[73]}\) The primary endpoint was the change in pain score from baseline to week eight and patients were followed for 24 weeks. The mean decrease in pain score from baseline to week eight was 2.61 points (95% CI 3.45 to 1.78). Pain scores decreased further after the primary endpoint and reached clinically meaningful levels (more than a two-point decrease) after week eight. This study was limited by its lack of a comparator, potential for selection bias, and lack of blinding combined with subjective outcome measures.

Callstrom (2013) reported on 61 patients treated with cryoablation for pain from 69 tumors (size 1 to 11 cm) metastatic to the bone. Before treatment, patients rated their pain with a 4+ on a 1-to-10 scale using the Brief Pain Inventory, with a mean score of 7.1 for worst pain in a 24-hour period. The mean pain score gradually decreased after cryoablation to 1.4 (p<0.001) at 24 weeks for worst pain in a 24-hour period. A major complication of osteomyelitis was experienced by one (2%) patient.

Meller (2008) retrospectively analyzed a single-center experience with 440 bone tumor cryosurgery procedures performed between 1988 and 2002, two-thirds of them for primary benign-aggressive and low-grade malignant lesions, and one-third for primary high-grade and metastatic bone tumors.\(^{[74]}\) At a median follow-up of seven years (range 3 to 18 years), the overall recurrence rate was 8%. Based on their data, the authors suggested that the ideal case for cryosurgery is a young adult with involvement of long bone, a benign-aggressive or low-grade malignant bone tumor, a good cavity with greater than 75%-thick surrounding walls, no or minimal soft-tissue component, and at least ±1 cm of subchondral bone left near a joint surface after curettage and burr drilling.

OTHER TUMORS

Cryoablation for the treatment of other solid tumors has not been well-studied.

Systematic Reviews

Keane (2014) reported on a systematic review of ablation therapies, including cryoablation, for locally advanced pancreatic cancer.\(^{[75]}\) The review noted studies have demonstrated ablative therapies, including cryoablation, are feasible but larger studies are needed. No conclusions could be made on whether ablation resulted in better oncologic outcomes than best supportive care.

Tao (2012) reported on a systematic review of cryoablation for pancreatic cancer.\(^{[76]}\) The authors identified 29 studies from the literature search and included five of these studies in the review. The five studies were all case series and considered to be of low quality. Adverse events, when mentioned in the studies, included delayed gastric emptying (0% to 40.9% in three studies), pancreatic leak (0% to 6.8% in four studies), biliary leak (0% to 6.8% in three
studies), and one instance of upper gastrointestinal hemorrhage. Pain relief was reported in three studies and ranged from 66.7% to 100%. Median survival times reported in three studies ranged from 13.4 to 16 months. One-year total survival rates reported in two studies were 57.5% and 63.6%.

Nonrandomized Studies

The remaining published literature is limited to case series and retrospective reviews.[77-87] As discussed above, these studies do not permit reliable conclusions concerning the impact of cryoablation on health outcomes.

PRACTICE GUIDELINE SUMMARY

Clinical practice guidelines from U.S. professional associations consistently list cryoablation as a treatment option for uveal melanoma, certain NSCLC tumors, and for tumors of the kidney or prostate.[88-94]

No clinical practice guidelines or position statements based on research from U.S. professional societies were identified that specifically recommend cryoablation for the treatment of solid tumors other than those listed above, though some refer more generally to ablation procedures.[95 96]

SUMMARY

Cryosurgical ablation has become a recognized standard of care in the management of tumors of the skin, kidney and prostate, uveal melanoma, cervical intraepithelial neoplasia, and carefully selected patients with lung tumors. Therefore, this technique may be considered medically necessary in the treatment of these tumors when criteria are met.

There is not enough research to show that cryosurgical ablation can improve health outcomes for patients with solid tumors that do not meet policy criteria, including malignant or benign tumors of the breast (including fibroadenoma), pancreas, and bone; and for metastases outside of the liver or prostate. Therefore, cryosurgical ablation for these indications is considered investigational.

REFERENCES

85. Poplack SP, Levine GM, Henry L, et al. A Pilot Study of Ultrasound-Guided Cryoa...

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0581T</td>
<td>Ablation, malignant breast tumor(s), percutaneous, cryotherapy, including imaging guidance when performed, unilateral</td>
</tr>
<tr>
<td></td>
<td>17260-17286</td>
<td>Destruction, malignant lesion (eg, laser surgery, electrosurgery, cryosurgery, chemoablation, surgical curettage)</td>
</tr>
<tr>
<td></td>
<td>19105</td>
<td>Ablation, cryosurgical, of fibroadenoma, including ultrasound guidance, each fibroadenoma</td>
</tr>
<tr>
<td></td>
<td>20983</td>
<td>Ablation therapy for reduction or eradication of 1 or more bone tumors (eg, metastasis) including adjacent soft tissue when involved by tumor extension, percutaneous, including imaging guidance when performed; cryoablation</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>31641</td>
<td>Bronchoscopy, rigid or flexible, including fluoroscopic guidance, when performed; with destruction of tumor or relief of stenosis by any method other than excision (eg, laser therapy, cryotherapy)</td>
<td></td>
</tr>
<tr>
<td>32994</td>
<td>Ablation therapy for reduction or eradication of 1 or more pulmonary tumor(s) including pleura or chest wall when involved by tumor extension, percutaneous, including imaging guidance when performed, unilateral; cryoablation</td>
<td></td>
</tr>
<tr>
<td>50250</td>
<td>Ablation, open, 1 or more renal mass lesion(s), cryosurgical, including intraoperative ultrasound guidance and monitoring, if performed</td>
<td></td>
</tr>
<tr>
<td>50542</td>
<td>Laparoscopy, surgical; ablation of renal mass lesion(s), including intraoperative ultrasound guidance and monitoring, when performed</td>
<td></td>
</tr>
<tr>
<td>50593</td>
<td>Ablation, renal tumor(s), unilateral, percutaneous, cryotherapy</td>
<td></td>
</tr>
<tr>
<td>55873</td>
<td>Cryosurgical ablation of the prostate (includes ultrasonic guidance and monitoring)</td>
<td></td>
</tr>
<tr>
<td>57511</td>
<td>Cautery of cervix; cryocautery, initial or repeat</td>
<td></td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: March 2004

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Sacral nerve neuromodulation involves the implantation of a permanent electrical stimulation device that modulates the neural pathways controlling bladder or rectal function.

MEDICAL POLICY CRITERIA

Note: Sacral nerve neuromodulation should be initiated with a trial period of sacral nerve neuromodulation (peripheral nerve stimulation test) with a temporarily implanted lead and may be followed by permanent implantation. This policy addresses these services as one combined episode beginning with the temporary placement.

I. Sacral nerve neuromodulation (including a trial period of sacral nerve neuromodulation [peripheral nerve stimulation test] with a temporarily implanted lead and, when used, the permanent implantation) may be considered medically necessary when one or more of the following criteria are met:

A. For the treatment of urinary incontinence and non-obstructive retention in patients who meet all of the following criteria (1. – 3.):
1. There is a diagnosis of at least one of the following:
 a. Urge incontinence
 b. Urgency-frequency syndrome
 c. Non-obstructive urinary retention
 d. Overactive bladder

2. There is documented failure or intolerance to at least 2 conventional conservative therapies (e.g., behavioral training such as bladder training, prompted voiding, or pelvic muscle exercise training, pharmacologic treatment for at least a sufficient duration to fully assess its efficacy, and/or surgical corrective therapy); and

3. Incontinence is not related to a neurologic condition.

B. For the treatment of fecal incontinence in patients who meet all of the following criteria (1. - 5.):

1. There is a diagnosis of chronic fecal incontinence of greater than 2 incontinent episodes on average per week with duration greater than 6 months or for more than 12 months after vaginal childbirth;

2. There is documented failure or intolerance to conventional conservative therapy (e.g., dietary modification, the addition of bulking and pharmacologic treatment for at least a sufficient duration to fully assess its efficacy);

3. The condition is not related to an anorectal malformation (e.g., congenital anorectal malformation; defects of the external anal sphincter over 60 degrees; visible sequelae of pelvic radiation; active anal abscesses and fistulae) or chronic inflammatory bowel disease;

4. Incontinence is not related to another neurologic condition; and

5. The patient has not had rectal surgery in the previous 12 months, or in the case of rectal cancer, the patient has not had rectal surgery in the past 24 months.

II. Revision(s) or removal of an existing sacral nerve neuromodulation device may be considered medically necessary after the device has been placed.

III. Replacement of all or part of an existing sacral nerve neuromodulation device and/or generator is considered medically necessary when the existing device and/or generator is malfunctioning, cannot be repaired, and is no longer under warranty.

IV. Replacement of all or part of an existing sacral nerve neuromodulation device and/or generator is considered not medically necessary when Criterion III. is not met.

V. Sacral nerve neuromodulation for the treatment of urinary incontinence, non-obstructive retention, and fecal incontinence is considered not medically necessary when Criterion I. is not met, including but not limited to stress incontinence and urge incontinence due to a neurologic condition (e.g., detrusor hyperreflexia, multiple sclerosis, spinal cord injury, or diabetes with peripheral nerve involvement).

VI. Sacral nerve neuromodulation for the treatment of all other indications is considered investigational, including but not limited to chronic pelvic pain and constipation.
NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine whether the policy criteria are met. If these items are not submitted, it could impact our review and decision outcome.

- History and physical/chart notes
- Documented applicable Diagnosis/Diagnoses and any neurological diagnoses present
- Documented failure or intolerance to conventional conservative therapies attempted as detailed in criteria I.A.2. and I.B.2.
- Documentation of surgical history within the last 24 months as applicable to fecal incontinence

CROSS REFERENCES

1. Pelvic Floor Stimulation as a Treatment of Urinary Incontinence, Allied Health, Policy No. 4

BACKGROUND

Sacral nerve neuromodulation (SNM), previously known as sacral nerve stimulation is defined as the implantation of a permanent device that modulates the neural pathways controlling bladder or rectal function. The SNM device consists of an implantable pulse generator that delivers controlled electrical impulses. This pulse generator is attached to wire leads that connect to the sacral nerves, most commonly the S3 nerve root. Two external components of the system help control the electrical stimulation. A control magnet is kept by the patient and can be used to turn the device on or off. A console programmer is kept by the physician and used to adjust the settings of the pulse generator.

Treatment using SNM is one of several alternative modalities for patients with fecal or urinary incontinence who have failed behavioral (e.g., prompted voiding) and/or pharmacologic therapies.

Prior to implantation of the permanent device, patients undergo a peripheral nerve stimulation test to estimate potential response to SNM. This procedure is done under local anesthesia, using a test needle to identify the appropriate sacral nerve(s). Once identified, a temporary wire lead is inserted through the test needle and left in place for several days. This lead is connected to an external stimulator which is carried by patients in their pocket or on their belt. Patients then keep track of voiding symptoms while the temporary device is functioning. The results of this test phase are used to determine whether patients are appropriate candidates for the permanent device. If patients show a 50% or greater reduction in incontinence frequency, they are deemed eligible for the permanent device. According to data from the manufacturer, approximately 63% of patients have a successful peripheral nerve evaluation and are thus candidates for the permanent SNM.

The permanent device is implanted with the patient under general anesthesia. An incision is made over the lower back and the electrical leads are placed in contact with the sacral nerve root(s). The wire leads are extended through a second incision underneath the skin across the flank to the lower abdomen. Finally, a third incision is made in the lower abdomen where the pulse generator is inserted and connected to the wire leads. Following implantation, the
physician programs the pulse generator to the optimal settings for that patient. The patient can switch the pulse generator between on and off by placing the control magnet over the area of the pulse generator for one to two seconds.

REGULATORY STATUS

In 1997, the Medtronic Interstim® Sacral Nerve Stimulation™ system received U.S. Food and Drug Administration (FDA) approval for marketing for the indication of urinary urge incontinence in patients who have failed or could not tolerate more conservative treatments. In 1999 the device received FDA approval for the additional indications of urgency-frequency and urinary retention in patients without mechanical obstruction.

In 2006, the Medtronic Interstim® II System received FDA approval for treatment of intractable cases of overactive bladder and urinary retention. The new device is smaller and lighter than the original system and is reported to be suited for those with lower energy requirements or small stature. The device also includes updated software and programming options.

In 2011, the Medtronic InterStim System received FDA approval for the indication of chronic fecal incontinence in patients who have failed or could not tolerate more conservative treatments.

The Interstim device has not been specifically approved by FDA for treatment of chronic pelvic pain.

Note: Sacral nerve neuromodulation should be distinguished from pelvic floor stimulation. Pelvic floor stimulation refers to electrical stimulation of the pudendal nerve. This therapy is addressed in a separate medical policy (see Cross References).

EVIDENCE SUMMARY

Assessment of the safety and efficacy of sacral nerve modulation (SNM) as a treatment for urinary or fecal incontinence requires large, blinded, long-term randomized controlled trials to determine whether 1) the benefits of SNM outweigh any risks, and 2) whether SNM offers advantages over conventional conservative treatments. The appropriate control group(s) against which SNM should be compared is sham stimulation, on- versus off-phases in which patients act as their own controls, or conventional conservative therapies.

URINARY DYSFUNCTION

Urge Incontinence

Systematic Reviews

Initially, the policy for SNM as a treatment of urge incontinence was based on a 1998 BlueCross BlueShield Association Technology Evaluation Center (TEC) assessment.[1] Based on a multicenter RCT[2] conducted as part of the FDA approval process, the TEC Assessment concluded that SNM reduced urge incontinence compared with control patients.

Brazzelli performed a review of articles published between 1966 and 2003 which included four randomized controlled trials and 30 case series.[3] The authors reported that about 80% of patients in the randomized trials achieved continence or greater than 50% improvement in their main incontinence symptoms after SNM compared with about 3% of controls receiving...
conservative treatments. The case series, which were larger but methodically less reliable, showed similar results. Benefits were reported to persist three to five years after implantation. The authors noted that technical changes over time were associated with decreased complication rates.

Randomized Controlled Trials

No new RCTs for urge incontinence were identified since the above systematic reviews were published.

Nonrandomized Studies

A 2011 series by Groen in reported the longest follow-up. A total of 60 patients had at least five years of follow-up after SNM for refractory idiopathic urge urinary incontinence. Success was defined as at least a 50% decrease in the number of incontinent episodes or pads used per day. The success rate was 52 of 60 (87%) at one month and gradually decreased to 37 (62%) at five years. The number of women who were completely continent was 15 (25%) at one month and 9 (15%) at five years. At the five-year follow-up, SNM was still used by 48/60 (80%) women. A total of 57 adverse events were reported in 32 of 60 (53%) patients. The most frequent adverse events were hardware-related or pain or discomfort. There were a total of 23 reoperations in 15 patients. In most cases, pain problems were managed conservatively.

Urinary Urgency/Frequency

Systematic Reviews

No recent systematic reviews were identified.

Randomized Controlled Trials

In the multicenter randomized clinical study of 581 patients with a variety of urinary dysfunctions submitted to the U.S. Food and Drug Administration (FDA) as part of the device approval process, 220 had significant urgency-frequency symptoms. After six months of SNM therapy, 83% of patients with urgency-frequency symptoms reported increased voiding volumes with the same or reduced degree of frequency. At 12 months, 81% of patients had reached normal voiding frequency. Compared to a control group, patients with implants reported significant improvements in quality of life, as evaluated by the SF-36 health survey. The trial was well-designed, using standardized clinical and functional status outcomes measurements, and enrolled patients with severe urge incontinence who had failed extensive prior treatments. The magnitude of effect (approximately one-half of patients became dry, three-quarters experienced at least 50% reduction in incontinence) was fairly large, probably at least as great as with surgical procedures, and larger than expected from a placebo effect or conservative measures such as behavioral therapy or drugs. The therapy evaluation test, in which the device was turned off (ie, sham treatment was provided) and patients thus served as their controls, provided further evidence that the effect on incontinence was due to electrical stimulation and demonstrated that the effect of sacral nerve neuromodulation is reversible. The cohort analysis of the clinical trial provided some evidence that the effect of sacral nerve neuromodulation could be maintained for up to two years. There was a high rate of adverse events reported in this trial. Most were minor and reversible; however, approximately one-third of patients required surgical revision for pain at the operative sites or migration of the leads.
In 2016, Amundsen reported on a RCT comparing intradetrusor injection of onabotulinumtoxinA (n=192) with SNM (n=189) in women with refractory urgency urinary incontinence, defined as at least one supervised behavioral or physical therapy intervention and the use of a minimum of two anticholinergics (or inability to tolerate or contraindications to the medication).[6] In intention-to-treat analysis, onabotulinumtoxinA-treated patients had greater reductions in urge incontinence per day than SNM-treated patients: 3.9 vs 3.3 per day (mean difference: 0.63; 95% confidence interval [CI] 0.13 to 1.14, p=0.01). OnabotulinumtoxinA-treated patients had greater reductions in some overactive bladder-related quality of life questionnaire-related measures, although the clinical meaningfulness of the changes was uncertain. Patients in the onabotulinumtoxinA-treated group were more likely to have urinary tract infections (UTIs, 35% vs 11%; risk difference -23%, 95% CI -33% to -13%, p<0.001).

In 2014 Siegel published an industry-sponsored FDA-mandated postapproval randomized study and is known as the Insite trial.[7] This study compared SNM using a two-stage surgical procedure with standard medical therapy. Study inclusion criteria included a diagnosis of overactive bladder (OAB) (at least eight voids per day and/or at least two involuntary leaking episodes in 72 hours) and a failed trial of at least one anticholinergic or antimuscarinic medication. In addition, there needed to be at least one such medication that had not yet been attempted. Patients with neurologic diseases and with primary stress incontinence were excluded. A total of 70 patients were allocated to SNM and 77 to standard medical therapy. Of the 70 patients in the SNM group, 11 elected not to receive test stimulation with the tined lead and eight received the lead but did not receive a full system implant due to lack of response to a 14-day test stimulation period (response was defined as at least a 50% reduction in average leaks and/or voids). Patients in the medical treatment group tried the next recommended medication or restarted a discontinued medication. Therapeutic success was defined as at least a 50% improvement in average leaks/day or at least a 50% improvement in the number of voids per day or a return to fewer than eight voids per day. In an intention-to-treat analysis, the therapeutic success rate at six months was 61% in the SNM group and 42% in the standard medical treatment group; the difference between groups was statistically significant (p=0.02). Quality of Life (QOL) at six months was a secondary outcome. Several validated QOL scales were used, and all favored the SNM group compared with the standard medical treatment group (p<0.002 for all comparisons).

In 2014, Noblett published twelve-month follow-up results of the Insite trial. The analysis included patients included in the SNM group of initial RCT plus additional patients enrolled and implanted in the interim.[8] A total of 340 patients underwent test stimulation, 272 underwent implantation, and 255 completed 12 months of follow-up. In a modified completers’ analysis, the therapeutic success rate was 82%. This modified completers’ analysis included patients who were implanted and had either a baseline or 12-month evaluation, or withdrew from the trial due to a device-related adverse event or lack of efficacy. In an analysis limited to study completers, the therapeutic response rate was 85%. The Noblett analysis did not include data from the control group of patients receiving only standard medical therapy.

In 2014 Tang published the results of an RCT in which 240 women with OAB were randomized to receive tolterodine with (n=120) or without (n=120) sacral neuromodulation.[9] Participants were also divided into subgroups based on the presence or absence of urinary incontinence. The treatment period was three months; results were measured by voiding diaries and urodynamic parameters, in addition to psychological depression and anxiety scores. The group receiving SNM reported significantly greater improvements in the conditions of first desire to
void, maximum cystometric capacity, daily average volumes, and daily single maximum voided volumes compared to the group receiving medication alone (p=.001). The SNM group also reported greater decreases in self-rated depression and anxiety scales (p<0.001). The authors concluded that combined treatment with SNM and tolterodine could improve the quality of life in women with OAB by decreasing voiding dysfunction symptoms and related depression and anxiety.

Nonrandomized Studies

There has also been interest in the use of sacral nerve neuromodulation as a treatment of interstitial cystitis, a condition characterized by painful urinary urgency and frequency. These studies reported a decrease in both urgency/frequency and pain. These patients would be considered candidates for sacral nerve neuromodulation therapy based on the presence of urgency and frequency alone.

Urinary Retention

Systematic Review

A 2009 Cochrane review described eight randomized studies on implanted devices for urinary storage and voiding dysfunction in adults. In spite of methodologic problems (e.g., generally poor-quality studies), the evidence “seems clear that continuous stimulation offers benefits for carefully selected people with overactive bladder syndrome and for those with urinary retention but no structural obstruction.” The authors concluded that while some people benefit, more research is needed to improve patient selection, to carry out the implant, and to find why so many fail.

In 2014, the Agency for Healthcare Research and Quality published a comparative effectiveness review focused on chronic urinary retention treatments. The authors identified the previously described Cochran review as providing “low-strength evidence that neuromodulation improves the rate at which patients with Fowler’s syndrome can be catheter free after treatment,” but noted that there were few studies overall, and most were small and had other methodologic limitations.

Randomized Controlled Trial

No new RCTs for urinary retention were identified since the above systematic review was published.

Complications of SNM for Urinary Dysfunctions

A large prospective series by White focused on complications associated with SNM in 202 patients with urge incontinence, urinary urgency, or urinary retention. At a mean follow-up of 37 months (range, 7 to 84), 67 patients (30%) had experienced adverse events that required either lead or implantable pulse generator revisions. Complications included pain (3%), device malfunction secondary to trauma (9%), infection (4%), postoperative hematoma (2%), and lead migration (6%). In addition, 5% of patients underwent elective removal, 4% had device removal due to lack of efficacy, and 2% required removal due to battery expiration. At the last follow-up, 172 patients (85%) had functional implanted units.

Section Summary
Data from RCTs and case series with long-term follow-up provides sufficient evidence to conclude that sacral nerve neuromodulation is effective and safe in selected patients with urge incontinence, urgency-frequency syndrome, and non-obstructive urinary retention.

DEFECATION DYSFUNCTION

Fecal Incontinence

Systematic Reviews

In 2019, Simillis published a systematic review and meta-analysis of treatments for fecal incontinence.[16] A total of 47 RCTs were included and 37 treatments were addressed. Overall, no treatment was ranked best or worst for any outcome. With respect to SNM, significant improvements compared to placebo were reported for incontinence scores.

A 2018 SR by Dulskas evaluated the literature on treatments for lower anterior resection syndrome.[17] The authors identified a total of 21 studies that met inclusion criteria, of which eight evaluated the use of SNM. Only one of the identified studies was determined not to be of poor quality. Therefore, the authors concluded that high quality RCTs are needed to determine the efficacy of SNM.

A 2015 Cochrane review evaluated sacral nerve stimulation for fecal incontinence and constipation in adults.[18] This review included six trials assessing the effects of SNM for fecal incontinence. Two parallel group trials found that SNM reduced the number of incontinence episodes when compared with optimal medical therapy or percutaneous tibial nerve stimulation. Three of the four included crossover trials found reductions in incontinence episodes during the SNM “on” period relative to the “off” period; in the other crossover trial, participants did not experience any episodes of fecal incontinence during either period. The primary methodological quality issue noted was related to lack of clarity around randomization techniques and allocation concealment. The review authors concluded that there was limited evidence that SNM could improve continence in some patients with fecal incontinence.

In 2016, the Agency for Healthcare Research and Quality published a comparative effectiveness review on treatments for fecal incontinence.[19] There were 63 studies that met inclusion criteria for the review, and 53 surgical case series were reviewed for adverse events. There were 38 RCTs that assessed nonsurgical treatments and 12 that reviewed surgical interventions, including five studies of SNM. Regarding SNM, the authors concluded that the evidence was “insufficient because all five studies had moderate or high risk of bias, and none assessed the same treatment-outcome combination.”

In 2013, Thin published a systematic review of randomized trials and observational studies on SNM for treating fecal incontinence.[20] A total of 61 studies met eligibility criteria; including at least 10 patients, having a clear follow-up interval and reporting the success rate of therapy based on a 50% or greater improvement in fecal incontinence episodes. Only two of the studies were RCTs,[21, 22] and 50 were prospective case series. Data from two studies with long-term follow-up could be pooled to calculate median success rates using an intention-to-treat analysis. These median success rates were 63% in the short term (no more than 12 months’ follow-up), 58% in the medium term (12 to 36 months), and 54% in the long term (>36 months). The per-protocol short-, medium-, and long-term success rates were 79%, 80%, and 84%, respectively.
In 2011, Maeda published a systematic review of studies on complications following permanent implantation of a SNM device for fecal incontinence and constipation.\[23\] The authors identified 94 articles. The vast majority of studies addressed fecal incontinence. A combined analysis of data from 31 studies on SNM for fecal incontinence reported a 12% suboptimal response to therapy (149 of 1,232 patients). A review of complications reported in the studies found that the most commonly reported complication was pain around the site of implantation, with a pooled rate of 13% (81/621 patients). The most common response to this complication was repositioning the stimulator, followed by explantation of the device and reprogramming. The second most common adverse event was infection, with a pooled rate of 4% (40/1025 patients). Twenty-five of the 40 infections (63%) led to explantation of the device.

In 2011, Tan published a meta-analysis of randomized trials and observational studies published between 2000 and 2008 on SNM for treating fecal incontinence.\[24\] They identified a total of 34 studies that reported on at least one of their outcomes of interest and clearly documented how many patients underwent temporary and permanent SNM. Only one of these studies was an RCT; this was the study by Tjandra discussed earlier.\[21\] In the 34 studies, a total of 944 patients underwent temporary SNM and 665 subsequently underwent permanent SNM implantation. There were 279 patients who did not receive permanent implantation, and 154 of these were lost to follow-up. Follow-up in the studies ranged from 2 weeks to 35 weeks. In a pooled analysis of findings of 28 studies, there was a statistically significant decrease in incontinence episodes per week with SNM compared to maximal conservative therapy (weighted mean difference: -6.83; 95% CI -8.05 to -5.60, p<0.001). Fourteen studies reported incontinence scores, and when these results were pooled, there was also a significantly greater improvement in scores with SNM compared to conservative therapy (weighted mean difference: -10.57, 95% CI -11.89 to -9.24, p<0.001).

A 2016 systematic review by Bielefeldt focused on the adverse events associated with SNM treatment of fecal incontinence.\[25\] A literature search of PubMed and Embase was performed for studies that included at least five patients with fecal incontinence treated with SNM. The researchers additionally searched the FDA’s Manufacturer and User Device Experience (MAUDE) database for reports from 2005 to October 2015. There were 45 articles included in the review that described distinct patient cohorts and provided information about adverse events. These included a total of 1,953 patients and a median follow-up time of 27 months. There were two studies with a total of 201 that provided the most detailed information.\[26, 27\] In these two studies, approximately 20% of the patients had their devices explanted by the end of follow-up and a substantial number required additional surgeries. There were five more studies that reported adverse events with less detail, and these reported a significantly lower incidence of such events. Information on infectious complications was reported in 44 studies with 1,953 patients, and the pooled rate of these was 5.1%. There were 39 studies with 1,810 patients that reported explant rates, with an average rate of 10.0%. Increases in explant rates were seen with increased follow-up duration. An overall re-operation rate of 18.6% was seen, based on data from 1,784 patients. According to the MAUDE database, there was an average of ten incidents per month related to the Interstim device in 2005. This rose to approximately 100 incidents per month within the next three years and stabilized until the year prior to FDA approval of the device as a treatment for fecal incontinence, and have since tripled. From August 1 - October 31, there were 1,684 problem reports received by the FDA, with 652 reports mentioning gastrointestinal issues as indications for SNM treatment and 278 reports specifically referring to fecal incontinence or bowel dysfunction. Most adverse events were reported within two years after device implantation.
In 2015, a systematic review was published that evaluated the impact of SNM on clinical symptoms and gastrointestinal physiology in patients with fecal incontinence. There were 81 studies included in the review, and the clinical outcomes assessed included frequency of fecal incontinence episodes, fecal incontinence severity score, and treatment success rates. A meta-analysis of the data from these studies was not possible, as most lacked a comparison group. Following SNM device implantation, ‘perfect’ continence was reported in 13% to 88% of patients. The majority of studies found a reduction in incontinence episodes per week (mean, -7.0; range, -24.8 to -2.7) and Wexner scores. The studies did not demonstrate any consistent, statistically significant effects of SNM on physiological parameters or identify any clinicophysiological factors that predicted success.

Randomized Controlled Trials

No new RCTs for fecal incontinence were identified since the above systematic review was published.

Nonrandomized studies

A study by Desprez (2020) that retrospectively analyzed prospectively collected data found that long-term efficacy with sacral nerve stimulation was maintained for at least 10 years post-implantation in approximately half of the patients treated for fecal incontinence. A similarly designed study by De Meyere (2020) in a single-center in Belgium demonstrated that the efficacy of sacral nerve stimulation in patients with fecal incontinence or low anterior resection syndrome was maintained for at least five years.

Leo (2020) reported medium- and long-term outcomes following sacral nerve stimulation for fecal incontinence. This prospective observational study included 256 patients with medium-term results and, of those, 185 were followed up for long term outcomes. At the six-month follow-up, 65.2% (167/256) of patients showed a reduction of more than 50% in their St Marks fecal incontinence score and at the medium-term and long-term follow-ups it was 60.4% (142/235) and 62.1% (115/185), respectively. There was a reduction in median St Mark’s score from baseline at six months (p<0.00001), which was maintained at the medium-term (110 months) and long-term (132 months) follow-ups. Twelve patients had lack of efficacy at the first postoperative follow-up, which was resolved with surgical correction in three patients and resulted in removal in the remainder. Of the 256 initial patients, 61 reported complications. This resulted in device removal for complications in 11 patients (4.2%), revisional surgery in 14 (5.4%), successful conservative treatment in 36 (14%), and a change of their SNS stimulation parameters in 51 (19.9%). Fourteen patients experienced wound infection/implant rejection.

In 2017, Koh reported on outcomes following SNM at a single Scottish center. Of a total of 83 patients undergoing temporary SNM testing, 52 patients were permanently implanted. There were four failures, one removal due to cancer, seven infections, one lead migration, and three reports of post-operative pain or numbness.

Irwin (2017) assessed morbidity following SNM implantation for fecal incontinence. Seventy-five patients were evaluated, 61 received insertion of a temporary SNM, and 40 received a permanent SNM. Significant reduction in the Cleveland Clinic Incontinence Scores (14 pre-SNM to 9 post-SNM) and improvements in Role Physical, General Health, Vitality, Social Functioning, Role Emotional, Mental Health, and Mental Health Summary measures were reported.

SUR134 | 10

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
A 2016 study by Rice compared the commonly used staging procedure for evaluating candidacy for implantation of SNM to an office-based evaluation.[34] In this retrospective study, a total of 86 patients were evaluated, with 45 in the office-based evaluation group and 41 in the staged group. The primary outcome was >50% improvement in Wexner score, resulting in patients progressing to permanent implantation. There was no significant difference in the primary outcome between groups or in the mean three-month Wexner score. Infection was significantly more likely in the staged group.

In 2016, Patton evaluated medium-term outcomes from SNM patients at a single institution.[35] Of the 166 patients that underwent preliminary nerve stimulation testing, 112 had a permanent device implanted, and an additional 15 patients received a device without an initial testing phase for a total of 127 patients with SNM devices. The mean follow-up was 2.7 years (range, two months to 8.5 years), and 14 patients had the device removed and four had died, leaving 109 patients. Of these, 91 (83%) responded to the follow-up survey. There were significant improvements from baseline in St Mark’s continence score (from 10.3 to 14.4, p<0.01), bowel control score, and fecal incontinence quality of life measures. Complications from the device included 12 infections, five of which required surgery, 17 lead dislodgements, and five rotated SNM devices that required repositioning.

In 2016, Duelund published the results of a two-center prospective registry study that included 164 fecal incontinence patients treated with SNM between 2009 and 2013.[36] The median follow-up in the study was 22 months (range, 1 to 50 months). There were improvements in Wexner incontinence scores and VAS impact on daily life. During follow-up, additional surgeries were required in 19.5% of patients. The most common complication was repositioning of the device due to pain or migration in 12.1% of patients, and infections leading to explantation were reported for 3% of patients. The same group also evaluated the effects of bilateral versus unilateral SNM for fecal incontinence treatment, and found no significant differences between groups.[37]

A 2014 study by Altomare reported long-term outcomes (minimum of 60-month follow-up, median of 84-month follow-up) in patients implanted with a sacral nerve stimulator for fecal incontinence.[38] Patients were identified in a European registry and surveyed. Long-term success was defined as maintaining the temporary stimulation success criteria, i.e., at least 50% improvement in the number of fecal incontinence episodes (or fecal incontinence symptom score) at last follow-up, compared with baseline. A total of 272 patients underwent permanent implantation of an SNM device and 228 were available for follow-up. A total of 194 of the 272 (71.3%) implanted patients maintained improvement in the long term.

In 2013, Hull reported outcomes in 72 patients (60% of the 120 implanted patients) who had completed a five-year follow-up visit.[26] Sixty-four (89%) of the patients who contributed bowel diary data at five years had at least a 50% improvement from baseline in weekly incontinent episodes and 26 of the 72 patients (36%) had achieved total continence. It is uncertain whether outcomes differed in the 40% of patients who were missing from the five-year analysis.

Other case series have reported the experiences of patients with fecal incontinence who were treated with sacral neuromodulation. These series are not summarized in depth here because methodological limitations do not permit conclusions on the safety and effectiveness of SNM for fecal incontinence. These limitations included patients with a variety of etiologies of fecal incontinence, including obstetric injury, spinal cord injury, prior surgery, sacral malformation, or
idiopathic incontinence, lack of a comparator, and a wide range of follow-up periods (e.g., two months to 9.5 years). Thus, it is difficult to determine the complication rates or the durability of any benefits initially reported.

Section Summary

With longer term results from two randomized controlled trials, prospective case series, and a pooled analysis of data from the RCTs and observational studies, evidence is considered sufficient to conclude that sacral nerve neuromodulation/stimulation improves outcomes when used for the treatment for chronic fecal incontinence in well-selected patients who have failed conservative therapy.

Constipation

Systematic Review

A 2017 systematic review by Pilkington on behalf of the NIHR CapaCiTY working group, Pelvic floor Society assessed outcomes of sacral nerve stimulation in adults with chronic constipation.[39] They identified seven articles, reporting on 375 patients. Morbidity rates were heterogeneous and varied from 13 to 34%. Device removal rates were also heterogenous and ranged from 8 to 23%. Harms were inconsistently reported. Treatment success was reported between 57 and 87%. Reviewers concluded that the quality of studies was poor and therefore although the results were positive in favor of sacral nerve stimulation for chronic constipation, they urged caution.

The 2015 Cochrane review of SNM for fecal incontinence and constipation, described earlier, included two studies assessing SNM as a constipation treatment.[18] One trial, which included only two participants, found that the participants experienced a greater number of bowel movements per week when the device was on. The other trial, a larger randomized trial by Dinning, found that SNM did not affect the frequency of bowel movements.[40] The study included patients aged 18 to 75 years with slow transit constipation. Potentially eligible patients completed a three-week stool diary and, in order to continue participating, they needed to indicate in the diary that they had complete bowel movements less than three days per week for at least two of the three weeks. Patients with metabolic, neurogenic or endocrine disorders known to cause constipation were excluded. There were 57 patients that met eligibility criteria and had temporary percutaneous nerve evaluation (PNE), and 55 underwent permanent implantation. In random order, patients received active stimulation or sham stimulation. The primary outcome measure, determined by stool diaries, was a bowel movement with feelings of complete evacuation more than two days per week for at least two of three weeks; it was only assessed in phase 2. Compared with sham stimulation, 16 of 54 patients (29.6%) met the primary outcome during stimulation and 11 of 53 patients (20.8%) met it during sham stimulation; the difference was not statistically significant (p=0.23). Other outcomes did not differ significantly by group. The review authors concluded that SMN did not improve constipation symptoms and there were some adverse events associated with its use.

In 2013, Thomas published a systematic review of controlled and uncontrolled studies evaluating sacral nerve stimulation for treatment of chronic constipation.[41] The authors identified 11 case series and two blinded cross-over studies. Sample sizes in the case series ranged from 4 to 68 patients implanted with a permanent SNM device; in 7 of the 11 studies, fewer than 25 patients underwent SNM implantation. Among the two cross-over studies, one included two patients implanted with an SNM device. The other, a 2012 study by Knowles and...
colleagues, temporary stimulation was evaluated in 14 patients.[42] Patients were included if they were diagnosed with evacuatory dysfunction and rectal hyposensitivity and had failed maximal conservative treatment. Patients were randomized to two weeks of stimulation with the SNM device turned on and two weeks with the SNM device turned off, in random order. There was no wash-out period between treatments. The primary efficacy outcome was change in rectal sensitivity and was assessed using three measures of rectal sensory thresholds. The study found a statistically significantly greater increase in rectal sensitivity with the device turned on in two of the three measures. Among the secondary outcome measures, there was a significantly greater benefit of active treatment on the percentage of successful bowel movements per week and the percentage of episodes with a sense of complete evacuation. In addition to its small sample size, the study was limited by the lack of a wash-out period between treatments i.e., there could have been a carry-over effect when the device was used first in the “on” position. Moreover, the authors noted that the patients were highly selected; only 14 of the approximately 1800 patients approached met the eligibility criteria and agreed to participate in the study.

Randomized Controlled Trials

One RCT has been published since the 2015 Cochrane review. This double-blind crossover trial, by Zerbib, included 36 patients (34 women) with refractory constipation, defined as at least two of the following criteria: fewer than three bowel movements per week, sensation of incomplete evacuation on more than a quarter of attempts, or straining to evacuate on more than a quarter of attempts.[43] This study defined a positive response to therapy as a more than 50% improvement in symptoms and/or at least three bowel movements per week. Of the 36 patients, 20 responded to the initial peripheral nerve evaluation and had a permanent stimulator implanted. Positive responses were seen in 12 of the patients during the active stimulation period and 11 of the patients during the sham stimulation period. Adverse events noted by the researchers included device-related pain in five patients and wound infection or hematoma in three patients, leading to device removal in two patients. SNM did not have a significant effect on colonic transit time. The authors concluded that the results of the study did not support the placement of SNM devices in patients with refractory constipation. The improvements seen with sham stimulation highlight the importance of control groups for comparison in studies of this technology.

Additionally, longer-term follow-up results to the study by Dinning[40] were published in 2016.[44] There were 53 patients that entered long-term follow-up, with one patient death. Adverse events or patient dissatisfaction lead to 44 patients withdrawing from the study by the end of the second year. Because of this, only ten patients met the primary outcome measure after one year, and only three patients met this measure after two years. There was no difference in colonic isotope retention at 72 hours at one-year follow-up.

Nonrandomized Studies

A 2019 report by Widmann analyzed a prospective database of fecal incontinence and constipation patients treated with SNM therapy. A total of 101 patients underwent test stimulation, 79 received permanent implantation, and 57 were still receiving SNM at the end of follow-up. The five-year success rate was 88.2% (95% CI 80.1 to 97.0%) for fecal incontinence and 31.2% (95% CI 10.2 to 95.5%) in patients with isolated constipation. Complications necessitation reinterventions were reported in 24 patients. Battery replacement was reported in 23 patients, and the median battery life was 6.2 years.
In 2017, Maeda published a prospective multicenter study. Of the 62 patients who underwent test stimulation, 45 proceeded to permanent implantation and 18 were followed up through 60 months. Fourteen patients reported improved Cleveland Clinic constipation score, which was sustained at 60 months. Ten patients submitted a bowel diary. Analysis of these showed significantly increased defecations per week and reduced sensation of incomplete emptying. Device-related adverse events were reported in 61% of patients.

In 2010, Maeda published a retrospective review of 38 patients with constipation who received permanent SNM after a successful trial period. The study focused on reportable events, defined as suboptimal outcomes (lack of or loss of efficacy) or adverse events. The authors did not report detailed criteria for temporary or permanent placement of an SNM device. At the time of chart review, a mean of 25.7 months had elapsed since implantation. A total of 58 reportable events were identified in 22 of the 38 (58%) patients. A median of two (range 1-9) events per patient were reported; 26 of 58 events (45%) were reported in the first six months after device implantation. The most common reportable events were lack or loss of efficacy (26 of 58 events, 45%), and pain (16 events, 28%). Twenty-eight (48%) of the events were resolved by reprogramming. Surgical interventions were required for 19 (33%) of the events, most commonly permanent electrode replacement (14 events). Three of 38 (8%) patients discontinued use of the device due to reportable events.

A prospective registry study published in 2016 evaluated the effects of SNM on antegrade continence enema use in pediatric patients with severe constipation. There were 22 patients below age 21 included; 55% were male and the median age was 12 years. The median frequency of antegrade continence enema use dropped from seven per week to one per week at 12 months. The Fecal Incontinence Severity index improved after six months, while other outcomes, including laxative use, Gastrointestinal Symptom Scale, and Fecal Incontinence Quality of Life Scale did not change. Ten children received cecostomy/appendicostomy closure within two years.

Several small case series were identified that focused on patients with slow transit constipation. While promising results were reported, these case series are inadequate to permit scientific conclusions due to methodological limitations such as lack of randomization and blinding, and lack of an adequate comparison group.

Section Summary

Only three controlled cross-over studies are available; one study was very small and had only two patients, the second study had methodological limitations, and the third and largest study showed no statistical difference between sham and stimulation. In addition, there are several, mainly small, case series. This represents insufficient evidence to permit scientific conclusions about the efficacy and safety of sacral nerve neuromodulation/stimulation for patients with constipation.

Chronic Pelvic Pain

Systematic Review

Tirlapur assessed the effectiveness of tibial and sacral nerve stimulation in the treatment of bladder pain syndrome (BPS) and chronic pelvic pain (CPP). Authors included randomized and prospective quasi-randomized controlled studies vs. sham nerve stimulation treatment or usual care of patients with CPP and BPS who underwent sacral or tibial nerve stimulation were
included. Three studies with 169 patients treated with tibial nerve stimulation were included; two for CPP and one for BPS. There were improvements in pain, urinary and quality of life scores. There were no reported data for sacral nerve stimulation. Authors concluded that due to the quality of the literature, a large multi-centered clinical trial investigating the effectiveness of electrical nerve stimulation to treat BPS and CPP is recommended.

Nonrandomized studies

Several case series have evaluated sacral neuromodulation for treating chronic pelvic pain. For example, in 2012 Martellucci reported on 27 patients with chronic pelvic pain (at least six months) who underwent testing for SNM implantation\[53\]. After a four-week temporary stimulation phase, 16 of 27 patients (59%) underwent implantation of an Interstim device. In the 16 implanted patients, mean pain on a visual analogue scale (VAS) was 8.1 prior to implantation and 2.1 at the six- and 12-month follow-ups. An earlier study by Siegel reported on 10 patients and stated that 9 of the 10 experienced a decrease in pain with SNM,\[54\]

Section Summary

Data from several small case series with heterogenous patients represents insufficient evidence that sacral nerve neuromodulation/stimulation is safe and effective for treating chronic pelvic pain. RCTs are needed, with sham control groups, to assess the efficacy of neuromodulation/stimulation as a treatment of chronic pelvic pain.

PRACTICE GUIDELINE SUMMARY

AMERICAN UROLOGICAL ASSOCIATION AND THE SOCIETY OF URODYNAMICS, FEMALE PELVIC MEDICINE & UROGENITAL RECONSTRUCTION

The joint American Urological Association (AUA) and The Society of Urodynamics (SUFU) guidelines for non-neurogenic OAB in adults (updated in 2019) considers SNM an option for third-line treatment in carefully selected patients who failed conservative therapies and are characterized by severe OAB symptoms or those not considered candidates for pharmacologic therapy.\[55\] The strength of evidence was given a Grade C defined as low quality/low certainty based on observational studies that are inconsistent, small, or have other limitations that potentially confound interpretation of the data.

AMERICAN COLLEGE OF OBSTETRICIANS AND GYNECOLOGISTS

A 2015 practice bulletin on urinary incontinence (replaced practice bulletin number 63, 2005; reaffirmed in 2018) from the American College of Obstetricians and Gynecologists (ACOG) stated, “sacral neuromodulation may be considered for patients with recalcitrant urinary urge incontinence who have failed other conservative measures, including bladder training, pelvic floor physical therapy with biofeedback, and pharmacologic treatment.”\[56\]

A 2019 ACOG practice bulletin (No. 210) on fecal incontinence included the following Level B (based on limited or inconsistent scientific evidence) recommendation: “sacral nerve stimulation can be considered as a surgical treatment option for women with fecal incontinence with or without anal sphincter disruption who have failed conservative treatments.”\[57\]

AMERICAN COLLEGE OF GASTROENTEROLOGY
The 2014 clinical guideline on the management of benign anorectal disorders, including fecal incontinence, from the American College of Gastroenterology found that "sacral nerve stimulation should be considered in [fecal incontinence] who do not respond to conservative therapy (strong recommendation, moderate quality of evidence)."[58]

SUMMARY

There is enough research to show that sacral nerve neuromodulation/stimulation (SNM) can improve health outcomes and quality of life in some patients with urinary incontinence, non-obstructive urinary retention, or fecal incontinence. Therefore, SNM, including temporary and the potential permanent implantation, may be considered medically necessary for these conditions when the policy criteria are met.

A sacral nerve neuromodulation device may require revision or removal after it has been placed. In these cases, revision may be medically appropriate to allow for the proper functioning of the device. Therefore, revision(s) to an existing sacral nerve neuromodulation device or removal of the device may be considered medically necessary after the device has been placed.

In certain situations, a sacral nerve neuromodulation device may no longer be able to perform its basic function due to damage or wear. When a stimulator is out of its warranty period and cannot be repaired adequately to meet the patient’s medical needs, replacement of the device may be medically appropriate. Therefore, replacement of all or part of a sacral nerve neuromodulation device and/or generator may be considered medically necessary when device replacement Criteria are met.

When a sacral nerve neuromodulation device is in its warranty period or can be repaired or adapted adequately to meet the patient’s medical needs, replacement of the device is not medically appropriate. Therefore, replacement of all or part of a sacral nerve neuromodulation device and/or generator is considered not medically necessary when device replacement Criteria are not met.

Sacral nerve neuromodulation/stimulation (SNM) is considered not medically necessary for the treatment of urinary incontinence, non-obstructive urinary retention, and fecal incontinence in patients who do not meet criteria, including for individuals with urinary stress incontinence, or urge incontinence due to neurologic conditions such as multiple sclerosis, spinal cord injury, diabetes-related peripheral nerve conditions, and detrusor hyperreflexia because the procedure is not considered clinically effective or appropriate for these individuals.

There is not enough research to show that sacral nerve neuromodulation/stimulation (SNM) improves health outcomes for people with conditions other than urge incontinence, non-obstructive urinary retention, and fecal incontinence. Therefore, SNM is considered investigational for other conditions, including but not limited to chronic constipation and chronic pelvic pain.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

7. S Siegel, K Noblett, J Mangel, et al. Results of a prospective, randomized, multicenter study evaluating sacral neuromodulation with InterStim therapy compared to standard medical therapy at 6-months in subjects with mild symptoms of overactive bladder. *Neuromod Urodyn.* 2014. PMID: 24415559

CODES

NOTE: HCPCS code C1823 is NOT the correct code to use for reporting these services. Please refer to the codes listed below for guidance.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>64561</td>
<td>Percutaneous implantation of neurostimulator electrode array; sacral nerve (transforaminal placement) including image guidance, if performed</td>
</tr>
<tr>
<td></td>
<td>64581</td>
<td>Open implantation of neurostimulator electrode array; sacral nerve (transforaminal placement)</td>
</tr>
<tr>
<td></td>
<td>64585</td>
<td>Revision or removal of peripheral neurostimulator electrode array</td>
</tr>
<tr>
<td></td>
<td>64590</td>
<td>Insertion or replacement of peripheral or gastric neurostimulator pulse generator or receiver, direct or inductive coupling</td>
</tr>
<tr>
<td></td>
<td>64595</td>
<td>Revision or removal of peripheral or gastric neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td></td>
<td>95970</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with brain, cranial nerve, spinal cord, peripheral nerve, or sacral nerve, neurostimulator pulse generator/transmitter, without programming</td>
</tr>
<tr>
<td>Codes</td>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>95971</td>
<td>with simple spinal cord, or peripheral nerve (eg, sacral nerve) neurostimulator pulse generator/transmitter, programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>95972</td>
<td>with complex spinal cord, or peripheral (eg, sacral nerve) neurostimulator pulse generator/transmitter programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>C1767</td>
<td>Generator, neurostimulator (implantable), nonrechargeable</td>
</tr>
<tr>
<td></td>
<td>L8679</td>
<td>Implantable neurostimulator, pulse generator, any type</td>
</tr>
<tr>
<td></td>
<td>L8680</td>
<td>Implantable neurostimulator electrode, each</td>
</tr>
<tr>
<td></td>
<td>L8681</td>
<td>Patient programmer (external) for use with implantable programmable neurostimulator pulse generator, replacement only</td>
</tr>
<tr>
<td></td>
<td>L8682</td>
<td>Implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td></td>
<td>L8683</td>
<td>Radiofrequency transmitter (external) for use with implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td></td>
<td>L8684</td>
<td>Radiofrequency transmitter (external) for use with implantable sacral root neurostimulator receiver for bowel and bladder management, replacement</td>
</tr>
<tr>
<td></td>
<td>L8685</td>
<td>Implantable neurostimulator pulse generator, single array, rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8686</td>
<td>Implantable neurostimulator pulse generator, single array, non-rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8687</td>
<td>Implantable neurostimulator pulse generator, dual array, rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8688</td>
<td>Implantable neurostimulator pulse generator, dual array, non-rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8689</td>
<td>External recharging system for battery (internal) for use with implantable neurostimulator</td>
</tr>
</tbody>
</table>

Date of Origin: February 1999
Orthognathic Surgery

Effective: April 1, 2022

Next Review: December 2022
Last Review: February 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Orthognathic surgery involves the surgical manipulation of the facial skeleton, particularly the maxilla and mandible, to restore the proper anatomic and functional relationship in patients with dentofacial skeletal anomalies.[1]

MEDICAL POLICY CRITERIA

Notes:

- This policy does not address the surgical management of sleep apnea, which is addressed in a separate medical policy (see Cross References). Also, this policy does not address temporomandibular joint (TMJ) surgical interventions, which may require pre-authorization.
- Member contracts for covered services vary. Member contracts may have specific language defining congenital and developmental anomalies. Member contract language takes precedence over medical policy. A congenital anomaly is defined as an anomaly that is present at birth (e.g., cleft palate). Developmental anomalies are conditions that develop some time after birth.

I. Orthognathic surgery for the treatment of obstructive sleep apnea in adults may be considered medically necessary when the criteria in Surgery, Policy No. 166 are met.
II. Orthognathic surgery to treat conditions other than obstructive sleep apnea may be considered **medically necessary** to correct jaw and craniofacial deformities when all of the following Criteria (A-D) are met:

A. Significant functional impairment that is documented to be directly attributable to jaw and craniofacial deformities and to include one or more of the following:
 1. Chewing-induced trauma secondary to malocclusion; or
 2. Significantly impaired swallowing and/or choking due to inadequate mastication secondary to malocclusion; or
 3. Significant speech abnormalities (e.g., sibilant distortions or velopharyngeal distortion) which have not responded to speech therapy and are secondary to malocclusion; or
 4. Loss of masticatory or incisive function due to malocclusion or skeletal abnormality; or
 5. Airway restriction; and

B. Significant over- or underjet as documented by one of the following:
 1. In mandibular excess or maxillary deficiency, a reverse overjet of 3mm or greater; or
 2. In mandibular deficiency, an overjet of 5mm or greater; or
 3. Open bite of 4mm or greater; or
 4. Deep bite of 7mm or greater and/or palatal impingement of the mandibular teeth on the palatal tissue; or
 5. Less than six posterior teeth in functional opposition to other teeth secondary to a developmental or congenital growth abnormality (as opposed to a consequence of the loss of teeth); and

C. The functional impairment and over- or underjet are not correctable with non-surgical treatment modalities (e.g. orthodontics) and;

D. The following documentation is required to determine medical necessity for orthognathic surgery:
 1. Clinical record of history and physical performed demonstrating medical necessity of orthognathic surgery and when appropriate, any other pertinent diagnostic findings; and
 2. Intra-oral and extra-oral photographs; and
 3. Cephalometric and panoramic radiographs with either a written report or a summary of radiographic findings in the clinical record (e.g. cephalometric tracings).

III. Reduction of the masseter muscle and bone may be considered **medically necessary** as a component of orthognathic surgery only when there is clinical documentation of the presence of masseteric hypertrophy.

IV. Orthognathic surgery is considered **cosmetic** when Criteria are not met, including but not limited to when used for improvement of appearance.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
V. Genioplasty is considered **cosmetic** when performed in conjunction with orthognathic surgery for the sole purpose of improving appearance and/or profile.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES

1. Administrative Guidelines to Determine Dental vs Medical Services, Allied Health, Policy No. 35
2. Prefabricated Oral Appliances for Obstructive Sleep Apnea, Allied Health, Policy No. 36
3. Cosmetic and Reconstructive Surgery, Surgery, Policy No. 12
4. Surgeries for Snoring, Obstructive Sleep Apnea Syndrome, and Upper Airway Resistance Syndrome, Surgery, Policy No. 166
5. Hypoglossal Nerve Stimulation, Surgery, Policy No. 215

SUMMARY

Orthognathic surgery improves health outcomes including functional impairments for some people with dentofacial skeletal anomalies that are not correctable with non-surgical treatment modalities. Therefore, orthognathic surgery may be considered medically necessary when policy Criteria are met.

The reduction of the masseter muscle and bone improves health outcomes for some people with masseteric hypertrophy when performed as a component of orthognathic surgery. Therefore, reduction of the masseter muscle and bone may be considered medically necessary when policy Criteria are met.

In all other situations, it is unclear how orthognathic surgery improves health outcomes or corrects functional impairments. Therefore, orthognathic surgery is considered cosmetic when policy Criteria are not met including but not limited to for the sole purpose of improving appearance.

REFERENCES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>21085</td>
<td>Impression and custom preparation; oral surgical splint</td>
</tr>
<tr>
<td></td>
<td>21110</td>
<td>Application of interdental fixation device for conditions other than fracture or dislocation, includes removal</td>
</tr>
<tr>
<td></td>
<td>21120</td>
<td>Genioplasty; augmentation (autograft, allograft, prosthetic material)</td>
</tr>
<tr>
<td></td>
<td>21121</td>
<td>Genioplasty; sliding osteotomy, single piece</td>
</tr>
<tr>
<td></td>
<td>21122</td>
<td>Genioplasty; sliding osteotomies, two or more osteotomies (e.g., wedge excision or bone wedge reversal for asymmetrical chin)</td>
</tr>
<tr>
<td></td>
<td>21123</td>
<td>Genioplasty; sliding, augmentation with interpositional bone grafts (includes obtaining autografts)</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21125</td>
<td></td>
<td>Augmentation, mandibular body or angle; prosthetic material</td>
</tr>
<tr>
<td>21127</td>
<td></td>
<td>Augmentation, mandibular body or angle; with bone graft, onlay or interpositional (includes obtaining autograft)</td>
</tr>
<tr>
<td>21141</td>
<td></td>
<td>Reconstruction midface, LeFort I; single piece, segment movement in any direction (e.g., for Long Face Syndrome), without bone graft</td>
</tr>
<tr>
<td>21142</td>
<td></td>
<td>Reconstruction midface, LeFort I; two pieces, segment movement in any direction, without bone graft</td>
</tr>
<tr>
<td>21143</td>
<td></td>
<td>Reconstruction midface, LeFort I; three or more pieces, segment movement in any direction, without bone graft</td>
</tr>
<tr>
<td>21145</td>
<td></td>
<td>Reconstruction midface, LeFort I; single piece, segment movement in any direction, requiring bone grafts (includes obtaining autografts)</td>
</tr>
<tr>
<td>21146</td>
<td></td>
<td>Reconstruction midface, LeFort I; two pieces, segment movement in any direction, requiring bone grafts (includes obtaining autografts) (e.g., ungrafted unilateral alveolar cleft)</td>
</tr>
<tr>
<td>21147</td>
<td></td>
<td>Reconstruction midface, LeFort I; three or more pieces, segment movement in any direction, requiring bone grafts (includes obtaining autografts) (e.g., ungrafted bilateral alveolar cleft or multiple osteotomies)</td>
</tr>
<tr>
<td>21150</td>
<td></td>
<td>Reconstruction midface, LeFort II; anterior intrusion (e.g., Treacher-Collins Syndrome)</td>
</tr>
<tr>
<td>21151</td>
<td></td>
<td>Reconstruction midface, LeFort II; any direction, requiring bone grafts (includes obtaining autografts)</td>
</tr>
<tr>
<td>21154</td>
<td></td>
<td>Reconstruction midface, LeFort III (extracranial), any type, requiring bone grafts (includes obtaining autografts); without LeFort I</td>
</tr>
<tr>
<td>21155</td>
<td></td>
<td>Reconstruction midface, LeFort III (extracranial), any type, requiring bone grafts (includes obtaining autografts); with LeFort I</td>
</tr>
<tr>
<td>21159</td>
<td></td>
<td>Reconstruction midface, LeFort III (extra and intracranial) without forehead advancement (e.g., mono bloc), requiring bone grafts (includes obtaining autografts); without LeFort I</td>
</tr>
<tr>
<td>21160</td>
<td></td>
<td>Reconstruction midface, LeFort III (extra and intracranial) with forehead advancement (e.g., mono bloc), requiring bone grafts (includes obtaining autografts); with LeFort I</td>
</tr>
<tr>
<td>21188</td>
<td></td>
<td>Reconstruction midface, osteotomies (other than LeFort type) and bone grafts (includes obtaining autografts)</td>
</tr>
<tr>
<td>21193</td>
<td></td>
<td>Reconstruction of mandibular rami, horizontal, vertical C, or L osteotomy; without bone graft</td>
</tr>
<tr>
<td>21194</td>
<td></td>
<td>Reconstruction of mandibular rami, horizontal, vertical C, or L osteotomy; with bone graft</td>
</tr>
<tr>
<td>21195</td>
<td></td>
<td>Reconstruction of mandibular rami and/or body, sagittal split; without internal rigid fixation</td>
</tr>
<tr>
<td>21196</td>
<td></td>
<td>Reconstruction of mandibular rami and/or body, sagittal split; with internal rigid fixation</td>
</tr>
<tr>
<td>21198</td>
<td></td>
<td>Osteotomies, mandible, segmental;</td>
</tr>
<tr>
<td>21206</td>
<td></td>
<td>Osteotomies, maxilla, segmental (e.g., Wassmund or Schuchard)</td>
</tr>
<tr>
<td>21208</td>
<td></td>
<td>Osteoplasty, facial bones; augmentation (autograft, allograft, or prosthetic implant)</td>
</tr>
<tr>
<td>21209</td>
<td></td>
<td>Osteoplasty, facial bones; reduction</td>
</tr>
<tr>
<td>21210</td>
<td></td>
<td>Graft, bone; nasal, maxillary or malar areas (includes obtaining graft)</td>
</tr>
<tr>
<td>21215</td>
<td></td>
<td>Graft, bone; mandible (includes obtaining graft)</td>
</tr>
<tr>
<td>21230</td>
<td></td>
<td>Graft; rib cartilage, autogenous, to face, chin, nose or ear (includes obtaining graft)</td>
</tr>
<tr>
<td>21295</td>
<td></td>
<td>Reduction of masseter muscle and bone (eg, for treatment of benign massecteric hypertrophy); extraoral approach</td>
</tr>
<tr>
<td>Codes</td>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>CDT</td>
<td>D7940</td>
<td>Osteoplasty – for orthognathic deformities</td>
</tr>
<tr>
<td></td>
<td>D7941</td>
<td>Osteotomy; mandibular rami</td>
</tr>
<tr>
<td></td>
<td>D7943</td>
<td>Osteotomy; mandibular rami with bone graft; includes obtaining the graft</td>
</tr>
<tr>
<td></td>
<td>D7944</td>
<td>Osteotomy; segmented of subapical – per sextant or quadrant</td>
</tr>
<tr>
<td></td>
<td>D7945</td>
<td>Osteotomy; body of mandible</td>
</tr>
<tr>
<td></td>
<td>D7946</td>
<td>LeFort I (maxilla – total)</td>
</tr>
<tr>
<td></td>
<td>D7947</td>
<td>LeFort I (maxilla – segmented)</td>
</tr>
<tr>
<td></td>
<td>D7948</td>
<td>LeFort II or LeFort III (osteoplasty of facial bones for midface hypoplasia or retrusion); without bone graft</td>
</tr>
<tr>
<td></td>
<td>D7949</td>
<td>LeFort II or LeFort III; with bone graft</td>
</tr>
<tr>
<td></td>
<td>D7950</td>
<td>Osseous, osteoperiosteal, or cartilage graft of the mandible or facial bones – autogenous or nonautogenous, by report</td>
</tr>
<tr>
<td></td>
<td>D7995</td>
<td>Synthetic graft – mandible or facial bones, by report</td>
</tr>
<tr>
<td></td>
<td>D7996</td>
<td>Implant – mandible for augmentation purposes (excluding alveolar ridge), by report</td>
</tr>
</tbody>
</table>

Date of Origin: October 2004
Magnetic Resonance (MR) Guided Focused Ultrasound (MRgFUS) and High Intensity Focused Ultrasound (HIFU) Ablation

Effective: December 1, 2021

Next Review: August 2022
Last Review: October 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Magnetic resonance (MR) guided focused ultrasound (MRgFUS) and high-intensity focused ultrasound (HIFU) concentrate high-energy ultrasound waves via probe on a single location to cause coagulative necrosis.

MEDICAL POLICY CRITERIA

I. High-intensity focused ultrasound (HIFU) may be considered medically necessary as a local treatment for prostate cancer when all of the following (A.-D.) criteria are met:
 A. For the treatment of radiation recurrence (see Policy Guidelines); and
 B. The patient is a candidate for local therapy (see Policy Guidelines); and
 C. Transrectal ultrasound guided (TRUS) biopsy positive; and
 D. In the absence of metastatic disease.

II. High-intensity focused ultrasound (HIFU) is considered investigational for all other indications not meeting Criterion I.
III. Magnetic resonance (MR) guided focused ultrasound (MRgFUS) may be considered **medically necessary** for either of the following indications:
 A. Medicine-refractory essential tremors; or
 B. Pain palliation in an adult (greater than or equal to 18 years) with metastatic bone cancer for whom radiotherapy has failed or who are not candidates for radiotherapy.

IV. Magnetic resonance (MR) guided focused ultrasound (MRgFUS) is considered **investigational** for all indications, including but not limited to treatment of the following:
 A. Uterine fibroids; and
 B. All tumors, including but not limited to brain, breast, prostate and renal; and
 C. Tremor-dominant Parkinson’s disease.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

CANDIDATE FOR LOCAL THERAPY

According to National Comprehensive Cancer Network (NCCN) guidelines for prostate cancer (version 1.2022), in the presence of radiation therapy recurrence (see below), a candidate for local therapy includes:

- Original clinical stage T1-T2, NX or N0
- Life expectancy > 10y
- PSA now < 10 ng/mL

RADIATION RECURRENCE

NCCN guidelines for prostate cancer (version 1.2022) cite radiation therapy recurrence as either 1) a positive digital rectal exam (DRE), or 2) Radiation Therapy Oncology Group - American Society for Therapeutic Radiology and Oncology (RTOG-ASTRO) Phoenix Consensus biochemical failure.

RTOG-ASTRO Phoenix Consensus PSA recurrence is further defined as:

1.) PSA increase by 2 ng/mL or more above the nadir PSA is the standard definition for biochemical failure after EBRT with or without hormonal therapy; and
2.) A recurrence evaluation should be considered when PSA has been confirmed to be increasing after radiation even if the increase above nadir is not yet 2 ng/mL, especially in candidates for salvage local therapy who are young and healthy.

Retaining a strict version of the ASTRO definition allows comparison with a large existing body of literature. Rapid increase of PSA may warrant evaluation (prostate biopsy) prior to meeting the Phoenix definition, especially in younger or healthier men.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy
criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical
- Treatment plan including treatment area
- For essential tremors, clinical documentation must demonstrate medicine-refractory symptoms
- For prostate cancer treatment, clinical documentation must also demonstrate results from transrectal ultrasound guided (TRUS) biopsy
- For pain palliation bone metastases, clinical documentation that radiotherapy has failed for the patient or the patient is not a candidate for radiotherapy

CROSS REFERENCES

1. Radioembolization, Transarterial Embolization (TAE), and Transarterial Chemoembolization (TACE), Medicine, Policy No. 140
2. Radiofrequency Ablation (RFA) of Tumors Other than Liver, Surgery, Policy No. 92
3. Cryosurgical Ablation of Miscellaneous Solid Tumors, Surgery, Policy No. 132
4. Microwave Tumor Ablation, Surgery, Policy No. 189
5. Ablation of Primary and Metastatic Liver Tumors, Surgery, Policy No. 204
6. Focal Laser Ablation of Prostate Cancer, Surgery, Policy No. 222

BACKGROUND

Magnetic resonance (MR) guided focused ultrasound (MRgFUS) and high-intensity focused ultrasound (HIFU) are proposed as less invasive approaches than surgery for treatment of localized prostate cancer, uterine fibroids, and pain palliation of bone metastases. Broadly, these devices use an integrated imaging system to take measurements, confirm the treatment area, and monitor thermal destruction in real time.

MRgFUS is a noninvasive treatment that combines focused ultrasound and magnetic resonance imaging (MRI). The ultrasound beam penetrates through the soft tissues and, using MRI for guidance and monitoring, the beam can be focused on targeted sites. Ultrasound causes a local increase in temperature in the target tissue, resulting in coagulation necrosis while sparing the surrounding normal structures. Ultrasound waves from each sonication are focused at a focal point that has a maximum focal volume of 20 nm in diameter and 15 nm in height/length. This causes a rapid rise in temperature (to approximately 65°C-85°C), which is sufficient to achieve tissue ablation at the focal point. In addition to providing guidance, the associated MRI can provide online thermometric imaging that provides a temperature “map” to confirm the therapeutic effect of the ablation treatment and allow for real-time adjustment of the treatment parameters.

HIFU focuses high-energy ultrasound waves on a single location, which increase the local tissue temperature to over 80°C. This causes a discrete locus of coagulative necrosis of approximately 3×3×10 mm. In the treatment of prostate cancer, HIFU is a minimally invasive localized option. The surgeon uses a transrectal probe to plan, carry out, and monitor ablative treatment in a real-time sequence with a combination of ultrasound and MRI imaging.

REGULATORY STATUS

Devices have received U.S. Food and Drug Administration (FDA) approval via the De Novo and Premarket Application (PMA) processes:
High-Intensity Focused Ultrasound

The Sonablate® 450 (SonaCare Medical) is the first high-intensity ultrasound system for prostate tissue ablation to receive FDA approval, and therefore underwent the De Novo application process, obtaining clearance in 2015. Shortly thereafter, Ablatherm Integrated Imaging® (EDAP TMS) received PMA approval. In June 2018, EDAP received 510(k) clearance for its Focal-One® HIFU device designed for prostate tissue ablation procedures. This device fuses magnetic resonance and 3D biopsy data with real-time ultrasound imaging, allowing urologists to view detailed images of the prostate on a large monitor and direct high-intensity ultrasound waves to ablate the targeted area.

Magnetic Resonance-Guided Focused Ultrasound

The ExAblate® 2000 System (InSightec, Inc.) received premarket approval (PMA) from the FDA for the indications: “ablation of uterine fibroid tissue in pre- or peri-menopausal women with symptomatic uterine fibroids who desire a uterine sparing procedure,” and for palliation of pain associated with tumors metastatic to bone.[1]

For uterine fibroids, the FDA approval letter states that patients must have a uterine gestational size of less than 24 weeks and those patients must have completed childbearing.

In the initial safety and efficacy studies, the FDA limited MRI-guided focused ultrasound to 33% of fibroid volume with a maximum treatment time of 120 minutes. Guidelines were later modified to allow up to 50% treatment volume, 180-minute maximum treatment time, and a second treatment if within a 14-day period.

The ExAblate 2000 treatment is contraindicated for use in women who have MRI-related issues, such as metallic implants, or sensitivity to MRI contrast agents; obstructions in the treatment beam path, such as a scar, skin fold, or irregularity, bowel, pubic bone, intrauterine device, surgical slips, or any hard implants; and fibroids that are close to sensitive organs such as the bowel or bladder or are outside the image area.

The ExAblate® 2100 System also received approval through the PMA process.[2] It includes several modifications to the previous system including enhanced sonication and a detachable cradle, and only certain cradle types can be used for palliation of pain associated with metastatic bone cancer. Approval remains limited to treatment of patients with metastatic bone cancer who failed or are not candidates for radiation therapy; or, in patient with symptomatic uterine fibroids with a uterine size of less than 24 weeks and those who have completed childbearing.

In October 2012, the FDA granted PMA approval for ExAblate® System, for pain palliation due to metastatic bone cancer.[3] For pain palliation, the intended use of the device is in adult patients with metastatic bone cancer who failed or are not candidates for radiation therapy. The device was evaluated through an expedited review process. The FDA required a post-approval study with 70 patients to evaluate the effectiveness of the system under actual clinical conditions.

In July 2016, the FDA granted premarket approval (PMA) of the ExAblate® Neuro System for the treatment of essential tremor in patients who have not responded to medication (beta-blockers or anticonvulsant drugs).[4] This PMA outlined required pending studies for the device, including investigational treatment with the ExAblate Neuro in 75 patients to be evaluated at 2-, 3-, 4- and 5-years post-operative.
In December 2018, the FDA granted premarket approval (PMA) of the ExAblate Model 4000 (Neuro) for the treatment of tremor-dominant PD with medication-refractory tremor.[5] This PMA outlined required post-approval study, including a prospective, multi-center, new enrollment, long-term safety and effectiveness study in 50 patients. The study is designed to evaluate the long-term safety of the device when used to treat patients who have failed medication.

FDA product codes: NRZ, POH.

MRgFUS is also being investigated for the treatment of other tumors, including breast, prostate, brain, and desmoid tumors as well as nonspinal osteoid osteoma.

EVIDENCE SUMMARY

HIGH-INTENSITY FOCUSED ULTRASOUND (HIFU)

Prostate Cancer

Given significant uncertainty in predicting the behavior of individual localized prostate cancers, and the substantial adverse effects associated with definitive treatments, investigators have sought a therapeutic middle ground. The latter seeks to minimize morbidity associated with radical treatment in those who may not actually require surgery while reducing tumor burden to an extent that reduces the chances for rapid progression to incurability. Locally directed therapies, also termed *focal treatment* includes several ablative methods, one of which is high-intensity focused ultrasound (HIFU). The overall goal of any focal treatment is to minimize the risk of tumor progression and preserve erectile, urinary, and rectal functions by reducing damage to the neurovascular bundles, external sphincter, bladder neck, and rectum.

A systematic review (SR) of functional and oncological outcomes of focal therapy in patients with localized prostate cancer was published by Hopstaken (2021).[6] Seventy-two studies on eight different modalities to deliver focal therapy in 5,827 patients were assessed including 27 studies reporting on high-intensity focused ultrasound (HIFU). One of these studies was considered IDEAL stage 1 study; the majority (n = 23) were considered stage 2 studies. One large retrospective study (n=1,032) stated as IDEAL stage 4. There were no RCTs assessing the effectiveness of HIFU. Studies of HIFU reported a median of 95% pad-free patients and a median of 85% patients with no clinically significant cancer (CSC) in the treated area and the treatment was well-tolerated.

Ingrosso (2020) published a SR with meta-analysis on nonsurgical therapeutic strategies in patients with radiorecurrent prostate cancer.[7] The review addressed the clinical outcomes and toxicity profiles of treatments including HIFUS, brachytherapy, external beam radiotherapy, and cryotherapy. Thirteen of the 64 case-series studies were publications reporting HIFUS as the salvage treatment. Among the treatments studied, biochemical control rates were lowest for patients treated with HIFU (58%, 95% confidence interval [CI] 47–68%). The prevalence of incontinence was highest among patients treated with HIFU (28%, 95% CI 19–38%; I^2 = 89.7%). The authors concluded that good efficacy and tolerability was found after local treatment of radiorecurrent prostate cancer, but that high-quality data from prospective trials are needed to validate the long-term outcomes of these strategies for the treatment of intraprostatic recurrence after previous radiotherapy.

A 2020 SR by Khoo also evaluated 15 studies (14 case series and one comparative study) reporting outcomes after focal salvage brachytherapy (five studies), cryotherapy (seven...
studies) and HIFU (three studies) in the treatment of localized non-metastatic radiorecurrent prostate cancer.[8] Rates of biochemical disease-free survival (BDFS), metastasis, conversion to second-line therapies, and adverse events were assessed and median follow-up ranged from 10 to 56 months. At three years, BDFS ranged from 61% to 71.4% after brachytherapy, 48.1–72.4% after cryotherapy and 48% after HIFU. The authors note high heterogeneity in patient selection, individual treatment protocols and outcome reporting. Additional studies comparing the treatment modalities is recommended.

As a salvage treatment, that is, for recurrent disease following initial therapy, Crouzet (2017) reported that HIFU is associated with cancer-specific (CSS) and metastasis-free survival (MFS) of at least 80% at seven years in a study of over 400 men.[9] Morbidity rate for grade III/IVa complications was 3.6%. Smaller studies with shorter-duration of follow-up are in general agreement[10-14], however, patient selection criteria is an important predictor of treatment outcomes.[15-18]. While this is still an area of investigation, there may be limited treatment for this population of men with recurrent disease. Current practice guidelines based on research recommend HIFU in the presence of radiation recurrence for carefully selected patients (e.g., no metastases, and good candidate for local therapy).[11]

As a primary treatment, evidence for HIFU is still accumulating. Data in the published literature are available for shorter follow-up times than in salvage treatment studies (e.g., two years).[10, 19]. Treatment free survival rate has been reported as 89% at two years, with acceptable morbidity – a grade III complication rate of 13%. Larger, longer-term comparative studies are needed.

Uterine Fibroids

Tsai (2021) published a SR with meta-analysis of studies comparing the outcome of HIFU and conventional surgery (myomectomy and hysterectomy) for the treatment of uterine myomas.[20] The review included 10 studies inclusive of one RCT, six prospective studies and three retrospective studies with sample sizes ranging from 39 to 1353 (total N = 4217). HIFU improved uterine myoma symptoms compared with conventional surgery at six months (MD −1.61; 95% confidence interval [CI], −2.88 to −0.33) and 12 months (MD −2.44; 95% CI, −3.68 to −1.20) after treatment as well as quality-of-life score at six (MD 2.14; 95% CI, 0.86–3.42) and 12 (MD 2.34; 95% CI, 0.82–3.86) months after treatment compared to the surgery group. Overall, nine studies, including RCTs and non-RCTs had moderate risk of bias and one study had serious risk of bias. Three studies reported the incidence of skin burns in the HIFU group. Considerable heterogeneity was observed across the studies with respect to treatment techniques, outcomes, and timepoints of assessment of outcomes. Patients with more than three uterine myomas or larger myomas were not included in any of the studies and four studies recruited patients with only certain types of uterine myoma, which limits the generalizability of observations.

A 2017 SR published by the Agency for Healthcare Research and Quality (AHRQ) on the management of uterine fibroids included evaluation studies of HIFUS.[21] Outcomes following HIFUS were symptoms (two studies, N=53), sexual function (one study, n=50), and fibroid characteristics (five studies, N=216). The duration of follow-up studied ranged from less than one to 24 months. The conclusion of the review was that HIFU reduced fibroid size, but strength of evidence is low because of short followup and poor quality of overall study design. Evidence related to patient reported outcomes is insufficient.

Other Indications
HIFU has been investigated as a treatment for other indications, such as adenomyosis\cite{22} and thyroid disorders,\cite{23, 24} but these are generally small, noncomparative studies. Systematic reviews of HIFU in the treatment of malignant lesions of the hepatobiliary system,\cite{25} pancreas,\cite{26} and benign thyroid nodules\cite{27, 28} have concluded that although volumetric reduction or complete ablation was achieved with HIFU, additional studies are needed to determine the added benefit and long-term outcomes of the technology either alone or as a combination therapy on net health outcomes in these patient populations.

MAGNETIC RESONANCE (MR) GUIDED FOCUSED ULTRASOUND (MRGFUS)

Essential Tremors

Systematic Reviews

Miller (2021) published a meta-analysis that evaluated the efficacy of MRgFUS for treating medication-refractory essential tremor (ET) with a focus on long-term trends and the durability of the response.\cite{29} Data from patients with comorbid conditions such as Parkinson’s disease, were not included. Twenty-one studies (N=395) were included; 17 were prospective studies, three were retrospective, and one was the RCT published by Elias (2016) discussed below. Hand tremor scores decreased from a weighted mean pre-operative value of 19.2±5.0 to 7.4±5.0 after three months. Over time, the hand tremor score values gradually increased: 8.3±5.3 after 12 months and 9.1±5.4 after 36 months. The pooled standardized mean difference of hand tremor scores compared to pre-treatment values was 2.68 (95% CI, 1.94 to 3.41) at three months (five studies), 2.44 (95% CI, 1.97 to 2.91) at the 12-month time point (seven studies), and 2.18 (95% CI, 1.50 to 2.86) at the 24-month time point (three studies).

Clinical Rating Scale for Tremor scores were reported through 12 months. The pooled standardized mean difference in Clinical Rating Scale for Tremor (CRST) scores compared to pre-treatment values was 1.86 (95% CI, 1.51 to 2.12) at the three-month time point (eight studies) and 2.24 (95% CI, 1.55 to 2.94) at the 12-month time point (six studies). Six studies reported Quality of Life in Essential Tremor Questionnaire (QUEST) scores as a quality-of-life measure. The pooled pre-treatment QUEST score was 48.2±22.4, which improved to 24.9±18.2 at three months. Additionally, a single study detailed a mean 23.8±19.6 QUEST score at 36 months follow-up, an increase of 2.2 over 30 months.

A SR of 29 studies (N = 617) on MRgFUS in the treatment of ET was published by Agrawal (2021).\cite{30} Studies that reported outcomes in patients with tremors secondary to any other causes, such as drug-induced tremor, trauma, psychogenic tremor, or co-morbid Parkinson disease and dystonia were excluded. The ventral intermediate nucleus of the thalamus is the common target region. Of the 29 studies, only one (Elias 2016, below) was a RCT, the remaining were observational studies. Pre- and post- procedure changes in the CRST score, hand score, disability and quality of life scores were evaluated. A significant difference was observed in the pooled standard mean difference between pre- and post-operative total CRST score (p < 0.001), hand score (p < 0.05), and disability at 12 months (p < 0.01), although the number of included studies ranged from five to nine for the assessed outcomes. Disability, assessed by the CRST Part C at three months after MRgFUS, was reported by five studies in which the pooled standard mean difference was −2.66 with 95% CI: −3.53 to −1.79 (p = 0.08). Disability at 12 months after MRgFUS was reported by eight cohorts and the pooled standard mean difference was −4.54 (95% CI: −8.95 to −0.12, p < 0.01). More than one third of patients developed sonication related complications, amongst which head pain and dizziness were the most common. The pooled proportion of ataxia, which included gait disturbance and hand
ataxia, was 50% at the short-term was found to be as high as 31% at three years post-treatment. No hemorrhage, seizure or trajectory related complications were reported.

Giordano (2020) conducted a systematic review with meta-analysis to compare unilateral MRgFUS to unilateral and bilateral DBS for medication-refractory ET.31 Forty-five studies published between 1996 and 2019 were identified. Thirty-seven studies (n=1202) evaluated DBS and eight studies (n=477) evaluated MRgFUS. Fifteen studies had a retrospective study design, while 30 were prospectively designed. Means and standard deviations were calculated for each intervention and differences between groups were compared where appropriate. The average percentage improvement in tremor severity was significantly improved in the pooled DBS group (60.1%±9.7%) compared to the MRgFUS group (55.6%±8.2%, p<0.001). Subgroup analyses demonstrated that the improvement in tremor severity was significantly greater with the bilateral DBS (61.2%±5.2%) compared to both unilateral DBS (56.4%±9.7%) and MRgFUS; there was no significant difference between unilateral DBS and MRgFUS. MRgFUS was associated with significantly improved quality of life compared to DBS (61.9%±7.9% vs 52.5%±16.2%, p<0.001). There were 517 complications reported in the DBS group and 484 complications reported in the MRgFUS group. The most common adverse events reported with DBS were lead-related complications (11.4%) and speech disturbances (11.1%). For MRgFUS, adverse events of sensory nature (36.7%) and gait disturbances/muscle problems (34.4%) were most common. Limitations of the review included the different scales used in studies to measure tremor severity and quality of life. There was only one retrospective study that directly compared DBS and MRgFUS.

A technology assessment was published by Health Quality Ontario (2018).32 The literature search, conducted through April 2017, identified nine studies for inclusion: four single cohort studies, two retrospective chart reviews, two uncontrolled prospective studies, and an RCT. The RCT compared MRgFUS with sham treatment, the chart reviews compared MRgFUS with deep brain stimulation and radiofrequency thalamotomy. Study quality was evaluated using the GRADE system. The RCT was rated high quality, the uncontrolled comparative studies were rated very low quality, and the remaining studies were rated low quality. All studies reported tremor severity as an outcome. Pooling of results was not conducted due to heterogeneity in study designs, analyses, and outcomes across the studies. Reviewers determined that, overall, MRgFUS decreased tremor severity and improved QOL. The high-quality RCT by Elias (2016) is discussed below.

Mohammed (2018) conducted a meta-analysis evaluating the use of MRgFUS to treat medicine-refractory essential tremors.33 The literature search, conducted through August 2017 identified 9 studies (total n=160 patients) for inclusion, eight of which were also evaluated in the Ontario technology assessment. Pooled analyses found significant improvements in the mean percentage change in Clinical Rating Scale for Tremor scores (62.2%) and Quality of Life in Essential Tremor scores (46.5%). Complications included nausea, vomiting, and ataxia, which decreased during the 12-month follow-up.

Randomized Controlled Trials

A high-quality double-blind, sham-controlled randomized trial by Elias (2016)34 was identified by the systematic reviews above. Trial selection criteria included patients with moderate or severe postural or intention tremor of the hand (≥2 on the Clinical Rating Scale for Tremor) and refractory to at least two medical therapies. Patients were excluded if they had a neurodegenerative condition, unstable cardiac disease, coagulopathy, risk factors for deep-
vein thrombosis, severe depression or cognitive impairment or if they had undergone a previous brain procedure (transcranial magnetic stimulation, deep-brain stimulation, stereotactic lesioning, or electroconvulsive therapy). Patients were randomized to MRgFUS thalamotomy (n=56) or sham treatment (n=20). Outcomes were tremor severity, improvement, and QOL, measured at three months postprocedure. Patients in the treatment group were followed for an additional 12 months. Mean score for hand tremor improved significantly from baseline in the treatment group (47%) compared with the sham group (0.1%) at three months. Change in mean functional improvement score from baseline differed significantly in the MRgFUS group (62%) compared with the sham group (3%) at three months. Change in Quality of Life in Essential Tremor Questionnaire scores also differed significantly in the treatment group compared with the sham group, with the largest improvements experienced in the psychosocial domain. The improvements in hand tremor score, functional improvement, and QOL were maintained at 12 months in the MRgFUS group.

Chang (2018) published results from 67 patients who participated in the open-label extension of the RCT.[35] Because nine patients from the original trial received additional treatment during the two-year follow-up, they were excluded from the analysis. Improvements in tremor and disability scores were maintained at the two-year follow-up (tremor, 19.8±4.9 [baseline] to 8.8±5.0 [at two years]; disability, 16.4±4.5 [baseline] to 6.5±5.0 [at two years]).

Nonrandomized Studies

Several nonrandomized studies (n=11 to 15) reported results from trials implementing MRgFUS as a treatment for essential tremor and many were included in the systematic reviews discussed above.[36-39]

Parkinson’s Disease

Ge (2021) published a SR of data from RCTs comparing MRgFUS to sham procedure in the treatment of Parkinson’s Disease (PD).[40] The available data from RCTs consisted of the trials by Bond (2017) and Martinez-Fernandez (2020) below, in which the blinded phase lasted for four months three months, respectively. The MRgFUS group showed significant improvement in limb tremor on the treated side (SMD: -1.20; 95% CI: -2.06, -0.34) and the ability to perform daily activities (SMD: -0.86; 95% CI: -1.41, -0.32) compared to the sham group, however, no other treatment effects were found. Dizziness was more common in the treatment group (OR: 4.68; 95% CI: 1.20, 18.23) and symptoms such as hemiparesis, ataxia, dysmetria, speech impairment, and anxiety were found only in the treatment group in both studies. Heterogeneity in patient selection (asymmetric motor symptoms vs. tremor-dominant PD) surgical target site (dorsolateral subthalamic nucleus or ventral intermediate thalamus), and assessed outcomes, as well as small sample sizes, and limited follow-up times are limitations to the available data. Larger, longer-term trials are needed to determine the role of MRgFUS in the treatment of Parkinson’s disease.

Martinez-Fernandez (2020) published the results of a RCT of 40 patients with asymmetric PD with predominant motor features randomly assigned to focused ultrasound subthalamotomy (n=27, active treatment) or sham procedure (n=13, control).[41] The lesion site was targeted to the dorsolateral subthalamic nucleus and immediately dorsally to impinge on the pallidothalamic tract and adjusted according to clinical effects. The primary efficacy outcome was between-group difference in the change from baseline in the Movement Disorder Society- Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) motor score and the primary safety outcome was procedure-related complications, both assessed at four months post-procedure.
MDS-UPDRS III score for the more affected side decreased from 19.9 at baseline to 9.9 in the active-treatment group (least-squares mean difference, 9.8 points; 95% confidence interval [CI], 8.6 to 11.1) and from 18.7 to 17.1 in the control group (least-squares mean difference, 1.7 points; 95% CI, 0.0 to 3.5); between group difference = 8.1 (95% CI, 6.0 to 10.3; p < 0.001).

Adverse events in the active-treatment group were dyskinesia in the off-medication state in six patients and in the on-medication state in six, which persisted in three and one, respectively, at four months; weakness on the treated side in five patients, which persisted in two patients at four months; speech disturbance in 15 patients, which persisted in two patients at four months; facial weakness in three patients, which persisted in one at four months; and gait disturbance in 13 patients, which persisted in two at four months. In six patients in the active-treatment group, some of these deficits were present at 12 months.

A double-blind, sham-controlled, randomized pilot trial by Bond (2017) assessed the safety and efficacy of unilateral MRgFUS thalamotomy in patients with tremor-dominant PD. Adult patients over 30 years with idiopathic PD were included if their subtype was tremor-dominant that was deemed medication-refractory, severe, and disabling. A total of 27 patients were randomized (2:1) to MRgFUS thalamotomy (n=20) or a sham procedure (n=7) at two centers. The lesion target described in the study was the ventral intermediate thalamus. The primary efficacy outcome was change from baseline (on-medication state) to three months after post-procedure in the hand tremor subscore in the Clinical Rating Scale for Tremor (CRST). On-medication median tremor scores improved 62% (IQR, 22%-79%) from a baseline of 17 points (IQR, 10.5-27.5) following MRgFUS thalamotomy and 22% (IQR, -11% to 29%) from a baseline of 23 points (IQR, 14.0-27.0) after sham procedures (Wilcoxon p= 0.04). The most common thalamotomy-related adverse events reported for all 26 patients treated were finger paresthesia (39%), ataxia (35%), and orofacial paresthesia (27%). Paresthesia and ataxia persisted to one year in 19% and 4% of patients, respectively. Eight severe adverse events were reported in four patients, and three were thalamotomy-related (two patients with persistent mild hemiparesis and one patient had an associated persistent mild ataxia). After unblinding at three months, six of the seven patients who received sham procedures crossed over to undergo open-label treatment with MRgFUS. Limitations to the study include small sample size, comparison to a sham treatment instead of an alternative surgical procedure and lack of long-term follow-up.

Uterine Fibroids

There are several approaches that are currently available to treat symptomatic uterine fibroids: hysterectomy; abdominal myomectomy; laparoscopic and hysteroscopic myomectomy; hormone therapy; uterine artery embolization; and watchful waiting. Hysterectomy and various myomectomy procedures are considered the gold standard treatment. Comparisons to these procedures in well-designed prospective randomized clinical trials are needed to determine whether MRI-guided high-intensity focused ultrasound ablation (MRgFUS) results in the same or better health outcomes with respect to long-term treatment effects, recurrence rates and impact on future fertility and pregnancy. The focus of this review is therefore on randomized controlled trials.

Systematic Reviews

A SR with meta-analysis published by Xu (2021) assessed re-intervention rates of myomectomy, uterine artery embolization (UAE), and MRgFUS for the treatment of uterine fibroids across 31 studies (N = 42,103). Shorter-term (12-month) pooled re-intervention rate
estimations of MRgFUS, UAE, and myomectomy were 0.12 (95%CI, 0.04–0.20; I²=89.1%; p = 0.000), 0.07 (95%CI, 0.06–0.09; I²=14.2%; p = 0.324), and 0.06 (95%CI, 0.01–0.11; I²=95.1%; p = 0.000), respectively. Twenty-four-month: 0.14 (95%CI, 0.07–0.21), 0.08 (95%CI, 0.01–0.17; I²=75.7%; p = 0.016), and 0.10 (95%CI, 0.04–0.16; I²=76.0%; p = 0.002), and 36-month: 0.22 (95%CI, 0.11–0.32; I²=86.3%; p = 0.002), 0.14 (95%CI, 0.05–0.23; I²=94.7%; p = 0.000), and 0.09 (95%CI, 0.05–0.13; I²=0.0%; p = 0.508), respectively. Longest-term (60-month) estimations of the pooled re-intervention rates for MRgFUS, UAE, and myomectomy were 0.49 (95%CI, 0.21–0.77; I²=96.5%; p = 0.000), 0.21 (95%CI, 0.17–0.25; I²=84.1%; p = 0.000), and 0.19 (95%CI, 0.15–0.24; I²=53.7%; p = 0.071), respectively. No evidence of publication bias was found. In sum, estimations of the pooled 12-month, 24-month, 36-month and 60-month re-intervention rates of MRgFUS were 12%, 14%, 22% and 49%, which were the highest rates across all interventions assessed. Myomectomy had the lowest re-intervention rate.

In the 2017 AHRQ review of management of uterine fibroids summarized above, of the six studies assessing HIFU for fibroid ablation, only one fair quality pilot study (n=20) used magnetic resonance imaging (MRI) guidance.

A SR published by Gizzo (2013) identified 38 uncontrolled studies with a total of 2,500 patients (mean age 43.67 years) who underwent MRgFUS for treatment of uterine fibroids.[44] All of the published studies included women older than age 18 years with symptomatic uterine fibroids, and most excluded patients who desired future pregnancies. The authors of the systematic review did not pool study findings, noting there was no uniform consensus regarding the parameters for evaluating treatment results and considerable variety in the inclusion criteria and follow-up periods. The review confirms the continued absence of published randomized controlled trials on MRgFUS for uterine fibroids.

Clark (2014) published a review of the evidence regarding the role of MRgFUS in the treatment of fibroids and its impact upon future fertility and reproductive outcomes.[45] The authors identified 35 reports of pregnancy after MRgFUS in the available literature; however, additional studies are needed to evaluate the impact of MRgFUS upon future fertility and reproductive outcomes.

Randomized Controlled Trials

A pilot sham-controlled RCT with 20 patients was published by Jacoby (2015). The study was designed to determine the feasibility of a full scale randomized study evaluating MRgFUS for treatment of uterine fibroids.[46] The study included premenopausal women with symptomatic uterine fibroids. Women who were pregnant or had a desire for future fertility were excluded. Patients were randomized to MRgFUS with the ExAblate 2000 system (n=13) or a sham treatment in which no thermal energy was delivered (n=7). The investigators did not specify primary outcomes. The sample size of 20 was selected, not to have sufficient statistical power, but to assess the feasibility of a larger trial. All patients assigned to the MRgFUS group and six of seven in the placebo group received their allocated treatment and all treated patients completed three months of follow-up. Patients were unblinded at three months and given the sham group was given the option of active treatment.

Quality of life outcomes included the Uterine Fibroid Symptom and Health Related Quality of Life Questionnaire (UFS-QOL), which has subscales including the Symptom Severity Score (SSS) and Health Related Quality of Life (HRQL) score. Other measure was the Medical Outcomes Study (MOS), which has a Mental Component Summary (MCS) and Physical
Component Summary (PCS). At both the 4- and 12-week follow-ups, there were no statistically significant differences (at the p<0.05 level) between the MRgFUS and sham groups in the SSS, HRQL, PCS, or MCS. Change in uterine and fibroid volume, however, differed significantly between groups at 12 weeks. Uterine volume decreased by 17% in the MRgFUS group and by 3% in the sham group (p=0.04). Total fibroid volume decreased 18% in the MRgFUS group and did not change in the sham group (p=0.03). The authors concluded that women are willing to participate in a sham-controlled RCT of MRgFUS and that larger trials are feasible.

Nonrandomized Studies

The “pivotal” study which led to FDA approval of the ExAblate® 2000 device was included in the AHRQ report discussed above.[47, 48] Additional study outcomes have been subsequently reported from this same study, although interpretation of any such results is limited by the weak strength of the evidence from the original trial. For example, Taran (2009) failed to report on the original primary outcome measure and instead reported findings on a different quality of life measure.[49] The different measures were subject to a multiple comparison bias; a large number of statistical comparisons were done for secondary outcomes, and p-values were not adjusted for increased risk of chance statistical findings.

Another nonrandomized study compared two variations on the MRgFUS procedure.[50] Patients were either treated with the original protocol (33% of fibroid volume with a maximum treatment time of 120 minutes, n=96) or modified protocol (50% treatment volume, 180 minutes maximum treatment time, and a second treatment if within a 14-day period, n=64). Interpretation of these results was limited by 49% loss to follow-up; 55 patients (57%) from the original treatment protocol completed follow-up. Only 21 patients (33%) from the modified protocol group were evaluable at 12-month follow-up.

A prospective registry of pregnancies after MRgFUS was maintained by the manufacturer of the ExAblate device. A 2008 article reported that there were 54 known pregnancies a mean of eight months after treatment.[51] They included 8 pregnancies from clinical trials designed for women who did not desire pregnancy, 26 pregnancies after commercial treatment, and 20 pregnancies in 17 patients from an ongoing study of MRgFUS in women trying to conceive. Twenty-two of the 54 pregnancies (42%) resulted in deliveries, 11 were ongoing beyond 20 weeks at the time the article was written. There were 14 miscarriages (26%) and seven elective terminations (13%). Among the 22 live births, the mean birth weight of live births was 3.3 kg, and the vaginal delivery rate was 64%. The article provides initial information on the impact of MRgFUS for uterine fibroids on pregnancy; findings suggest that fertility may be maintained but that the number of cases is too small to draw definitive conclusions. Moreover, the study does not address the possible impact of MRgFUS treatment on the ability to become pregnant.

Other non-comparative, prospective and retrospective case series have been published; however, conclusions concerning health outcomes cannot be reached from these studies due to small study populations, high rate of loss to follow-up, and failure to control for bias which could impact treatment results.[52-59]

Although results from these trials contribute to the body of evidence on MRgFUS, interpretation of such results is limited by the lack of a comparative treatment group, the absence of which does not allow for the comparison of the relative treatment effect of MRgFUS.
with standard medical alternatives. In addition, there is insufficient evidence on the long-term treatment effects, recurrence rates, and impact on future fertility and pregnancy.

Section Summary

There is insufficient evidence regarding the use of MRgFUS as a treatment of uterine fibroids compared to other established procedures. Evidence from randomized controlled trials is lacking and conclusions concerning the safety and efficacy of MRgFUS cannot be drawn from nonrandomized studies due to methodological limitations such as an inability to isolate treatment effects. Questions remain regarding the durability of MRgFUS treatment or the impact of this treatment upon future fertility.

Palliative Treatment of Bone Metastases

The principal outcomes for treatment of pain are symptom relief and improved functional level. Relief of pain is a subjective outcome and can be influenced by nonspecific effects, placebo response, the natural history of the disease, and regression to the mean. Therefore, RCTs are important to control for nonspecific effects and to determine whether any treatment effect provides a significant advantage over the placebo/sham treatment or other treatments. Appropriate comparison groups depend on the condition being treated and may include placebo/sham stimulation, or medical or surgical management.

Therefore, the assessment of the safety and efficacy of MRgFUS treatment for bone metastases requires large, long-term, randomized controlled trials comparing this technique with the current standard of care for the condition being treated.

Systematic Reviews

Baal (2021) conducted a systematic review (SR) of studies published between 2007 and 2019 evaluating MRgFUS treatment for painful bone metastases.[60] A total of 33 studies were reviewed, inclusive of three noted as randomized control trials, six retrospective studies, and 24 prospective studies (N=1082). The 2014 RCT by Hurwitz discussed below appears to be the only RCT reporting clinical outcomes in a full publication; one randomized trial evaluated molecular outcomes and one RCT was published only as a conference abstract. Overall, thirteen studies were available in abstract form only. The median study sample size was 21 patients (range 5 to 140) with a median follow-up period of three months (range, 1 to 12 months). The median age of patients was 60 years (22 studies including one study on a pediatric study population, range 4.3–69). Efficacy was assessed by treatment response (complete response or partial response [≥ 2-point improvement in pain score]) and the mean difference in pain scores (10-point VAS [visual analog scale] or NRS [numeric rating scale]) from baseline to month one/month three. The pooled proportion of patients with a treatment response to MRgFUS was 79% (95% confidence interval [CI], 73% to 83%; based on 20 studies [N=636]). The pooled one-month and three-month mean difference from baseline in pain scores were -3.8 (95% CI, -4.3 to -3.3) and -4.4 (95% CI, -5.0 to -3.7), respectively (based on 20 studies [N=543]). Across 26 studies (N=799), seven high-grade adverse events were observed (one deep vein thrombosis, two cases of grade 3 skin burn, and four fractures). Approximately 11.8% of patients experienced sonication-related pain during MRgFUS treatment. The analysis was limited by a lack of a pooled comparator and heterogeneity of data with respect to populations (eg, type of primary cancer), reported data, and treatment details. Most studies had follow-up periods that were limited to three months.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
A SR with meta-analysis by Han (2021) included 15 studies (N = 362) inclusive of the 2014 RCT by Hurwitz and a matched-pair study by Lee (2017) described below and. The studies were conducted in China (n = 112), the United States (n = 112), Israel (n = 38), Italy (n = 23), France (n = 17), Netherlands (n = 15), Canada (n = 21), Japan (n = 10), South Korea (n = 5), and the United Kingdom (n = 9). Most of the included studies were single-arm clinical studies. The quality of studies was assessed by the MINORS score, a validated instrument for assessment of quality in non-randomized surgical studies ranging from 0-24. The mean MINORS score was 14.6 (range: 9–24). Lack of blinding and control groups were found in most of the studies, which contributed to risk of bias in study quality evaluations, however no evidence of publication bias was found. All but one paper included in the study used 10-point scales to assess pain and the data of the one paper using a 100-point scale was transformed into a 10-point scale for comparison purposes. Compared with baseline, pain was significantly improved at 0 to 1 week (mean reduced pain scores = 2.54 [95% CI: 1.92–3.16, p < 0.01] and at 1 to 5 weeks (3.56 [95% CI: 3.11–4.02, p < 0.01]), and at 5 to 14 weeks (4.22 [95% CI: 3.68–4.76, p < 0.01]). Pain outcomes were not assessed at all timepoints across trials and heterogeneity was high in all timeframes; nine studies (N = 268) assessed pain at 0 to 1 week ($I^2 = 98.7\%$), 10 trials (N = 291) assessed at 1 to 5 weeks ($I^2 = 98.2\%$), and nine trials (N = 289) assessed pain at 5 to 14 weeks ($I^2 = 99.7\%$). The overall complete response rate, defined as a pain score of 0 with no medication increase was 0.36 (95% CI: 0.24–0.48) and the partial response rate, defined as a drop of 2 on a 10-point scale without an increase in pain medications or a drop of 25% in pain medication without increase in the reported pain score, was 0.47 (95% CI: 0.36–0.58), and no response (no drop of score and no changes in medication use) rate was 0.23 (95% CI: 0.13–0.34). Among the 14 studies (N = 352) reporting complications, 93 (26.4%) patients had minor complications and five (1.42%) had major complications.

A SR by Gennaro (2019) evaluated multiple thermal ablation techniques for relief of bone pain due to metastatic disease, including MRgFUS, radiofrequency ablation, microwave ablation and cryoablation. The review included 11 papers and reported a mean reduction in pain scores of 26% to 91% at four weeks and 16% to 95% at 12 weeks. The authors noted that MRgFUS was associated with a higher rate of adverse events than the other modalities. All techniques achieved pain relief at one and three months in up to 91% and 95% of patients respectively. Across all modalities, the number of minor complications ranged from 0 to 59 (complication ratio 0–1.17), and the number of significant adverse effects ranged from 0 to 4 (complication ratio 0–0.04). Specific to MRgFUS, only the RCT by Hurwitz (2014, below) reported complications, which are summarized below.

Randomized Controlled Trials

Hurwitz (2014) published results from a randomized trial that evaluated the safety and efficacy of MRgFUS on palliation of pain due to bone metastases. The study was included in the SRs discussed above and included patients age 18 years and older with at least three months of life expectancy who had bone metastases that were painful, despite radiotherapy treatment, or who were unsuitable for or declined radiotherapy. Patient-rated tumor pain on a numeric rating scale (NRS) at four or higher on a 10-point scale and up to five painful lesions were inclusion criteria, however, only one lesion was treated and it had to cause at least two points greater pain on the NRS than any other lesion. In addition, targeted tumors needed to be device accessible.
Study participants were randomized in a 3:1 ratio to active (n=122) or sham (n=39) MRgFUS treatment. Ten patients in the treatment group and four in the sham group did not receive the allocated treatment. An additional 26 patients in the treatment group and 23 in the sham group did not complete the three-month follow-up. A much larger proportion of the placebo group dropped out; 17 (49%) of 35 who were treated decided to have rescue MRgFUS treatment after lack of response to placebo. A modified intention-to-treat analysis was used that included patients who had at least one MRgFUS or placebo sonication. Missing values were imputed using the last observation carried forward method.

The primary efficacy end point, assessed at three months, was a composite outcome comprised of change in baseline in worst NRS score and morphine equivalent daily dose (MEDD) intake. Patients were considered responders if their worst NRS score decreased by at least two points and if their MEDD intake did not increase more than 25% from baseline to three months. NRS score and MEDD intake separately were reported as secondary outcomes.

Seventy-two (64%) of 112 patients in the MRgFUS group and seven (20%) of 35 patients in the control group were considered responders, as previously defined. The difference between groups was statistically significant (p=0.01), favoring active treatment. When the two measures comprising the primary end point were analyzed separately, there was a statistically significant difference between groups in change in worst NRS score and a nonsignificant difference in change from baseline in pain medication. The NRS score decreased by a mean (SD) of 3.6 (3.1) points in the MRgFUS group and by a mean of 0.7 (2.4) in the placebo group (p<0.01). Change in MEDD was only reported in a figure. Fifty-one (46%) patients in the MRgFUS group and one (3%) in the placebo group experienced at least one adverse event (AE). Most AEs were transient, and the most common was sonication pain, experienced by 36 (32%) patients in the MRgFUS group. In 17 (15%) patients, sonication pain was severe; three patients did not complete treatment due to pain. The most clinically significant AEs that lasted more than a week were third-degree skin burns in one patient (associated with noncompliance with the treatment protocol) and fracture in two patients (one of which was outside the treatment location). Potential limitations of the trial included a nonconventional primary outcome measure and the small initial size of the sham group. Moreover, a large number of sham patients (66%) did not complete the three-month follow-up; the authors did state that this low completion rate was due to lack of response to placebo treatment. Additional randomized studies are required to isolate the treatment effect of MRgFUS upon pain and better characterize the benefit and length of symptom relief with MRgFUS in patients with bone metastases.

Nonrandomized Studies

Lee (2017) published the results of a matched-pair study of MRgFUS or conventional radiation therapy (RT) as a treatment for patients with painful bone metastasis.[64] A total of 63 patients (21 MRgFUS and 42 RT-treated) were matched 1:2 by age, sex, primary cancer, pretreatment pain score, and treated site. All patients were followed for at least three months post-treatment. Mean numerical rating scale (NRS) for the MRgFUS-treated group was significantly lower at one week post-treatment (2.5 versus 4.8, p <0.0001), two weeks (2.1 versus 3.6, p < 0.05) and three months (1.0 versus 2.3, p < 0.05) post-treatment compared to the RT-treated group, however, no significant difference was found at one or two month timepoints. Mean morphine-equivalent daily dose change from baseline did not differ between groups. At one week post-treatment, 71% of the MRgFUS and 26% of the RT-treated patients had experienced a treatment response (successful pain palliation), a statistically significant difference (p<0.001). No statistically significant group difference in response rate were found at subsequent
timepoints. No adverse events above grade 2 were observed for either group. This study was limited by small sample size and short-term follow-up.

Examples of nonrandomized trials include four small (n=11 to 31), nonrandomized prospective studies evaluating MRgFUS for the treatment of bone metastases, the majority of which are industry-sponsored.65-68 Although none reported any treatment-related adverse effects, and all reported improvements in pain and two reported decreases in analgesic use, independent verification of treatment effects with larger groups of patients is needed. At present, results from these trials are not sufficient to reach conclusions regarding the impact of MRgFUS in palliation of pain related to bone metastases due to methodological limitations such as lack of an appropriate control group for comparison.

In addition, there have been several small case series published on the use of MRgFUS for treatment of bone metastases. However, these series did not compare the safety and efficacy of this treatment to other treatment options.

Other Tumors

MRgFUS is also being studied for several other clinical applications, including the treatment of benign and malignant tumors. As with MRgFUS treatment for uterine fibroids and bone metastases, randomized controlled trials comparing this technique with the current standard of care for the condition being treated are required in order to assess the efficacy of this treatment approach.

Breast Tumors

Nonrandomized Studies

No controlled studies evaluating MRgFUS for treating breast cancer have been identified in the published literature. Evidence is limited to small case series, examples of which include six feasibility studies that describe preliminary results only.69-74 Fibroadenoma, ductal carcinomas, adenocarcinomas, and lobular carcinomas were treated. The adverse effects profile includes a few second-degree skin burns, and protocols maintain a roughly 1cm distance between the tumor margin and the skin or rib cage. Residual tumor in the treated area appears to be a problem, with authors recommending treatment of the entire tumor plus 1 cm of surrounding tissue, as is done in lumpectomy. No long-term outcome studies are available. As with uterine fibroids, interpretation of these results is limited by the lack of a comparative treatment group.

Brain Cancer

Nonrandomized Studies

Evidence on MRgFUS in brain cancer is similarly restricted to case series, which include a report of initial findings in three patients.75 The authors reported that it was possible to focus an ultrasound beam into the brain transcranially, and they believe that thermal ablation without overheating the brain is possible; however, substantial technical barriers to using MRgFUS for treating brain tumors remain. Larger and longer comparative trials are needed to establish the use of MRgFUS for treating this indication.

Prostate Cancer

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Nonrandomized Studies

Ghai (2021) conducted a phase II trial to evaluate the safety and efficacy of transrectal MRgFUS treatment for intermediate-risk prostate cancer in 44 men, 36 with grade group (GG) 2 and eight with GG 3 disease. The primary efficacy endpoint was the presence of residual disease at the treatment site at five months post-procedure. The International Prostate Symptom Score (IPSS) and International Index of Erectile Function-15 (IIEF-15) score were assessed at six weeks and five months, and multiparametric MRI and targeted biopsy of the treated area was obtained at five months post-procedure. Ninety-three percent of patients (95% CI: 82, 98) were free of clinically significant prostate cancer, defined as (≥6 mm GG 1 disease or any volume ≥GG 2 disease) at the five-month biopsy. Median IIEF-15 and IPSS scores were not significantly different at baseline compared to five months (IIEF-15 score at baseline, 61 [IQR, 34–67] and at five months, 53 [IQR, 24–65.5], p = 0.18; IPSS score at baseline, 3.5 [IQR, 1.8–7] and at five months, 6 [IQR, 2–7.3], p = 0.43). Seven percent (95% CI, 2.4 to 18.2) had residual disease at five months after ablation. No major treatment-related adverse events were reported, however, 16 patients reported dysuria; five patients required antispasmodics for bladder spasm in the first week; two patients had urinary retention; and one patient had severe pelvic pain. Study limitations include the short follow-up time to assess efficacy; however, a biopsy at a 24-month follow-up is planned, which will address persistence and recurrent prostate cancer.

Small (n=1 to 5) feasibility studies regarding the use of MRgFUS in patients with biopsy-proven prostate cancer have demonstrated that the procedure may be performed in this patient population. At least one study was conducted using the ExAblate® 2100 System, which is not FDA approved for this indication. Larger and longer comparative trials are needed to establish the use of MRgFUS for treating prostate cancer.

Other tumors

Several studies have investigated the use of MRgFUS for nonspinal osteoid osteoma. Arrigoni (2021) conducted a propensity score-matched retrospective study to compare treatment with radiofrequency ablation and MRgFUS. A total of 116 patients were treated (61 with radiofrequency ablation and 55 with MRgFUS). After propensity score matching, both radiofrequency ablation and MRgFUS treatment resulted in a significant reduction in pain from baseline as measured by VAS (8.9 to 0.02 and 8.8 to 0.54, respectively). There was no statistically significant difference between the mean values of both groups after the treatment. Four cases of relapse (one with radiofrequency ablation and three with MRgFUS) were observed. Arrigoni (2019) prospectively enrolled children into a study to evaluate MRgFUS treatment for osteoid osteoma. The primary clinical endpoint was defined as the absence of pain (evaluated on the Faces Pain Scale-Revised) at the first follow-up study one week after the procedure. A total of 33 children were included in the study and treated with MRgFUS. The mean pain score at baseline was 7.6; the score at week one after the procedure significantly improved in all children (mean score, 0.21). Complete absence of pain was reported in 32 of 33 (97%; 95% CI, 84 to 100) of patients at week one. At the 24-month follow-up visit, imaging results confirmed the complete disappearance of bone edema around all lesions. Geiger (2014) prospectively enrolled patients into a study to evaluate MRgFUS treatment for osteoid osteoma. Clinical success was evaluated based on pain reduction (evaluated on a VAS) through 12 months. At the 12-month follow-up, complete clinical success was achieved in 90% of the 29 patients enrolled (mean VAS, 0±0 points); partial success was achieved in the remaining patients (mean VAS, 5±0 points).
PRACTICE GUIDELINE SUMMARY

AMERICAN CONGRESS OF OBSTETRICS AND GYNECOLOGISTS

A practice bulletin from American Congress of Obstetrics and Gynecologists (ACOG) considered MRgFUS as an alternative to hysterectomy as a treatment of uterine fibroids, but did not specifically recommend its use, stating:[83]

Whereas short-term studies show safety and efficacy, long-term studies are needed to discern whether the minimally invasive advantage of MRI-guided focused ultrasound surgery will lead to durable results beyond 24 months. Protocols for treating larger leiomyoma volumes are being studied.

AMERICAN COLLEGE OF RADIOLOGY

The 2017 American College of Radiology (ACR) Appropriateness Criteria guidelines regarding the treatment of uterine fibroids mention the use of MRgFUS indicating that, “(t)o date, there is little long-term information on the efficacy of [MRgFUS] technology.”[84] However, the MRgFUS approach is not recommended as treatment for fibroids.

AMERICAN UROLOGICAL ASSOCIATION

In 2017, the American Urological Association (AUA) published a joint guideline (with the American Society for Radiation Oncology [ASTRO], and the Society of Urologic Oncology [SUO] regarding clinically localized prostate cancer.[85] Nearly all recommendations regarding HIFU as a treatment for prostate cancer were Expert Opinion, that is, the committee did not have sufficient evidence to grade the strength of the evidence. Additionally, the following recommendation was made:

Clinicians should advise localized prostate cancer patients considering HIFU that tumor location may influence oncologic outcome. Limiting apical treatment to minimize morbidity increases the risk of cancer persistence. (Moderate Recommendation; Evidence Level: Grade C)

Grade C (RCTs with serious deficiencies of procedure or generalizability or extremely small sample sizes or observational studies that are inconsistent, have small sample sizes, or have other problems that potentially confound interpretation of data).

NATIONAL COMPREHENSIVE CANCER NETWORK

The National Comprehensive Cancer Network (NCCN) guideline for prostate cancer (version 1.2022) include high-intensity focused ultrasound ablation as a recommended treatment option in the presence of radiation recurrence in a manner that is consistent with the policy criteria. (Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate).[11]

The NCCN Guideline on adult cancer pain (version 2.2021) does not include ultrasound ablation specifically in pain management algorithms, however, the guideline states:[86]

Image-guided ablation of bone lesions has proven successful in pain management, especially for those failing to achieve adequate analgesia without intolerable effects.
Several small studies also have demonstrated the palliative effects of HIFU treatment of bone lesions.

SOCIETY OF OBSTETRICIANS AND GYNAECOLOGISTS OF CANADA

In 2015, the Society of Obstetricians and Gynaecologists of Canada published a clinical practice guideline entitled “Management of Uterine Fibroids in Women with Otherwise Unexplained Fertility.”[87] The guideline states that there are no studies comparing MRgFUS with myomectomy or in women with fibroids who have infertility as their primary complaint, and thus additional data are needed before the treatment is offered to this patient population.

SUMMARY

HIGH-INTENSITY FOCUSED ULTRASOUND (HIFU) ABLATION

It appears that high-intensity focused ultrasound (HIFU) ablation may improve overall health outcomes for select men with localized recurrent prostate cancer. Clinical guidelines based on research recommend HIFU for specific patient populations. Therefore, high-intensity focused ultrasound may be considered medically necessary to treat localized prostate cancer when policy criteria are met. Due to a lack of research and clinical practice guidelines, HIFU is considered investigational for all other indications that do not meet the policy criteria.

MAGNETIC RESONANCE (MR) GUIDED FOCUSED ULTRASOUND (MRgFUS)

Movement Disorders

Medicine-Refractory Essential Tremor

It appears that Magnetic Resonance-guided focused ultrasound (MRgFUS) may help those with medicine-refractory essential tremor. At least one high quality randomized study and several large systematic reviews of MRgFUS use specifically in the treatment of essential tremor have demonstrated improvement in symptoms with MRgFUS treatment and improved overall quality of life. Therefore, MRgFUS may be considered medically necessary for medicine-refractory essential tremors when policy criteria are met.

Parkinson’s Disease

There is not enough research to know if or how well Magnetic Resonance-guided focused ultrasound (MRgFUS) works to treat people with Parkinson’s Disease. There is evidence that the use of MRgFUS in the treatment of Parkinson’s Disease is associated with high rates of adverse events. No evidence-based clinical practice guidelines recommend MRgFUS for the treatment of Parkinson’s Disease. Therefore, treatment of Parkinson’s Disease with MRgFUS is considered investigational.

Palliative Treatment of Bone Metastases

It appears that Magnetic Resonance-guided focused ultrasound (MRgFUS) may provide effective palliation of pain due to bone metastases in adults. Evidence-based clinical practice guidelines note the success of image-guided ablation in pain management, especially for those failing to achieve adequate analgesia without intolerable effects Therefore, pain...
palliation of bone metastases with MRgFUS may be considered medically necessary when policy criteria are met.

Uterine Fibroids

The evidence for MRgFUS in individuals who have uterine fibroids includes a pilot RCT, nonrandomized comparative studies, and case series. The pilot RCT (N=20 patients) reported some health outcomes, but its primary purpose was to determine the feasibility of a larger trial. It did not find statistically significant differences in quality of life outcomes between active and sham treatment groups, but did find lower fibroid volumes after active treatment. The pivotal Food and Drug Administration trial was not randomized, the clinical significance of the primary outcome was unclear, and there were no follow-up data beyond one year. The limited nature of this evidence-base raises concerns about the reliability and validity of reported findings. In particular, the durability of any early treatment effect with MRgFUS given the potential for regrowth of treated fibroids, is not clearly understood. Therefore, treatment of uterine fibroids with MRgFUS is considered investigational.

Other Tumors and Other Indications

(MRI)-guided focused ultrasound (MRgFUS) is being investigated for use in several applications that are not currently approved by the FDA. There are some preliminary reports of safety and efficacy in small numbers of patients; however, this evidence is insufficient, and the impact of MRgFUS on health outcomes remains unknown. Due to the lack of evidence from well-designed randomized controlled trials, the use of MRgFUS for the treatment of any condition is considered investigational when policy criteria are not met.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

23. BHH Lang, YC Woo, KW Chiu. Two sequential applications of high-intensity focused ultrasound (HIFU) ablation for large benign thyroid nodules. *European radiology.* 2019;29(7):3626-34. PMID: 30778718

38. HH Jung, WS Chang, I Rachmilevitch, T Tlusty, E Zadicario, JW Chang. Different magnetic resonance imaging patterns after transcranial magnetic resonance-guided

61. X Han, R Huang, T Meng, H Yin, D Song. The Roles of Magnetic Resonance-Guided Focused Ultrasound in Pain Relief in Patients With Bone Metastases: A Systemic Review and Meta-Analysis. *Front Oncol.* 2021;11:617295. PMID: 34458131

83. ACOG practice bulletin. Alternatives to hysterectomy in the management of leiomyomas. *Obstetrics and gynecology.* 2008;112(2 Pt 1):387-400. PMID: 18669742

89. BlueCross BlueShield Association Medical Policy Reference Manual "Focal Treatments for Prostate Cancer." Policy No. 8.01.61

CODES

NOTE: There are no specific CPT codes for the use of magnetic resonance–guided high intensity ultrasound ablation in certain cancers. In these situations an unlisted code would be used based on the anatomic location of the metastasis being treated (eg, 23929 for the clavicle) or perhaps one of the radiation oncology unlisted codes (eg, 77299 or 77499).

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0071T</td>
<td>Focused ultrasound ablation of uterine leiomyomata, including MR guidance; total leiomyomata volume of less than 200 cc of tissue</td>
</tr>
<tr>
<td></td>
<td>0072T</td>
<td>;total leiomyomata volume greater or equal to 200 cc of tissue</td>
</tr>
<tr>
<td></td>
<td>0398T</td>
<td>Magnetic resonance image guided high intensity focused ultrasound (MRgFUS), stereotactic ablation lesion, intracranial for movement disorder including stereotactic navigation and frame placement when performed</td>
</tr>
<tr>
<td></td>
<td>23929</td>
<td>Unlisted procedure, shoulder</td>
</tr>
<tr>
<td></td>
<td>55880</td>
<td>Ablation of malignant prostate tissue, transrectal, with high intensity-focused ultrasound (HIFU), including ultrasound guidance</td>
</tr>
<tr>
<td></td>
<td>58578</td>
<td>Unlisted laparoscopy procedure, uterus</td>
</tr>
<tr>
<td></td>
<td>58579</td>
<td>Unlisted hysteroscopy procedure, uterus</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C9734</td>
<td>Focused ultrasound ablation/therapeutic intervention, other than uterine leiomyomata, with magnetic resonance (MR) guidance</td>
</tr>
</tbody>
</table>

Date of Origin: October 2004
IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Embolization involves occlusion of blood flow through the ovarian, internal iliac, and gonadal veins with coils, foam, or a chemical sclerosant as a treatment of pelvic congestion syndrome or varicoceles.

MEDICAL POLICY CRITERIA

Note: This policy does not address surgical ligation of the spermatic vein(s) or uterine artery embolization.

Embolization, ablation, and sclerotherapy of ovarian veins, internal iliac veins, or gonadal veins is considered investigational for the treatment of pelvic congestion syndrome and varicoceles.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES

1. Varicose Vein Treatment, Surgery, Policy No. 104
BACKGROUND

Enlarged ovarian and internal iliac veins can lead to pelvic congestion syndrome in women, and enlarged gonadal and internal iliac veins can lead to a varicoceles in men. Each are discussed separately below.

PELVIC CONGESTION SYNDROME

Pelvic congestion syndrome (PCS), also called pelvic venous incompetence, is a rare condition characterized by chronic pelvic pain. Although this condition is primarily found in women it can also be found in men. PCS is often aggravated by standing for long periods of time, and often manifests during or after pregnancy. The syndrome is thought to be associated with dilated and refluxing incompetent pelvic veins, similar to what happens in varicose veins of the legs. However, the cause of PCS is unclear. Furthermore, there are no definitive diagnostic criteria for PCS. Instead the diagnosis is generally based on a combination of symptoms, tenderness on physical exam, and documentation of pelvic vein dilation or incompetence after excluding all other causes for the nonspecific findings. Although imaging may show vein dilation or incompetence, these findings are common nonspecific findings and therefore no diagnostic.

There is no standard treatment approach for PCS, and the optimum treatment is unknown. Instead, therapy is individualized and based on symptoms. Medical therapy is generally the first line of treatment, as it is low risk and non-invasive. Other methods, such as embolization has been proposed as an alternative to surgical treatment for patients who fail medical therapy with analgesics. Embolization therapy involves the occlusion of blood flow through the ovarian and internal iliac veins with coils, glue, or chemical sclerosants. The internal iliac veins may be treated at the same time or a later date to prevent recurrence.

VARICOCELES

A varicocele is the dilation of the pampiniform plexus of the gonadal veins. Varicocele’s are present in 15 to 20% of post-pubertal males, and generally get larger over time. Most varicoceles occur in the left hemiscrotum because the left gonadal vein is one of the longest veins in the body and it enters the left renal vein at a perpendicular angle increasing pressure which can dilate the veins and cause incompetence of the valves, similar to what happens in varicose veins of the legs. Although varicoceles on the left are more common, bilateral varicoceles can occur; however, this could be caused by a possible underlying pathology warranting more investigation. Symptoms of a varicocele include dull, aching, left scrotal pain, which is often aggravated by standing for long periods of time, testicular atrophy, and decreased fertility. Although there are no clear guidelines regarding the established treatment for varicoceles, surgical ligation is the preferred first-line treatment.

EVIDENCE SUMMARY

The primary beneficial outcomes of interest for treatments of pelvic pain in both men and woman are symptom reduction and improvement in the ability to function. These are subjective outcomes that are typically associated with a placebo effect. Therefore, data from adequately powered, randomized controlled trials (RCTs) with sufficient long-term follow-up are required to control for the placebo effect, determine its magnitude, and to determine whether any treatment effect from provides a significant advantage over placebo or other treatment options.
TREATMENT FOR PELVIC CONGESTION SYNDROME

Health Technology Assessments

In 2016, Champaneria published a health technology assessment from the National Institute for Health Research that examined the diagnosis and treatment of pelvic vein incompetence and chronic pelvic pain in women.[1] Forty studies were included in the review; six association studies, ten studies involving ultrasound, two studies involving magnetic resonance venography, 21 case series, and one poor-quality randomized trial of embolization. The authors found that there were no consistent diagnostic criteria for pelvic congestion syndrome (PCS). Although the studies have showed associations between chronic pelvic pain (CPP) and pelvic vein incompetence (PVI), the prevalence of PVI ranged widely. The authors identified that transvaginal ultrasound with doppler and magnetic resonance venography are both useful screening methods; however, there is limited data on the accuracy of these methods for PCS. Finally, although the research showed embolization provides symptomatic relief in the majority of women, these studies were small case series. The authors concluded that more research is needed to determine what the diagnostic criteria for PCS are, and the efficacy of embolization as a treatment for PCS.

Systematic Reviews

A 2016 systematic review by Mahmoud identified 20 case series (total N=1081 patients) who underwent vein embolization for pelvic congestion syndrome.[2] The authors did not require any particular diagnostic criteria for pelvic congestion syndrome. The length of follow-up in the studies ranged from one month to six years. Seventeen studies (n=648 patients) reported the proportion of patients who reported symptom relief. Overall, 571 (88.1%) patients reported short-term symptom relief and 77 (11.9%) reported little or no relief. Seventeen studies (n=721 patients) reported symptom relief at 12 months. A total of 88.6% had symptom improvement and 13.4% reported little or no relief. Only one study used a comparison group, but patients in it received conservative treatment because they were ineligible for vein embolization therapy, so outcomes after the two interventions cannot be compared.

A systematic review by Daniels (2016) assessed the effectiveness of sclerotherapy or embolization for the treatment of chronic pelvic pain.[3] The review included 21 case series and one poor-quality randomized trial. Due to the overall low quality and heterogeneity of the studies, a meta-analysis was not performed. However, the authors reported that approximately 75% of women who underwent embolization experienced early pain relief. Adverse events noted included, transient pain following foam embolization and a small (<2%) risk of coil migration.

In 2015 Hansrani published a systematic review that evaluated the effectiveness of transvenous occlusion as a treatment of chronic pelvic pain.[4] Thirteen studies were included comprising 866 women. The authors noted that all 13 studies were of poor methodological quality, and most studies did not use objective outcome measures or have consistent follow-up of outcomes. Studies on embolization for treatment of PCS were rated as poor due to lack of randomization and control groups, unclear patient selection criteria, and heterogeneous outcome measures that did not permit between-study comparison or estimates of overall treatment effects. There was one RCT included in the review, in which embolization resulted in significantly better pain reduction than hysterectomy, but the study also had significant limitations, including but not limited to, the randomization protocol was not described, and the hysterectomy patients (bilateral compared to unilateral salpingo-oophorectomy) were not

SUR147 | 3
blinded to their treatment allocation, small sample size limits the ability to rule out the role of chance as an explanation of study findings, and a discrepancy between reported outcomes in text and data tables. The authors recommended that more high quality studies are needed that compare embolization, with other treatments, including surgical treatments, hormonal therapy, and other noninvasive treatments.

Randomized Controlled Trials

A randomized, prospective trial by Guirola (2018) compared the safety and efficacy of embolization with vascular plugs (VP) or fibered platinum coils (FPC) in women with pelvic congestion syndrome. Patients were enrolled (N=100) and randomly assigned to each treatment group via block randomization (N=50). Diagnosis of pelvic congestion syndrome was accomplished through a symptom screening questionnaire followed by an ultrasound study. Patients with 3 or more positive symptom responses advanced to the ultrasound screening, and patients with pelvic veins >6 mm in diameter and/or venous reflux or dilated midline communicating veins were advanced to randomization. Follow-up screening occurred at 1, 3, 6, and 12 months. The primary outcome was clinical success assessed subjectively through patient responses regarding relief of symptoms and pain scores assessed with the visual analog scale. Clinical success was achieved in 89.7% of the FPC group and 90.6% of the VP group. Improvement in visual analog scale pain scores at the end of 12 months was 90.2% overall and improvement was seen in 95.9% of the FPC group and 96% of the VP group. A total of 11 (22%) complications were seen in the FPC group and 5 (10%) in the VP group. Minor adverse events included access site hematoma and ovarian vein extravasation. Device migrations were considered major complications. A major limitation in the study is the significant difference in age and pre-treatment visual analog scale pain score between groups, both of which were higher in the VP group despite randomization.

Nonrandomized Studies

The remainder of the published literature regarding the clinical outcomes of embolization therapy consists of nonrandomized studies, case series, and retrospective reviews. Collectively, conclusions concerning safety and effectiveness cannot be reached from these studies due to significant limitations in the data, including but not limited to:

- Lack of established diagnostic criteria for pelvic congestion syndrome. Without consistent criteria for patient selection it is unknown which patients are most likely to benefit, or not benefit, from treatment. Furthermore, it is unknown how results from the various case series can be applied to the overall population of patients with this condition.
- Lack of randomization and comparison groups. Failure to randomize patients to different treatment groups may introduce bias on the part of both the study participant and researchers in favor of the new technology. As noted above, for pain treatments, a comparator (preferably sham treatment) is necessary, in order to guard against this bias and to distinguish treatment from placebo effects.
- Retrospective design and failure to control for other treatments. Retrospective study designs do not allow for control of co-treatments or confounding factors that may influence results. This design may also introduce bias to interpretation of results. Control for additional factors, such as other medical therapies, is necessary to isolate treatment response to embolization therapy.
- Failure to define relevant study endpoints. Bias may also be introduced by failure to define study endpoints and treatment success prior to commencement of the study.
Adverse Effects

The following adverse effects associated with embolization of the uterine and internal iliac veins, though uncommon, have been reported in the literature.[6, 14]

- Embolization of coils to the pulmonary circulation
- Embolization of coils to the renal circulation
- Accidental embolization of glue fragments
- Perforations of the ovarian vein with extravasation of contrast
- Transient cardiac arrhythmia

Treatment of Varicoceles

Systematic Reviews

Belczak (2021) published a systematic review regarding semen parameter improvement after varicocele coil embolization.[29] There were six retrospective studies and two observational studies included involving 701 patients where semen concentration and motility were the primary outcomes. The authors concluded that semen concentration was improved significantly in all five studies using that outcome and semen motility was significantly improved in seven studies. This review is limited by a small number of studies and no randomized or comparative studies being included.

In 2012 Kroese published results from a systematic review and meta-analysis that examined the effect of treatment, surgery or embolization, for varicoceles in subfertile men.[30] Ten studies were included in the review, which comprised 894 men. The authors concluded that there is evidence to suggest treatment improves a couple’s chance of pregnancy; however, findings are inconclusive. Furthermore, the available evidence is of low quality and limited to men from couples with subfertility problems. Therefore further research is needed to determine the efficacy of treatment, surgery or embolization, for the treatment of varicoceles.

Randomized-Controlled Trials

No randomized controlled trials have been published comparing embolization therapy for the treatment of varicoceles to an alternative or sham/placebo treatment. Randomized controlled trials are especially needed in situations such as this where the primary symptom is pain, a subjective outcome for which a placebo response to treatment is likely.

Nonrandomized studies

The remainder of the published literature regarding the clinical outcomes of embolization therapy consists of case series and retrospective reviews.[31-48] Collectively, conclusions concerning safety and effectiveness cannot be reached from these studies due to significant limitations in the data.

PRACTICE GUIDELINE SUMMARY

PELVIC CONGESTION SYNDROME

American Congress of Obstetricians and Gynecologists

No relevant policy positions on embolization for treating pelvic congestion syndrome were...
identified on the American Congress of Obstetricians and Gynecologists (ACOG) website.\cite{49}

Society for Vascular Surgery (SVS) and the American Venous Forum

The 2011 Society for Vascular Surgery (SVS) and the American Venous Forum (AVF) guidelines for the care of patients with varicose veins and associated chronic venous diseases provided a Grade 2B recommendation in favor of coil embolization, plugs, or transcatheter sclerotherapy for treatment of PCS. A Grade 2B recommendation is defined as a weak recommendation based on medium quality evidence.\cite{60}

SUMMARY

There is not enough research to show that embolization, ablation, or sclerotherapy improves long term health outcomes for people with pelvic congestion syndrome or varicoceles, compared to other forms of therapy. Therefore, embolization, ablation, or sclerotherapy of ovarian veins, internal iliac veins, or gonadal veins are considered investigational for the treatment of pelvic congestion syndrome or varicoceles.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

25. A Hocquelet, Y Le Bras, E Balian, et al. Evaluation of the efficacy of endovascular...

29. SQ Belczak, V Stefaniak, LG Góes, F Coelho, WJB de Araújo, NAC da Silva. Improvement of semen parameters after coil embolization of varicoceles: a systematic review. *J Vasc Bras.* 2021;20:e20200137. PMID: 34093687

CODES

NOTE: There are no specific codes for ovarian and internal iliac vein embolization; however, the following codes may be used:

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>36012</td>
<td>Selective catheter placement, venous system: second order or more selective, branch (eg, left adrenal vein, petrosal sinus)</td>
</tr>
<tr>
<td></td>
<td>37241</td>
<td>Vascular embolization or occlusion, inclusive of all radiological supervision and interpretation, intraprocedural roadmapping, and imaging guidance necessary to complete the intervention; venous, other than hemorrhage (eg, congenital or acquired venous malformations, venous and capillary hemangiomas, varices, varicoceles)</td>
</tr>
<tr>
<td></td>
<td>75894</td>
<td>Transcatheter therapy, embolization, any method, radiological supervision and interpretation</td>
</tr>
</tbody>
</table>

HCPCS None

Date of Origin: October 2005
Balloon Ostial Dilation for Treatment of Sinusitis

Effective: November 1, 2021

Next Review: August 2022
Last Review: September 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Balloon ostial dilation is proposed as a less invasive alternative to traditional endoscopic sinus surgery. In this procedure, a balloon catheter is placed in the opening of the sinus and inflated to widen the opening, allowing for better drainage of secretions.

MEDICAL POLICY CRITERIA

I. The use of a catheter-based inflatable device for the treatment of chronic sinusitis may be considered medically necessary when all of the following Criteria are met:

 A. Patient has chronic sinusitis that interferes with lifestyle and has persisted for at least 12 weeks; and

 B. Documentation of abnormal findings from diagnostic evaluation including at least one of the following:

 1. CT findings suggestive of obstruction or infection of the sinus including but not limited to air fluid levels, air bubbles, significant mucosal thickening of greater than 3 mm, pansinusitis, or diffuse opacification documented by a formal CT scan report from an independent radiologist; or

 2. Nasal endoscopy findings suggestive of significant disease; and
C. Inadequate response to maximal medical therapy that included all of the following:
 1. Saline nasal irrigations or saline nasal spray; and
 2. Two or more antibiotic courses or one prolonged course of at least 21 days; and
 3. A trial of nasal steroids.

II. The use of a catheter-based inflatable device for the treatment of chronic sinusitis is considered investigative when Criterion I. is not met.

III. The use of a catheter-based inflatable device for the treatment of recurrent acute rhinosinusitis may be considered medically necessary when all of the following Criteria are met:
 A. Four or more documented and treated episodes of acute rhinosinusitis over a period of 12 months; and
 B. CT findings performed during the fourth episode should demonstrate obstruction or infection of the sinus including but not limited to air fluid levels, air bubbles, significant mucosal thickening of greater than 3 mm, pansinusitis, or diffuse opacification documented by a formal CT scan report from an independent radiologist.

IV. The use of a catheter-based inflatable device for the treatment of recurrent acute rhinosinusitis is considered investigative when Criterion III. is not met.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and physical/chart notes
- Indication for the requested service
- If indication is chronic rhinosinusitis:
 - Documentation of chronic rhinosinusitis including length of time present and interference with lifestyle;
 - CT and/or nasal endoscopy report;
 - Failure of maximum medical therapy including saline nasal irrigations/nasal spray, two or more antibiotic courses or one minimum 21 day course, and nasal steroid trial.
- If indication is recurrent acute rhinosinusitis:
 - Documentation of four or more documented and treated episodes of acute rhinosinusitis over 12 months;
 - CT report.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
BACKGROUND

Balloon ostial dilation (BOD, also known as balloon sinuplasty, balloon catheter dilation, or sinus ostial dilation) for the treatment of sinusitis involves placement and inflation of a balloon catheter within an obstructed frontal, sphenoid, or maxillary sinus ostium. The balloon catheter is placed using transnasal endoscopy, or a transantral approach may be used for direct access to the maxillary sinus. Inflation of the balloon is intended to enlarge the sinus ostium by compressing mucosa and displacing local bony structures. This technique has been used as an alternative or adjunct to functional endoscopic sinus surgery (FESS) which involves surgical excision of the mucosa and bone. When performed in combination with FESS, it is sometimes referred to as a hybrid procedure.

REGULATORY STATUS

In March 2008, the “Relieva Sinus Balloon Catheter” (Acclarent, Menlo Park, CA) device was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. The FDA determined that this device was substantially equivalent to existing devices for use in dilating the sinus ostia and paranasal spaces in adults and maxillary sinus spaces in children. Subsequent devices developed by Acclarent have also been granted 510(k) approval. These include the Relieva Spin Sinus Dilation System®, approved in August 2011, and the Relieva Seeker Balloon Sinuplasty System®, approved in November 2012.

In June 2008, the FinESS™ Sinus Treatment (Entellus Medical, Inc, Maple Grove, MN) device was cleared for marketing by the FDA through the 510(k) process. The indication noted is to access and treat the maxillary ostia/ethmoid infundibulum in adults using a transantral approach. The bony sinus outflow tracts are remodeled by balloon displacement of adjacent bone and paranasal sinus structures. Two other balloon sinuplasty devices by Entellus Medical, Inc. also received 510(k) approval in August, 2012. These are the ENTrigue® Sinus Dilation System, and the XprESS® Multi-Sinus Dilation Tool.

In 2013, a sinus dilation system (Medtronic Xomed, Jacksonville, FL), later named the NuVent™ EM Balloon Sinus Dilation System, was cleared for marketing by the FDA through the 510(k) process for use in conjunction with a Medtronic computer-assisted surgery system when surgical navigation or image-guided surgery may be necessary to locate and move tissue, bone, or cartilaginous tissue surrounding the drainage pathways of the frontal, maxillary, or sphenoid sinuses.

Also in 2013, a sinus dilation system (ArthroCare, San Antonio, TX), later named the Ventera™ Sinus Dilation System, was cleared for marketing through the 510(k) process to access and treat the frontal recesses, sphenoid sinus ostia, and maxillary ostia/ethmoid infundibula in adults using a transnasal approach.

EVIDENCE SUMMARY

To determine the benefits and harms of BOD as a stand-alone procedure for the treatment of sinusitis, it must be compared with standard functional endoscopic sinus surgery (FESS) which
involves excision of ostial tissues. Well-designed prospective comparative studies, preferably randomized controlled trials (RCTs), are needed to compare health outcomes between the two procedures and determine whether balloon dilation is as effective and durable as excision.

The most important clinical outcomes to compare for treatment of sinusitis are:

- Symptom relief
- Durability of any beneficial effects
- Adverse event rate and severity
- Rate and type of reoperations including repeat dilation procedures

The focus of this evidence review is on systematic reviews, randomized controlled trials, and nonrandomized comparative trials.

ADULT PATIENTS

Systematic Reviews

Levy (2016) reported on a systematic review and meta-analysis of studies of paranasal BOD for chronic rhinosinusitis.[1] The review included 17 studies, only three of which were RCTs. Two of the RCTs reported on differences in the change in 20-Item Sinonasal Outcome Test (SNOT-20) scores between patients treated with BOD or FESS (n = 110; standard mean difference [SMD] -0.42, 95% CI -1.39 to 0.55, $I^2=76\%$).[2, 3] However, the reviewers found no significant differences in outcome in patients treated with BOD compared to those treated with conventional FESS (p=0.07). The reviewers did report improvements in SNOT-20 score and sinus opacification after BOD, but these conclusions were not drawn from comparative studies, but from five cohort studies.

A BlueCross BlueShield Association Technology Evaluation Center (TEC) Assessment was completed in 2012 titled “Balloon Ostial Dilation for Treatment of Chronic Rhinosinusitis”. [4] This Assessment reviewed evidence from one RCT, three non-randomized comparative studies, and nine case series. The following conclusions were made concerning the adequacy of this evidence for determining the effect of balloon sinuplasty on health outcomes:

“...The evidence is insufficient to determine the effect of the technology on health outcomes. One randomized clinical trial comparing balloon sinuplasty to FESS was inadequately powered and did not evaluate differences in outcomes between the two treatments. While most nonrandomized comparative studies of balloon sinuplasty and FESS show no difference in health outcomes between the two treatments, confounding factors may bias the comparison of the two treatments. Several case series show improvement in symptoms of rhinosinusitis over baseline measures, and such improvement appears durable up to 2 years. Case series do not allow conclusions regarding the comparative efficacy of balloon sinuplasty to FESS.”

A 2011 Cochrane systematic review on balloon sinuplasty for chronic rhinosinusitis concentrated on RCTs.[5] One small RCT[6] met the inclusion criteria. Patients were randomized to a “hybrid approach” that included balloon sinuplasty of the affected frontal recess along with traditional FESS of other paranasal sinuses (n = 16), or to traditional FESS (n = 16). At 12-months follow-up, both groups reported improvements in symptoms, but there were no significant differences between the two groups. The authors of the Cochrane review rated this study as having a low risk for bias for most parameters, but a high risk for bias in...
reporting of the outcomes. Specifically, symptom scores were not presented systematically and details of statistical testing were not reported. The overall conclusion of this review was that there is no convincing evidence supporting the use of balloon sinuplasty in chronic rhinosinusitis (CRS).

Batra (2011) performed a comprehensive review of the literature regarding balloon catheter technology (BCT) in rhinology. The authors noted significant study design flaws in the studies, including lack of comparator group in most, lack of randomization in the single comparative study, unclear selection criteria, and use of patient-reported symptom improvement.

The authors reached the following conclusions:

“The accrued data attests to its safety, whereas the largest published observational cohort studies have demonstrated the ability to achieve ostia patency for up to 2 years. However, because the selection criteria for these studies were not clearly defined, it is unclear if this data can be extrapolated to the general population with chronic rhinosinusitis (CRS). Is BCT superior or equivalent to the existing devices employed in FESS for the management of CRS? Will the use of BCT translate into improvements in patient outcomes, overall health, and/or quality of life? The many unsettled questions “will be best answered by prospective randomized trials that directly compare FESS to BCT, or directly compare medical to surgical treatment.”

Randomized Controlled Trials (RCTs)

The REMODEL Study

The REMODEL (Randomized Evaluation of Maxillary antrostomy versus Ostial Dilation Efficacy through Long-term follow-up) study was an industry-sponsored RCT that compared BOD as a stand-alone procedure with FESS. A total of 105 patients with recurrent acute sinusitis or chronic sinusitis and failure of medical therapy were randomized to BOD or FESS. BOD was performed with the Entellus device, which is labeled for a transantral approach. FESS consisted of maxillary antrostomy and uncinctomy with or without anterior ethmoidectomy. Thirteen patients withdrew consent prior to treatment, 11 in the FESS group (21%) and two in the BOD group (4%). The primary outcomes were the change in the SNOT-20 score at six-month follow-up, and the mean number of debridements performed postoperatively. Secondary outcomes included recovery time, complication rates, and rates of revision surgery. Both superiority and noninferiority analyses were performed on these outcomes.

A total of 91 patients were available at six-month follow-up. The improvement in the SNOT-20 score was 1.67 ± 1.10 in the balloon dilation group and 1.60 ± 0.96 in the FESS arm (p=0.001 for noninferiority). Postoperative debridements were more common in the FESS group compared with balloon dilation (1.2 ± 1.0 vs. 0.1 ± 0.6 in the FESS arm, p<0.001 for superiority). Patients in the balloon dilation arm returned to normal daily activities earlier (1.6 days vs. 4.8 days, p=0.002 for superiority), and required fewer days of prescription pain medications (0.9 days vs. 2.8 days, p=0.002 for superiority). There were no major complications in either group, and one patient in each group required revision surgery. This study was likely to have adequate power to detect group differences; however, there were some methodologic limitations. The study was unblinded and did not have blinded outcome assessment for the symptom-based outcomes or the secondary clinical outcomes. There was
also evidence of differential dropout, with larger numbers of patients withdrawing from the FESS group following randomization (21% vs 4%).

Bikhazi (2014) reported one-year outcomes in the REMODEL study. A total of 92 patients (balloon dilation n = 50, FESS n = 42) were treated and 89 (96.7%) completed one-year follow-up.[8] Both groups showed clinically meaningful and statistically significant (p<0.0001) improvement in mean overall SNOT-20 scores and in all four SNOT-20 subscales. Ostial patency was 96.7 and 98.7% after balloon dilation and FESS, respectively, and each group reported significant reductions (p<0.0001) in rhinosinusitis episodes (mean decrease 4.2 for balloon dilation and 3.5 for FESS) during the follow-up period of one year. Overall work productivity and daily activity impairment due to chronic sinusitis were significantly improved (p<0.0001) in both groups. There were no complications, and the revision surgery rate was 2% in each arm through one year. The authors concluded that stand-alone balloon dilation was as effective as FESS in the treatment of CRS in patients with maxillary sinus disease, with or without anterior ethmoid disease, who failed medical therapy, and met the criteria for medically necessary FESS. The study included the use of self-reported quality of life questionnaires, which are subject to recall bias.

Chandra (2015) published final results of the REMODEL study[9], which indicated that patients in the balloon sinus dilation groups experienced significantly faster recovery (1.7 vs. 5.0 days, p<0.0001), less nasal bleeding (32% vs. 56%; p=0.009), and less need for prescription pain medication (1.0 vs. 2.8 days, p<0.0001). Study authors also reported results of a meta-analyses of several stand-alone balloon sinus dilation studies. The meta-analysis was based on five studies that included non-randomized studies and two studies were reportedly unpublished. Based on results of the meta-analyses, FESS and balloon dilation were not significantly different for mean SNOT-20 symptom scores and revisions rates assessed at 12 months.

Other Randomized Controlled Trials

Sikand (2019) published results from a trial where the primary outcome was the difference between arms in change in Chronic Sinusitis Survey (CSS) score from baseline to 24 weeks.[10] The change in CSS was significantly greater in the BOD group compared to the control group (mean change 37.3 vs 21.8). Patients in the BOD group had a lower mean number of sinus infections through the 24-week followup period (0.2 vs 0.95). Durability of the outcome measure differences was demonstrated up to 48 weeks. After the 24-week followup period, 18 of 30 patients who were randomized to the control arm elected to receive BOD. Of those who crossed over at 24 weeks, none reported no change or worsening of symptoms, three reported improved symptoms but still used nasal sprays at high rates, four had improved symptoms to varying degrees but were not eliminated, and one reported a sinus infection just before their 24-week visit. There was one procedure-related serious adverse event in the BOD group, two possibly procedure-related nonserious adverse events, and no device-related adverse events.

Bizaki (2014) reported results from an RCT that compared BOD to FESS among patients with symptomatic chronic or recurrent rhinosinusitis.[11] The trial enrolled 46 subjects, four of whom withdrew; the analysis included 42 patients (n = 21 in each group; statistical power calculations reported). Both groups demonstrated significant improvements in SNOT-22 scores from baseline to postprocedure. There were no differences in change in total SNOT-22 scores between groups at three months postprocedure. As a 2016 follow-up publication, trialists...
reported on nasal airway resistance and sinus symptoms between FESS- and BOD-treated groups.[12] For this analysis, 62 patients were included (32 from the FESS group, 30 from the balloon dilation group). Patients in the BOD group had significant improvements in nasal volume from pre- to postoperative measurements, but there were no significant differences between groups pre- or postoperatively in nasal volume.

Another RCT by Bizaki (2016) compared BOD to FESS, with a focus on mucociliary clearance.[13] It was conducted at the same institution as the previously reported Bizaki RCT; however, it was not specified whether it included the same patients. This trial enrolled 36 patients who were randomized to BOD (n=17) or FESS (n=19); seven patients dropped out (three in the FESS group, four in the balloon dilation group) and were not included in analyses. SNOT-22 scores improved in both groups from pre- to postoperative analyses. However, changes in total SNOT-22 scores did not differ significantly between groups. There was no significant change in mucociliary clearance before and after either treatment, nor was there a significant between-group difference in mucociliary clearance.

Marzetti (2014) reported results of a small RCT that compared BOD with an unspecified device (or devices) with FESS in the treatment of sinus headache.[14] The study included 83 patients with sinus headache, based on the American Academy of Otolaryngology-Head and Neck Surgery criteria, 44 of whom were randomized to conventional FESS and 35 to BOD. In the balloon dilation group, 23 patients were “only frontal sinus balloon” patients, in which balloon catheters were the only tools used for frontal sinus sinusotomy, and 12 were “hybrid,” in which balloon catheters and traditional endoscopic sinus surgery were used concurrently. It was not specified how patients were selected for these groups. FESS treatment was administered on participants in both groups, but specific data was not reported by study authors. At six months of follow up, scores on the SNOT-22 improved from 28.6 at baseline to 7.8 in the FESS group and 27.3 at baseline to 5.3 in the BOD group, with a statistically significant reduction in both groups (p<0.001). At six months of follow up, headache scores based on the visual analog score (VAS) improved from 6.5 to 5.4 in the FESS group and from 7.1 at baseline to 1.2 in the BOD group (p<0.001). Study authors did not report other patient-relevant outcomes, such as the number of headache days or use of pain medications following treatment. Limitations of this study included the small number of patients who received BOD, which limits the generalizability of study results, and the lack of blinding of both patients and clinical assessors. In addition, there were various concurrent surgical procedures conducted in both treatment and control groups, which made it difficult to properly assess the treatment effects of BOD.

Another small RCT published by Achar (2012) enrolled 24 patients with chronic sinusitis who had failed medical therapy and were scheduled for surgery.[2] Patients were randomized to balloon dilation or FESS and followed for a total of 24 weeks. The primary outcome measures were changes in the SNOT-20 score and the saccharine clearance time test. Both groups improved significantly on both outcome measures. The degree of improvement was greater for the functional endoscopic dilatation sinus surgery group compared to the FESS group on both the SNOT-20 score (43.8 ± 15.2 vs. 29.7 ± 12.3, p<0.03) and on the saccharine clearance score (7.5 ± 5.1 vs. 3.5 ± 4.3, p=0.03). Adverse events were not reported.

A small RCT was published in 2011 that reported on physiologic outcomes.[15] Twenty patients were randomly assigned to removal of the uncinate process via FESS or balloon sinus ostial dilation as a stand-alone procedure. The main outcome measures were CO₂ concentration in the sinuses and maximum sinus pressure, both intended to be surrogate measures for sinus ventilation. The CO₂ concentration decreased in both study arms to a similar degree. The
mean maxillary sinus pressure on inspiration decreased in the FESS group but did not change in the balloon sinus ostial dilation group.

Bozdemir (2011) published a small study of 10 patients with nasal polyposis, in which one side was treated with FESS and the other with balloon sinus ostial dilation. All procedures were performed by the same surgeon, and polypectomy was performed prior to FESS or balloon sinus ostial dilation in all patients. Outcome measures included sinus patency, as measured by computed tomography (CT) scan (Lund-McKay classification) or repeat endoscopy (McKay grading). At 10 days following the procedure, there were improvements in both groups on measures of patency, but there were no differences between groups.

Nonrandomized Studies

Gould (2014) assessed the one-year changes in sinonasal symptoms and health care use after office-based, multi-sinus balloon dilation in an industry-sponsored prospective, multicenter study. A total of 313 ostial dilations were attempted and 307 were successfully completed (98.1%) in 81 subjects. Seventy-six of the 81 patients completed the one-year follow-up. Mean procedure tolerance was 2.8 ± 2.2 (0 = no pain, 10 = severe pain). SNOT-20 symptom improvement was observed at one and six months and sustained through one year. The RSI questionnaire that rates five major and seven minor rhinosinusitis symptoms measured a treatment effect for all major rhinosinusitis symptoms. Compared with the previous one-year period, patients reported an average of 2.3 fewer acute sinus infections (p<0.0001), 2.4 fewer antibiotic courses taken (p<0.0001), and 3.0 fewer sinus-related physician visits (p<0.0001) after balloon dilation. No serious device or procedure-related adverse events occurred. One subject underwent revision surgery. The authors reported that patients reported significant reductions in both sinonasal symptoms and health care use after balloon dilation. Methodological limitations included the implementation of self-reported SNOT-20 and RSI questionnaires, which may lead to recall bias; lack of a comparison group, which precludes the ability to isolate any reported treatment effects; and the uncertain timing between the preoperative CT scan and failure of medical management.

Brodner (2013) reported a prospective, multi-center study to evaluate outcomes for the XprESS device for the treatment of the frontal recesses, maxillary ostia, and/or sphenoid sinus ostia in 175 adults who had previously been scheduled for conventional FESS. The criteria for previously-scheduled conventional FESS are not specified. There were a mean 2.7 sinuses per patient treated; of the targeted sinuses, 479/497 (96.4%) were successfully accessed and treated. One-year follow up was planned in the first 50 subjects, who only underwent dilation of frontal recesses and sphenoid ostia; at one year, in the 41 subjects with one-year follow-up available, 76/83 (91.6%) of the ostia dilated with the study device were patent. At one year, in 44 subjects who completed follow-up, the average overall SNOT-20 score was 0.8 (vs 1.9 at baseline; p<0.0001 for change), which was considered a clinically meaningful improvement (change ≥ 0.8).

Albritton (2012) reported results of a prospective, nonrandomized evaluation of the feasibility of in-office balloon sinus dilation with the Relieva device who were enrolled in the ORIOS trial. The study included 37 subjects (59 sinuses) who had a diagnosis of chronic rhinosinusitis (>12 weeks of symptoms including but not restricted to nasal obstruction, sinus/facial pressure, nasal discharge, and congestion) that was unresponsive to maximal medical management. Successful access and dilation of all targeted sinuses occurred in 33/37 subjects (89%). Follow up was available for 32 (86.5%), 31 (83.8%), 26 (70.2%), and 21 (56.8%) at 1-, 4-, 24-, and 52-
weeks post-procedure, respectively. Symptoms were assessed based on the change in SNOT-20 score from baseline to follow up, with a mean reduction from baseline of -0.98 (95% CI -1.27 to -0.70), -1.32 (95% CI -1.65 to -1.00), -1.25 (95% CI -1.65 to -0.85), and -1.42 (95% CI -1.87 to -0.90) at 1-, 4-, 24-, and 52-weeks post-procedure, respectively. For the 29 subjects who had CT scans available at baseline and 24 weeks of follow up, Lund-Mackay score improved from 6.62 preprocedure to 2.79 postprocedure (p<0.0001).

In the ORIOS2 study, Karanfilov (2013) reported results of a prospective, nonrandomized, multicenter evaluation of office-based balloon sinus dilation with the Relieva device in 203 patients who required FESS for medically refractory chronic sinusitis. Three cohorts were enrolled, a lead-in cohort which consisted of each investigator’s first cases where all targeted sinuses were successfully dilated (n = 36), a standard enrollment cohort which consisted of up to approximately 15 cases (n = 84), and an extended enrollment cohort which included subjects after the first 15 cases (n = 83). Dilation technically successful in 552 of 592 attempted sinuses (93.2%). Matched baseline and twenty-four week follow up was available for 112 patients, who demonstrated a mean improvement in SNOT-20 scores of -1.1 (p<0.0001). In the 110 patients with 24 week CT scans available, Lund-Mackay score improved by -4.3 compared with baseline (p<0.0001 for change).

Levine (2013) reported results of a prospective, nonrandomized, multicenter evaluation of office-based balloon sinus dilation with the FinESS device in 74 patients with chronic rhinosinusitis (n = 52) or recurrent acute sinusitis (n = 17). Balloon dilation was successful in 69 patients, and analyses are reported per protocol. The overall technical success rate in patients was 91.9% (124 of 135 ostia) but it was not specified if this was in overall sample of 74 patients or in analysis sample of 69 patients. Mean SNOT-20 scores improved from a mean 2.3 at baseline to 1.1 at six months and 12 months in the 66 patients with follow up data available (mean change -1.2, p<0.0001). There were no significant differences in improvements reported between the chronic rhinosinusitis and recurrent acute sinusitis patients.

A number of additional nonrandomized studies have been identified, which do not allow conclusions concerning the impact of BSD on primary health outcomes compared with FESS. These studies have methodological limitations such as a limited number of patients, a heterogenous study population, no primary health outcomes reported, limited follow-up, retrospective study design, or implementation of self-reported questionnaires. The exception is a single-arm study by Tomazic (2013), in which the authors planned to evaluate a cohort of 200 patients with BOD or a hybrid procedure, but ended the study early after 45 patients after a high technical failure rate was noted, with 44/68 sinuses in a planned BOD group and 29/44 sinuses in a planned hybrid procedure group failing.

Retrospective studies are limited by the accuracy of the medical records reviewed or the recall ability of patients when filling out a study questionnaire. In addition, there is no randomization or blinding in a retrospective study design and therefore it is difficult to control for bias and confounders.

PEDIATRIC PATIENTS

Nonrandomized Studies
Wang (2015) reported on a perspective nonrandomized controlled study of 79 pediatric patients (age 7-12) with chronic sinusitis resistant to medical therapy, including 42 patients treated with sinus balloon catheter dilation balloon (SBCD) and 37 control patients treated conservatively (including oral antibiotics, local nasal steroid spray, and nasal saline irrigation). At one-year posttreatment, the SN-5 scores were significantly better in the SBCD group (22 patients [52%] had marked improvement, 11 [26%] had moderate improvement, and six [14%] had mild improvement) than in the control group (five [14%], seven [19%], and four [11%], respectively) (p < 0.05 for all comparisons).

In a retrospective comparative study, Thottam (2012) evaluated the incremental value of Relieva balloon catheter sinuplasty when combined with FESS in 31 children (mean age 9.3 years) who had persistent chronic sinusitis despite standard maximal medical therapy. The authors performed a blinded chart review of 15 children who underwent balloon catheter sinuplasty with ethmoidectomy and 16 children who underwent FESS. Thirteen children had prior adenoidectomy. A total symptom score was constructed for the number of complaints: presurgery, postsurgery, and at the final postsurgical examination (> four months) including facial pain, sinus congestion, postnasal drip, rhinorrhea, headache, and low-grade fever. Success and improvement were defined as a decrease in the total complaint score of ≥ 1 point at the last visit, while total improvement was defined as total resolution of all complaints (i.e., symptom score of 0). Compared with baseline values, significant posttreatment reductions in overall sinusitis symptoms and needed interventions were observed in both treatment groups. In the Relieva balloon catheter sinuplasty group, 80% of the patients reported improvements in their overall sinus symptoms at an average of 37 weeks, versus 62.5% of the FESS patients. This difference between groups was not significant. No serious complications occurred.

In a prospective, nonrandomized controlled study, Ramadan (2010) compared the efficacy and safety of Relieva balloon sinuplasty combined with adenoidectomy (n=30) with that of adenoidectomy alone (n = 19) in 49 children (mean age 6.6 years, range 2-11) with chronic sinusitis that was refractory to medical therapy for at least six months. The patients were followed at regular intervals for up to one year. Twenty-four of the 30 (80%) patients in the Relieva plus adenoidectomy group showed symptom improvement at one year compared with 10 of 19 (52.6%) children in the adenoidectomy alone group. Two (6%) patients with hypoplastic sinuses failed balloon sinuplasty and required revision FESS. One patient was lost to follow-up, and another had no improvement in SN-5 scores. Three (15%) children who did not improve after adenoidectomy had balloon sinuplasty. Overall, the mean SN-5 score for all participants decreased from a baseline value of 4.1 to 2.9 after surgery. In the Relieva plus adenoidectomy group, the mean SN-5 score decreased from 4.2 to 3.0, while in the adenoidectomy alone group, the score decreased from 3.8 to 2.9. No major complications occurred in either treatment group.

Prospective, multicenter single-arm studies have reported outcomes in pediatric patients with chronic sinusitis. In one study of 32 children, 24 had one-year follow-up data. Of the 32 children enrolled, 24 were studied at one-year follow-up. Significant improvements in quality of life outcomes were reported using the SN-5 score (p<0.0001). Twelve (50%) children had a significant improvement of their SN-5 score, seven children (29%) had moderate improvement, two (8%) had mild improvement, one (4%) remained the same, and two children (8%) had worsening scores. A similar study with 50 participants and 157 total attempted dilations also reported significant improvement in SN-5 scores at six months (p<0.0001). No adverse procedure-related events were reported in either study. However, these studies lacked a comparison group, limiting conclusions regarding the efficacy of the procedure.
PRACTICE GUIDELINE SUMMARY

AMERICAN ACADEMY OF OTOLARYNGOLOGY-HEAD AND NECK SURGERY (AAO-HNS)

In 2018, the American Academy of Otolaryngology—Head and Neck Surgery (AAO-HNS) published a clinical consensus statement on balloon dilation of the sinuses.\(^{[35]}\) Participating subgroups included the Triologic Society, the American Rhinologic Society, the American Academy of Otolaryngic Allergy, and the American Academy of Allergy, Asthma & Immunology. The following statements met consensus:

Patient Criteria:

- Balloon dilation is not appropriate for patients who are without both sinonasal symptoms and positive findings on CT. (Strong consensus)
- Balloon dilation is not appropriate for the management of headache in patients who do not otherwise meet the criteria for chronic sinusitis or recurrent acute sinusitis. (Strong consensus)
- Balloon dilation is not appropriate for the management of sleep apnea in patients who do not otherwise meet the criteria for chronic sinusitis or recurrent acute sinusitis. (Strong consensus)
- CT scanning of the sinuses is a requirement before balloon dilation can be performed. (Strong consensus)
- Balloon dilation is not appropriate for patients with sinonasal symptoms and a CT that does not show evidence of sinonasal disease.
- Balloon dilation can be appropriate as an adjunct procedure to FESS in patients with chronic sinusitis without nasal polyps.
- There can be a role for balloon dilation in patients with persistent sinus disease who have had previous sinus surgery.
- There is a role for balloon sinus dilation in managing patients with recurrent acute sinusitis as defined in the AAO-HNSF guideline based on symptoms and CT evidence of ostial occlusion and mucosal thickening.

Perioperative Considerations:

- Surgeons who consider reusing devices intended for dilation of the sinuses should understand the regulations set forth by the FDA for reprocessing such devices and ensure that they are followed. (Strong consensus)
- Balloon dilation can be performed under any setting as long as proper precautions are taken and appropriate monitoring is performed.
- Balloon dilation can be performed under local anesthesia with or without sedation.

Outcome:

- Balloon dilation can improve short-term quality-of-life outcomes in patients with limited CRS without polyposis.
- Balloon dilation can be effective in frontal sinusitis

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
SUMMARY

There is enough research to show that balloon ostial dilation improves health outcomes for patients with sinusitis compared to functional endoscopic sinus surgery (FESS). In addition, there are clinical practice guidelines that address balloon ostial dilation for the treatment of sinusitis. Therefore, balloon ostial dilation as a treatment for sinusitis, either as a stand-alone procedure or in conjunction with FESS, may be considered medically necessary when policy criteria are met.

There is not enough research to show that balloon ostial dilation improves health outcomes for patients with chronic or acute sinusitis when policy criteria are not met. Therefore, balloon ostial dilation as a treatment for sinusitis, either as a stand-alone procedure or in conjunction with FESS, is considered investigational when policy criteria are not met.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>31295</td>
<td>Nasal/sinus endoscopy, surgical, with dilation (eg, balloon dilation); maxillary sinus ostium, transnasal or via canine fossa</td>
</tr>
</tbody>
</table>

September 1, 2022

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31296</td>
<td>Nasal/sinus endoscopy, surgical, with dilation (e.g., balloon dilation); frontal sinus ostium</td>
</tr>
<tr>
<td>31297</td>
<td>Nasal/sinus endoscopy, surgical; with dilation of frontal and sphenoid sinus ostia (e.g., balloon dilation)</td>
</tr>
<tr>
<td>31298</td>
<td>Nasal/sinus endoscopy, surgical; with dilation of frontal and sphenoid sinus ostia (e.g., balloon dilation)</td>
</tr>
<tr>
<td>31299</td>
<td>Unlisted procedure, accessory sinuses</td>
</tr>
<tr>
<td>C1726</td>
<td>Catheter, balloon dilatation, non-vascular</td>
</tr>
</tbody>
</table>

Date of Origin: August 2006
IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

This policy addresses surgical treatments for hyperhidrosis, excessive sweating beyond a level required to maintain normal body temperature.

MEDICAL POLICY CRITERIA

Note: This policy only addresses the surgical treatment of hyperhidrosis.

I. Surgical treatment of hyperhidrosis, including craniofacial hyperhidrosis, via endoscopic transthoracic sympathectomy or excision of axillary sweat glands may be considered medically necessary when there is clinical documentation that all of the following Criteria (A. – C.) are met:

A. Primary medical conditions causing hyperhidrosis have been identified and treated where possible; and

B. The hyperhidrosis is persistent and severe, and has resulted in one or more of the significant medical complications below (see Policy Guidelines):
 1. Acrocyanosis of the hands; or
 2. Recurrent skin maceration with secondary bacterial or fungal infection; or
3. Recurrent secondary infections; or
4. Persistent eczematous dermatitis; or
5. Documentation of inability to perform critical activities of daily living or demands of employment (such as impaired grip and writing ability for employment, or impaired walking) due to symptoms of hyperhidrosis; and

C. A trial of all of the following nonsurgical treatments has been ineffective, not tolerated, or are contraindicated:

1. Prescription antiperspirants (e.g. aluminum chloride hexahydrate 20%) and/or anticholinergics (e.g. glycopyrrolate or oxybutynin); and
2. If the treatment is for axillary or palmar hyperhidrosis and the patient is age 18 years or older, a trial of botulinum toxin type A [Botox] injection is completed OR the patient does not have axillary or palmar hyperhidrosis.

II. Tympanic neurlectomy may be considered medically necessary for the treatment of severe gustatory hyperhidrosis if a trial of nonsurgical treatments failed or is contraindicated.

III. Surgical treatment of hyperhidrosis via endoscopic transthoracic sympathectomy, excision of axillary sweat glands, or tympanic neurlectomy is considered not medically necessary when the Criteria in I. or II. above are not met (see Policy Guidelines).

IV. All other surgical treatments of hyperhidrosis are considered investigational, including but not limited to lumbar sympathectomy; axillary liposuction or curettage performed alone or in combination with any other procedure; subdermal laser-assisted axillary hyperhidrosis treatment; percutaneous radiofrequency sympathicolysis or sympathectomy; and radiofrequency ablation for palmar hyperhidrosis.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

Medical treatment of persistent hyperhidrosis is considered not medically necessary in the absence of significant medical complications associated with the condition. Skin irritation, skin maceration without secondary infection, need for frequent changing of clothing, or psychosocial distress alone are not considered to be significant medical complications.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

The information below must be submitted for review to determine whether policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and physical/chart notes including the following:
 - Type of hyperhidrosis
 - Documentation primary medical conditions causing hyperhidrosis have been identified and treated where possible
- Documentation hyperhidrosis is persistent and severe and has resulted in significant medical complications including inability to perform critical activities of daily living or demands of employment, if relevant
- Documentation of specific nonsurgical treatments trialed and documented response including use of prescription antiperspirants and/or anticholinergics, and botulinum toxin type A [Botox] injection trial when appropriate per policy.

CROSS REFERENCES

1. Botulinum toxin Type A injection, Medication Policy Manual, Drugs, Policy No. 006

BACKGROUND

HYPERHIDROSIS

Hyperhidrosis may be defined as excessive sweating, beyond a level required to maintain normal body temperature in response to heat exposure or exercise. Hyperhidrosis can be classified as either primary or secondary.

Primary Hyperhidrosis

Primary focal hyperhidrosis is defined as idiopathic bilateral, relatively symmetric, excessive sweating of at least six months’ duration induced by sympathetic hyperactivity in selected areas that is not associated with an underlying disease process. The most common locations are underarms (axillary hyperhidrosis), palms (palmar hyperhidrosis), soles of the feet (plantar hyperhidrosis) or face and scalp (craniofacial hyperhidrosis). The second (T2) and third (T3) thoracic ganglia are responsible for palmar hyperhidrosis, the fourth (T4) thoracic ganglia controls axillary hyperhidrosis, and the first (T1) thoracic ganglia controls facial hyperhidrosis.

Secondary Hyperhidrosis

Secondary generalized hyperhidrosis is a type of excessive sweating that is caused by another medical condition or is a side effect of a medication. Secondary hyperhidrosis can result from a variety of drugs, [e.g., tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs)], olfactory stimuli, or underlying diseases/conditions, such as febrile diseases, diabetes mellitus, anxiety, menopause, neurologic lesions, intrathoracic neoplasms, and Raynaud’s disease.

Secondary gustatory hyperhidrosis is excessive sweating related to ingesting or thinking about the ingesting food. This trigeminovascular reflex typically occurs symmetrically on scalp or face and predominately over forehead, lips and nose and can include flushing, redness, and general discomfort felt at the cheek level. This phenomenon is associated with conditions including encephalitis, syringomyelia, diabetic neuropathies, and, most commonly, conditions resulting from damage to the parotid gland (sometimes referred to as Frey’s syndrome) including herpes zoster parotitis and parotid abscess. Other conditions and diseases also can cause hyperhidrosis, including those listed at sweathelp.org.[1]

Frey’s syndrome is an uncommon type of secondary gustatory hyperhidrosis that arises from injury to, or surgery near, the parotid gland resulting in damage to the secretory parasympathetic fibers of the facial nerve. After injury, these fibers regenerate and miscommunication occurs between them and the severed postganglionic sympathetic fibers that supply the cutaneous sweat glands and blood vessels. The aberrant connection results in
gustatory sweating and facial flushing with mastication. Aberrant secondary gustatory sweating follows up to 73% of surgical sympathectomies and is particularly common after bilateral procedures.

The consequences of hyperhidrosis are primarily psychosocial in nature. Excessive sweating may be socially embarrassing or may interfere with certain professions. Symptoms such as fever, night sweats, or weight loss require further investigation to rule out secondary causes. Sweat production can be assessed with the minor starch iodine test, which is a simple qualitative measure to identify specific sites of involvement.

A variety of medical therapies have been investigated for treating primary hyperhidrosis, including topical therapy with aluminum chloride or tanning agents, oral anticholinergic medications, iontophoresis, intradermal injections of botulinum toxin, and microwave treatment. Treatment of secondary hyperhidrosis naturally focuses on treatment of the underlying cause.

SURGICAL TREATMENT

This medical policy addresses only surgical treatment of hyperhidrosis. Surgical treatments for axillary hyperhidrosis include transthoracic sympathectomy and surgical excision of axillary sweat glands. Transthoracic sympathectomy may also be used for palmar hyperhidrosis. Surgical removal of axillary sweat glands has been performed in patients with severe isolated axillary hyperhidrosis. Removal may involve removal of the subcutaneous sweat glands without removal of any skin, limited excision of skin and removal of surrounding subcutaneous sweat glands, or a more radical excision of skin and subcutaneous tissue en bloc.

A variety of approaches have been reported for sympathectomy. For transthoracic sympathectomy, transthoracic endoscopic techniques have emerged as minimally invasive alternatives to transaxillary, supraclavicular, or anterior thoracic approaches. Percutaneous radiofrequency (RF) sympaticolysis has also been proposed as a sympathectomy technique in which RF lesions are made in the thoracic sympathetic chain under fluoroscopic guidance without the need for general anesthesia, intubation, or risk of lung collapse. Lumbar sympathectomy may be performed as a surgical treatment of plantar hyperhidrosis and may also be done endoscopically.

While accepted as an effective treatment, sympathectomy is not without complications. In addition to the immediate surgical complications of pneumothorax or temporary Horner’s syndrome, compensatory sweating on the trunk can occur in up to 55% of patients, reducing patient satisfaction with the procedure. Gustatory sweating may also occur. Sympathectomy also results in cardiac sympathetic denervation, which in turn can lead to a 10% reduction in the heart rate. In addition to the complications associated with transthoracic sympathectomy, lumbar sympathectomy for plantar hyperhidrosis may have the additional risk of permanent sexual dysfunction in men and women. Medical researchers have investigated whether certain approaches, e.g., T3 versus T4 sympathectomy, result in less compensatory sweating, but there remains a lack of consensus about which approach best minimizes the risk of this side effect.

Tympanic neurectomy is a surgical technique that may be used for treatment of severe gustatory hyperhidrosis. The nerves are transected in the middle ear through a flap created in the ear drum. Possible risks from this surgery include rupture of the tympanic membrane, infection, hearing loss, and loss of taste in certain parts of the tongue.
In order to determine whether surgical treatment of hyperhidrosis results in sustained improvements in clinically meaningful health outcomes, comparisons to conventional therapies in well-designed comparative studies (ideally randomized controlled trials) are needed using standardized functional measurement tools.

For individuals who have primary axillary or palmar hyperhidrosis, a high rate of clinical efficacy after endoscopic transthoracic sympathectomy has been demonstrated,[2-10] although the rate of postoperative compensatory sweating was substantial.[11] Surgical excision of axillary sweat glands in individuals who have primary axillary hyperhidrosis has been shown to be highly effective. The evidence is sufficient to determine that endoscopic transthoracic sympathectomy and surgical excision of axillary sweat glands results in a meaningful improvement in the net health outcome for individuals who have primary axillary or palmar hyperhidrosis. These procedures are considered standard of care for these indications when a trial of non-surgical treatment has failed.

For individuals who have severe secondary gustatory hyperhidrosis who receive tympanic neurectomy, this treatment has been shown to have high success rates, without the need for repeated interventions. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome and this treatment is considered standard of care for this indication when a trial of non-surgical treatment has failed.

The focus of the following evidence summary is on systematic reviews (SRs), technology assessments (TAs), randomized controlled trials (RCT), and comparative nonrandomized studies for the investigational indications listed in the policy criteria.

LUMBAR SYMPATHECTOMY

Systematic Review

Lima (2020) conducted a systematic review and meta-analysis of lumbar sympathectomy for plantar hyperhidrosis.[12] Eight studies were identified, including a total of 517 patients. One RCT met inclusion criteria; the other studies were case series. In all of the studies, lumbar sympathectomy was conducted following transthoracic sympathectomy. Resolution of symptoms occurred in 92% of patients when mechanical sympathectomy was used with clipping or resection of the lymph nodes between L2 and L5, with similar results regardless of resection level. Overall, 44% of patients had mild to severe compensatory sweating after a mean of six months of follow-up. The RCT was conducted in 30 women at a single hospital in Brazil. The primary outcome measure was a quality-of-life questionnaire that was developed for use in patients undergoing thoracic sympathectomy. After six months, patients in the intervention group had a greater improvement in quality of life relative to the control group patients; 53% reported worsening compensatory sweating. This study was limited by its small sample size, use of an unvalidated outcome measure, and lack of blinded outcome assessment.

Lima (2017) published a SR evaluating the efficacy of lumbar sympathectomy in plantar hyperhidrosis. Among the nine studies included, eight were retrospective studies, and one was a RCT.[13] None of the eight retrospective studies were considered to be of high quality, assessed by the Newcastle Ottawa Scale. The protocol was highly variable across trials, with respect to intervention site (ranging from L2/L3 to L5) and surgical technique (seven studies...
used mechanical clipping or resection sympathectomy, two used chemical sympathectomy). Across all studies, the percent of patients with resolution of symptoms ranged from 5 to 98%. There was a high variation in the incidence of complications across studies, including neuralgia (range, 3% to 42.2%), compensatory sweating, (1.5% to 90%), and sexual dysfunction (not reported by all studies). There is not enough evidence of the safety or long-term clinical outcomes of lumbar sympathectomy in the treatment of plantar hyperhidrosis. Additional RCTs with standardized protocols are needed.

Randomized Controlled Trials

No RCTs beyond those summarized in the SR above were identified.

Nonrandomized Studies

In addition to the nonrandomized studies summarized in the SR above, there have been case series published, however, these observations are not generalizable due to lack of randomization, lack of a control group for comparison, heterogeneous patient characteristics, lack of long-term follow-up, subjective outcomes, and the use of different surgical techniques. In addition to low success rates, concerns have been reported for side effects in sexual functioning in both males and females.

REMOVAL OF AXILLARY SWEAT GLANDS BY LIPOSUCTION OR CURETTAGE

There is insufficient evidence to determine whether liposuction or curettage of sweat glands is safe or effective as a treatment of axillary hyperhidrosis. In a SR of treatments available in secondary care for the management of primary hyperhidrosis, Wade (2018) evaluated studies on curettage for axillary hyperhidrosis. Nine studies were identified including four RCTs and five nonrandomized studies. All were considered to be at high risk for bias. Meta-analysis was not possible due to methodological differences. In four studies, curettage was compared to botulinum treatment and only one small RCT found a statistically significant improvement in symptoms, favoring botulinum. No differences were found in sweating, quality-of-life or satisfaction outcomes, although, where reported, the incidence of adverse events was higher with curettage than with botulinum. Although this procedure has been performed for several decades, only scattered reports regarding its effectiveness were identified in a PubMed literature search.

AXILLARY SUBDERMAL LASER TREATMENT

Systematic Reviews and Technology Assessments

In 2015, the Canadian Agency for Drugs and Technologies in Health (CADTH) published a rapid response review on the clinical effectiveness of laser therapy in axillary hyperhidrosis. Five publications were included in the review, three RCTs and two nonrandomized studies. No relevant evidence-based guidelines were identified for inclusion. The authors reported that although the evidence suggests laser therapy may reduce sweating in cases of axillary hyperhidrosis, these results should be interpreted with caution due to the methodological limitations of the studies, which include but are not limited to, small sample sizes, a lack of reporting on efficacy and safety outcomes, potential selection bias, and a lack of long term follow-up data.

Randomized Controlled Trials

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
No RCTs beyond those summarized in the review above were identified.

Nonrandomized Studies

No studies beyond those summarized in the review above were identified.

PERCUTANEOUS RADIOFREQUENCY TREATMENTS

Systematic Reviews

Hasimoto (2020) published a SR with meta-analysis of nine studies (N=378) evaluating the effectiveness of radiofrequency (RF) treatment of primary hyperhidrosis, including radiofrequency ablation (RFA) sympathectomy (N=238) and fractionated microneedle radiofrequency (FMRF) of the axillary (N=75) compared to video-assisted thoracic sympathectomy (VATS) (N=65).[26] In seven of the nine studies, patients were subjected to RF only, and in two of nine studies RF was compared to VATS. Across the three studies evaluating FMRF, there was a reduction in the severity of hyperhidrosis (mean difference -1.24, 95% CI -1.44 to -1.03) and minor improvement in reported quality of life (QoL) (-9.0, 95% CI -9.15 to -8.85). There was improvement in QoL found after RFA (two studies, mean difference -15.92, 95% CI -17.61 to -14.24), although the one study comparing QoL improvement after RFA or VATS found that VATS showed superior results. In the one study that evaluated symptom recurrence between VATS and RF found higher recurrence rates in RF (5% vs. 25%, respectively, p<0.01). There were no RCTs identified for inclusion, and of the two studies comparing RFA to VATS, one was a non-randomized controlled study and the other was a retrospective observational study. The authors concluded that there is a need for high-quality prospective studies comparing RF to current standard practice, particularly VATS.

Randomized Controlled Trials

Mostafa (2019) conducted a randomized controlled trial (RCT) of radiofrequency ablation compared to botulinum toxin type A in 80 patients with primary palmar hyperhidrosis.[27] Both groups showed improvements from baseline in HDSS scores at one week, one month, and two months after treatment, but scores in the radiofrequency ablation group were significantly lower (indicating more improvement with RFA) than in the botulinum toxin group at one week, one month, and two, six, and 12 months after treatment.

Rummaneethorn (2019) compared RFA to botulinum toxin A in 20 patients with primary axillary hyperhidrosis.[28] At the endpoint visit (week 12), the botulinum toxin A group had significantly greater reduction of mean HDSS score than the RFA group with 1.60 (0.59) versus 2.05 (0.68), respectively (p=0.0332). At week 12, the botulinum toxin A group also had significantly higher satisfaction score by quartile rating scale than the microneedle RF group (2.55 + 0.69 versus 1.70 + 1.03, respectively, p=0.004).

Nonrandomized Studies

No studies beyond those summarized in the SR above were identified.

PRACTICE GUIDELINE SUMMARY

In 2011, an expert consensus statement on the surgical treatment of hyperhidrosis was published by a task force of the Society of Thoracic Surgeons.[29] The document stated that endoscopic thoracic sympathectomy is the treatment of choice for patients with primary...
hyperhidrosis. They further recommend the following treatment strategies (with R referring to rib and the number to the specific rib):

- R3 interruption for palmar hyperhidrosis; an R4 interruption is also reasonable. The authors note a slightly higher rate of compensatory sweating with an R3, but R3 is also more effective at treating hyperhidrosis.
- R4 or R5 interruption for palmar-axillary, palmar-axillary-plantar or axillary hyperhidrosis alone; R5 interruption is also an option for axillary hyperhidrosis alone.
- R3 interruption for craniofacial hyperhidrosis without blushing; an R2 and R3 procedure is an option but may lead to a higher rate of compensatory sweating, and also increases the risk of Horner’s syndrome.

SUMMARY

There is enough evidence to determine that endoscopic transthoracic sympathectomy and surgical excision of axillary sweat glands results in a meaningful improvement in the net health outcome for individuals who have primary axillary, craniofacial, or palmar hyperhidrosis. These procedures are considered standard of care for these indications when a trial of non-surgical treatment has failed. Clinical guidelines based on research recommend surgical treatment for primary hyperhidrosis. Therefore, endoscopic transthoracic sympathectomy and surgical excision of axillary sweat glands is considered medically necessary when policy criteria are met.

For individuals who have severe secondary gustatory hyperhidrosis who receive tympanic neurectomy, this treatment has been shown to have high success rates without the need for repeated interventions. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome and this treatment is considered standard of care for this indication when a trial of non-surgical treatment has failed. Therefore, tympanic neurectomy is considered medically necessary for the treatment of secondary gustatory hyperhidrosis when policy criteria are met.

There is not enough research to show surgical treatment for hyperhidrosis improves health outcomes for all other conditions and/or complications. Therefore, surgical treatment for hyperhidrosis is considered not medically necessary when policy criteria are not met.

There is not enough research to show that surgical treatments of hyperhidrosis including, but not limited to lumbar sympathectomy, axillary liposuction or curettage performed alone or in combination with any other procedure, subdermal laser-assisted axillary hyperhidrosis treatment, percutaneous radiofrequency sympathectomy or sympathectomy and radiofrequency ablation for palmar hyperhidrosis improves health outcomes for people with hyperhidrosis. There are no evidence-based clinical practice guidelines recommending these procedures for the treatment of hyperhidrosis. Therefore, these techniques are considered investigational.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

CODES

NOTE: Codes 11450 and 11451 should not be reported when there is a diagnosis of hyperhidrosis.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>32664</td>
<td>Thoracoscopy, surgical; with thoracic sympathectomy</td>
</tr>
<tr>
<td></td>
<td>64818</td>
<td>Sympathectomy, lumbar</td>
</tr>
<tr>
<td></td>
<td>69676</td>
<td>Tympanic neurectomy</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Date of Origin: November 1999

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Surgeries for Snoring, Obstructive Sleep Apnea Syndrome, and Upper Airway Resistance Syndrome

Effective: December 1, 2021

Next Review: January 2022
Last Review: October 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

When conservative therapies for obstructive sleep apnea or upper airway resistance syndrome fail, established surgical interventions may be indicated.

MEDICAL POLICY CRITERIA

Note: Contract language takes precedent over medical policy. Some member contracts have specific benefit limitations for orthognathic and telegnathic surgery.

Pediatric Patients

I. In pediatric patients (age 17 years and younger), surgical treatment for obstructive sleep apnea (OSA) and upper airway resistance syndrome (UARS) may be considered medically necessary when the request is not for any of the investigational procedures listed in Criterion III. below.

II. In pediatric patients, surgical treatment of snoring in the absence of documented obstructive sleep apnea is considered not medically necessary.
III. In pediatric patients, surgical treatment of obstructive sleep apnea (OSA) and upper airway resistance syndrome (UARS) using any one or more of the following procedures is considered **investigational**:
 A. Laser-assisted uvulopalatoplasty (LAUP) or volumetric tissue reduction
 B. Palatal stiffening procedures, including but not limited to the following: Cautery-assisted palatal stiffening operation (CAPSO), injection of sclerosing agent (also known as snoreplasty), and implantation of palatal implants (also known as the pillar procedure)
 C. Radiofrequency volumetric tissue reduction of the tongue base or palatal tissues
 D. Tongue base suspension procedures, including but not limited to the AIRvance™ and the Encore™ tongue suspension systems
 E. Uvulectomy

Adult Patients

IV. Surgical procedures for the treatment of obstructive sleep apnea (OSA) and upper airway resistance syndrome (UARS) in adult patients (age 18 years and older) may be considered **medically necessary** when all of the criteria below (A- E.) are met:
 A. There is documentation of a sleep study performed within the last 3 years; and
 B. One or more of the following procedures are requested:
 a. Hyoid myotomy and suspension
 b. Mandible osteotomy with or without genioglossus advancement
 c. Maxillo-mandibular advancement (MMA)
 d. Palatopharyngoplasty (e.g., uvulopalatopharyngoplasty [UPPP], uvulopharyngoplasty)
 e. Partial Glossectomy
 C. Evidence, documented in the medical records, of exam findings that demonstrate upper airway collapse or obstruction as a reasonable cause of obstructive sleep apnea (e.g., palatine tonsils, epiglottis collapse, arytenoid collapse, lateral pharyngeal, craniofacial deficits).
 D. The patient meets criteria for clinically significant obstructive sleep apnea (OSA) or upper airway resistance syndrome (UARS) as defined by Criteria 1. or 2. below:
 1. Clinically significant obstructive sleep apnea (OSA) defined as Criteria a. or b. below:
 a. An AHI equal to or greater than 15 per hour; or
 b. An AHI equal to or greater than 5 per hour with at least one of the following associated symptoms:
 i. Excessive daytime sleepiness that is not better explained by other factors
 ii. Documented unexplained hypertension
iii. Ischemic heart disease or congestive heart failure
iv. Atrial fibrillation
v. History of stroke
vi. Obesity
vii. Diabetes and glucose intolerance
viii. Two or more of the following that are not better explained by other factors:
 a.) Choking or gasping during sleep
 b.) Recurrent awakenings during sleep
 c.) Unrefreshing sleep with daytime fatigue
 d.) Impaired concentration or cognition
 e.) Insomnia

2. Upper airway resistance syndrome (UARS) that is clinically significant is defined as greater than 10 alpha EEG arousals per hour.

E. All of the following conservative medical therapies have failed to improve apnea/hypopnea including associated conditions such as excess daytime sleepiness:

1. Adjustment in sleep position when the sleep study shows improvement of sleep apnea when non-supine; and

2. An adequate trial (at least 3 consecutive months [90 days] of continuous [at least 5 nights per week]) of a custom-made mandibular repositioning appliance has failed OR the patient is not an appropriate mandibular repositioning appliance candidate (see Policy Guidelines); and

3. An adequate positive airway pressure (PAP, continuous or bi-level) trial that includes documentation of one or more of the following:
 a. A minimum of 4 hours per night for 3 weeks of PAP usage; or
 b. For patients who are PAP intolerant (unable to use PAP therapy for at least 4 hours per night for 5 nights or more per week), reasonable attempts to address any medical, mechanical, or psychological problems associated with PAP have been made (e.g., adjustment of pressure settings, appropriate medication and humidification, refitting of the mask, trial of alternative pressure delivery systems such as auto-adjusting positive airway pressure or bi-level positive airway pressure); or
 c. For patients with severe psychological aversion to PAP, reasonable attempts have been made to complete a conventional desensitization program. Conventional desensitization programs include progressive steps intended to help the patient adapt first to the mask or nasal pillows, then to the air pressure. There may be more than one group or individual session, and the patient may work through the steps at home. Note: For patients with severe psychological aversion to PAP, monitoring during desensitization programs (e.g., PAP-NAP) is not necessary; or

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
d. The patient is experiencing PAP failure, defined as AHI greater than 20 events per hour while using PAP after meeting Criterion E.3.a. or E.3.b. or E.3.c above.

V. Surgical treatment of obstructive sleep apnea (OSA) and upper airway resistance syndrome (UARS) in adult patients is considered **not medically necessary** when Criterion IV. is not met, including PAP therapy refusal, or to treat snoring in the absence of documented obstructive sleep apnea in adult patients.

VI. Surgical treatments of obstructive sleep apnea (OSA) and upper airway resistance syndrome (UARS) in adult patients not listed in Criterion IV.B. are considered **investigational** including, but not limited to the following:

A. Laser-assisted uvulopalatoplasty (LAUP) or volumetric tissue reduction

B. Palatal stiffening procedures, including but not limited to cautery-assisted palatal stiffening operation (CAPSO), injection of sclerosing agent (also known as snoreplasty), or implantation of palatal implants (also known as the pillar procedure)

C. Radiofrequency volumetric tissue reduction of the tongue base or palatal tissues

D. Tongue base suspension procedures, including but not limited to the Airvance™ and the Encore™ tongue suspension systems

E. Uvulectomy

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

Not all patients are candidates for a mandibular repositioning device. Patients with tonsil hypertrophy criteria grade 3 or 4 on the Friedman scale, severe psychiatric diseases or dementia, untreated caries or periodontal disease, few teeth for anchoring a device, temporomandibular joint disorder, inadequate mandibular protrusive capacity, and class III malocclusion are examples of conditions that are contraindications to mandibular repositioning appliances.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION

The information below **must** be submitted for review to determine whether policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Current Symptomology
- Conservative Medical Therapies failed
- PAP Trial results
- Sleep Study results
- Documentation of an adequate trial of a mandibular repositioning device or documentation that the patient is not an appropriate appliance candidate with clinical rationale
- Evidence of airway obstruction or narrowing consistent with the procedure requested

CROSS REFERENCES

1. Prefabricated Oral Appliances for Obstructive Sleep Apnea, Allied Health, Policy No. 36
2. Orthognathic Surgery, Surgery, Policy No. 137
3. Absorbable Nasal Implant for Treatment of Nasal Valve Collapse, Surgery, Policy No. 209
4. Phrenic Nerve Stimulation for Central Sleep Apnea, Surgery, Policy No. 212
5. Hypoglossal Nerve Stimulation, Surgery, Policy No. 215

BACKGROUND

OBSTRUCTIVE SLEEP APNEA (OSA)

Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction due to the collapse and obstruction of the upper airway during sleep. The hallmark symptom of OSA is excessive daytime sleepiness, and the typical clinical sign of OSA is snoring, which can abruptly cease and be followed by gasping associated with a brief arousal from sleep. The snoring resumes when the patient falls back to sleep, and the cycle of snoring/apnea/arousal may be repeated as frequently as every minute throughout the night.

Sleep fragmentation associated with the repeated arousal during sleep can impair daytime activity. For example, adults with OSA-associated daytime somnolence are thought to be at higher risk for accidents involving motorized vehicles (i.e., cars, trucks, heavy equipment). OSA in children may result in neurocognitive impairment and behavioral problems. In addition, OSA affects the cardiovascular and pulmonary systems. For example, apnea leads to periods of hypoxia, alveolar hypoventilation, hypercapnia, and acidosis. This, in turn, can cause systemic hypertension, cardiac arrhythmias, and cor pulmonale. Systemic hypertension is common in patients with OSA. Severe OSA is associated with decreased survival, presumably related to severe hypoxemia, hypertension, or an increase in automobile accidents related to overwhelming sleepiness.

A polysomnogram performed in a sleep laboratory and, in adults, home sleep apnea testing with a technically adequate device (see Appendix 1), are considered the gold standard tests used to diagnose OSA in adults.[1] Objective measures of OSA are compiled using polysomnography monitors, which document the number of apneic and hypopneic events per hour and combine them into the apnea-hypopnea index (AHI). The respiratory disturbance index (RDI) may be defined as the number of apneas, hypopneas and respiratory effort-related arousals (RERAs) per hour of sleep. The final diagnosis of OSA rests on a combination of objective and subjective criteria (e.g. AHI or RDI and excessive daytime sleepiness) that seek to identify those levels of obstruction which are clinically significant. When sleep onset and offset are unknown (e.g., in home sleep studies) the AHI or RDI may be calculated based on the number of apneas, hypopneas, and/or RERAs per hour of recording time.

An increase in mortality is associated with an AHI greater than 15. More difficult to evaluate is the clinical significance of patients with mild sleep apnea. Mortality has not been shown to be increased in these patients, and frequently the most significant manifestations reported by the patient are snoring, excessive daytime sleepiness, witnessed breathing interruptions, awakenings due to gasping or choking, nocturia, morning headaches, memory loss, irritability, or hypertension.[2, 3] The hallmark clinical symptom of OSA is excessive snoring, although it is important to note that snoring can occur in the absence of OSA. Isolated snoring in the
absence of medical complications, while troubling to the patient’s bed partner, is not considered a medical problem requiring surgical intervention.

Table 1. Definitions of Terms for Obstructive Sleep Apnea

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apnea</td>
<td>The frequency of apneas and hypopneas is measured from channels assessing oxygen desaturation, respiratory airflow, and respiratory effort. In adults, apnea is defined as a drop in airflow by ≥90% of pre-event baseline for at least 10 seconds. Due to faster respiratory rates in children, pediatric scoring criteria define an apnea as ≥2 missed breaths, regardless of its duration in seconds.</td>
</tr>
<tr>
<td>Hypopnea</td>
<td>Hypopnea in adults is scored when the peak airflow drops by at least 30% of pre-event baseline for at least 10 seconds in association with either at least 3% arterial oxygen desaturation or an arousal or at least 4% arterial oxygen desaturation (depending on the scoring criteria). Hypopneas in children are scored by a ≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
</tr>
<tr>
<td>Apnea/Hypopnea Index (AHI)</td>
<td>The average number of apneas or hypopneas per hour of sleep</td>
</tr>
<tr>
<td>Obstructive sleep apnea (OSA)</td>
<td>Repetitive episodes of upper airway obstruction due to the collapse and obstruction of the upper airway during sleep</td>
</tr>
</tbody>
</table>
| Mild OSA | In adults: AHI of 5 to <15
In children: AHI ≥1 to <5 |
| Moderate OSA | In adults: AHI of 15 to <30
In children: AHI ≥5 to <10 |
| Severe OSA | Adults: AHI ≥30
Children: AHI ≥10 |
| Continuous positive airway pressure (CPAP) | Positive airway pressure may be continuous (CPAP) or auto-adjusting (APAP) or Bi-level (Bi-PAP). CPAP is a more familiar abbreviation and will refer to all types of PAP devices. |
| PAP Failure | Usually defined as an AHI greater than 20 events per hour while using PAP (continuous or bi-level) |
| PAP Intolerance | PAP use for less than 4 h per night for 5 nights or more per week, or refusal to use PAP (continuous or bi-level). PAP intolerance may be observed in patients with mild, moderate, or severe OSA |

UPPER AIRWAY RESISTANCE SYNDROME (UARS)

Upper airway resistance syndrome (UARS) was initially used to describe a variant of OSA which is characterized by a partial collapse of the airway resulting in increased resistance to airflow. This resistance does not result in apnea, but the increased respiratory effort required to move air into the lungs results in fragmented sleep. These sleep fragmentations (RERAs) can be measured using an electroencephalogram (EEG). Diagnosis of UARS rests on documentation of more than 10 EEG arousals per hour of sleep along with documented episodes of abnormally negative intrathoracic pressure (i.e., more negative than -10 cm) associated with the EEG arousals. The drop in intrathoracic pressure can be measured by a variety of tests including use of an esophageal manometer, if available, as part of a polysomnogram. RERAs can also be detected absent manometry during polysomnography. It has been proposed that UARS is a distinct syndrome from OSA that may be considered a disease of arousal.

See Appendix 1 for additional information on diagnostic tests for OSA and UARS.
SURGICAL TREATMENTS FOR OSA AND UARS

Medical therapy is considered the first-line treatment for OSA and UARS. These therapies include weight loss, various continuous positive airway pressure (CPAP) devices, or orthodontic repositioning devices in appropriate patients. See Appendix 2 for a description of medical devices used in the treatment of OSA and UARS. Most guidelines consider surgical intervention only after all appropriate medical treatments for OSA or UARS have failed. Conventional surgeries for OSA include uvulopalatopharyngoplasty (UPPP) and a variety of maxillofacial surgeries such as maxillo-mandibular advancement (MMA).

Uvulopalatopharyngoplasty (UPPP)

UPPP involves surgical modification of the oropharynx and/or velopharynx by resection or reconstruction of the associated structures (soft palate, uvula, and associated muscles).[^4] The UPPP procedure enlarges the oropharynx but cannot correct obstructions in the hypopharynx. Therefore, if hypopharynx obstruction is identified, then alternate procedures are considered. In addition, patients who fail UPPP may be candidates for additional procedures, depending on the site of obstruction. Additional or alternate procedures include hyoid suspensions, maxillary and mandibular osteotomies, and mandibular and maxillary advancement surgery.

Mandibular and maxillary advancement (MMA) surgery

Mandibular and maxillary advancement (MMA) surgery (may also be referred to as telegnathic surgery) is more extensive and is proposed for patients who do not have an adequate response to UPPP or other procedures, or who have mandibular or maxillary deficiency. These surgeries may be used to correct obstruction of the hypopharynx, oropharynx, or velopharynx; the areas of the full length of the throat.

Laser assisted uvuloplasty (LAUP)

LAUP is an outpatient procedure that has been proposed as a treatment of snoring with or without associated OSA. In this procedure, the tissues of the soft palate (palatal tissues) are reshaped using a laser. The extent of the surgery is typically different than standard UPPP, since only part of the uvula and associated soft-palate tissues are reshaped. The procedure, as initially described, does not remove or alter tonsils or lateral pharyngeal wall tissues. The patient undergoes from 3 to 7 sessions at 3- to 4-week intervals. LAUP cannot be considered an equivalent procedure to the standard UPPP, with the laser simply representing a surgical tool that the physician may opt to use. LAUP is considered a unique procedure, raising unique issues of safety and effectiveness.

Palatal stiffening procedures and radiofrequency tissue reduction

Radiofrequency ablation of the soft palate and radiofrequency volumetric reduction of the tongue base (RFTBR)

Radiofrequency energy is used to produce thermal lesions within the tissues. Radiofrequency devices transmit low frequency energy that causes ionic friction, which leads to coagulation necrosis, inflammation, and fibrosis.[^6] These procedures may reduce the volume of soft tissue and may stiffen the tissue due to the creation of a submucosal scar. Radiofrequency based treatments to modify tissues of the soft palate have historically been referred to as somnoplasty.
Cautery assisted palatal stiffening procedure (CAPSO)

This palatal stiffening procedure uses cautery (electrically heated probes) to induce a midline palatal scar designed to stiffen the soft palate to eliminate excessive snoring.

Other palatal stiffening procedures

Other palatal stiffening procedures in use include injection sclerotherapy (also known as injection snoreplasty) and the pillar procedure, which involves the permanent implantation of braided polyester filaments into the soft palate through a needle.

Suspension of the tongue base and hyoid bone

Tongue or hyoid bone suspension is performed through a small incision under the chin. A titanium screw is inserted under the chin in the posterior aspect of the lower jaw at the floor of the mouth. For tongue suspension, a loop of suture is passed through the tongue base and attached to the mandibular bone screw. For hyoid suspension a suspension loop is placed around the hyoid bone and anchored to the mandibular screw or to the thyroid cartilage. Once the suspension loop is attached to the screw it is pulled forward to advance the tongue base out of the airway, making it less likely for the base of the tongue to drop backward during sleep.

Uvulectomy

This procedure surgically removes the uvula, the small tissue hanging from the soft palate at the back of the throat above the tongue. The uvula, which helps stiffen and shape the back of the throat and prevents food from going down the airway, is believed to be associated with excessive snoring.

Partial Glossectomy

This procedure, also referred to as midline glossectomy, surgically removes a portion of the tongue in an effort to reduce tongue volume and open the oropharynx and/or hypopharynx.

REGULATORY STATUS

The Somnoplasty® device has been cleared for marketing by FDA for RFA of palatal tissues for simple snoring and for the base of the tongue for OSA. FDA product code: GEI.

Airvance® (Medtronic; formerly the Repose™ Bone Screw System from Influence) was cleared for marketing through the FDA 510(k) process in 1999 with intended use for anterior tongue base suspension by fixation of the soft tissue of the tongue base to the mandible bone using a bone screw with prethreaded suture. It is indicated for the treatment of OSA and/or snoring.

The Encore™ Tongue Suspension System (Siesta Medical) received clearance for marketing by FDA in 2011, citing the PRELUDE III Tongue Suspension System (Siesta Medical) as a predicate device.

The Pillar® Palatal Implant System (originally Restore Medical, St. Paul, MN, acquired by Medtronic, Minneapolis, MN) is an implantable device that has been cleared for marketing through the FDA 510(k) process. The labeled indication of the device is as follows: “The Pillar™ Palatal Implant System is intended for the reduction of the incidence of airway
Positive airway pressure (PAP, continuous or bi-level) is the most widely accepted medical therapy for treatment of obstructive sleep apnea (OSA) in adults and improvement of primary health outcomes such as cardiovascular disease, type 2 diabetes, and overall mortality associated with OSA.[5] Surgical interventions are being proposed as a second line treatment for patients who have experienced PAP failure or intolerance.

Appropriately controlled and adequately powered, long-term randomized controlled trials (RCTs) are needed to determine the safety and effectiveness of various surgical interventions for treatment of OSA.

The evidence suggests conventional uvulopalatopharyngoplasty (UPPP), hyoid suspension, mandible osteotomy, partial glossectomy, and maxillofacial surgeries such as maxillo-mandibular advancement (MMA), may improve health outcomes for some patients with OSA who have failed medical therapies for OSA.

- The available evidence does not currently support the widespread use of surgical interventions in the management of unselected patients with obstructive sleep apnea. Given the proven safety and efficacy of CPAP in patients with moderate and severe symptoms and significant sleep disordered breathing, surgery cannot be recommended as a first line therapy, ahead of positive airways pressure systems.[5, 7]

- While studies on UPPP and hyoid suspension procedures were not randomized, data from ten studies which included more than 750 patients consistently reported improved outcomes for patients with OSA as measured by postoperative polysomnographic assessment of sleep disturbance and compared with concurrent groups being treated with CPAP.[8]

- UPPP, hyoid suspension, mandible osteotomy, partial glossectomy and MMA procedures are widely practiced among surgeons in the United States. These procedures have been considered a standard of care in the medical community.[8]

Evidence is uncertain for use of other surgical interventions in the treatment of OSA, including but not limited to uvulectomy and minimally invasive surgical procedures such as laser-assisted uvuloplasty (LAUP), radiofrequency tongue base reduction (RFTBR), pillar stiffening procedures, and pillar implants. Therefore, the following evidence review will be focused on the investigational indications in this policy.

SURGICAL TREATMENTS FOR OSA

Technology Assessments and Systematic Reviews

A 2011 Agency for Healthcare Research and Quality (AHRQ) Comparative Effectiveness Review entitled “Diagnosis and Treatment of Obstructive Sleep Apnea in Adults” included studies conducted only in adults, defined as over 16 years of age. The authors state the following regarding the available evidence for surgical interventions for the treatment of OSA: [5]
The strength of evidence is insufficient to evaluate the relative efficacy of surgical interventions for the treatment of OSA.

The strength of evidence is insufficient to determine the relative merits of surgical treatments versus CPAP.

Due to the heterogeneity of interventions and outcomes examined, the variability of findings across studies, and the inherent bias of all but one study regarding which patients received surgery, it is not possible at this time to draw useful conclusions comparing surgical interventions with CPAP in the treatment of patients with OSA.

The review cited the lack of comparative trials between CPAP and proposed surgical modalities and the lack of trial data providing long-term health outcomes associated with OSA treatment as limitations to available evidence.

Earlier evidence-based systematic reviews on the use of surgical therapies in OSA cited the lack of well-designed randomized controlled trials (RCTs) assessing different surgical techniques with inactive and active control treatments.[7, 9] These reviews were not able to make the highest-level recommendation supporting the use of any one surgical intervention. Limitations of studies include heterogeneous patient populations with mixed OSA severity, as measured by AHI; and lack of long-term followup. These reviews state that long-term follow-up of patients who undergo surgical correction of upper airway obstruction would help to determine whether surgery is curative, or whether the signs and symptoms of sleep apnea return, prompting patients to seek further treatment.

The 2009 systematic review by Franklin evaluated benefits and adverse effects of surgery for snoring and OSA.[10] The authors found only a small number of randomized controlled trials (RCTs) that assessed surgical procedures for snoring or sleep apnea. Key findings are as follows:

- Results from 45 studies reporting adverse events revealed persistent side effects after uvulopalatoplasty (UPP) and uvulopalatopharyngoplasty (UPPP) in about half the patients. Difficulty swallowing, globus sensation, and voice changes were especially common. The authors concluded that additional research with RCTs of surgery other than UPP and UPPP is needed, as these surgical procedures are related to a high risk of adverse effects, especially difficulty swallowing.
- Four RCTs, rated as high quality, were identified for laser-assisted palatoplasty (LAUP) and radiofrequency ablation (RFA).[11-14] Study results were mixed and inconclusive for Apnea/Hypopnea Index (AHI), and showed no benefit on daytime sleepiness or quality of life. Interpretation of this result is limited by the inclusion of studies with one-stage procedures and subjects whose main symptom was disruptive snoring.[13] The relevant trials are described in greater detail below.

RADIOFREQUENCY VOLUMETRIC TISSUE REDUCTION OF THE TONGUE BASE OR PALATAL TISSUES

Systematic Reviews

Baba (2015) performed a systematic review and meta-analysis that addressed the efficacy of temperature controlled radiofrequency tissue ablation (TCRFTA) to alleviate symptoms of OSA.[15] The analyses included three small nonrandomized comparative trials comparing TCRFTA with three different nonsurgical or surgical interventions and seven prospective case series (of which all but one were small). TCRFTA was categorized based on location: base of
tongue, soft palate and multilevel. Analysis showed significant reductions in respiratory disturbance index (RDI), Epworth Sleep Scale (ESS), lowest oxygen saturation (LSAT), and snoring for procedures performed at the base of the tongue. TCRFTA at the soft palate showed limited efficacy, although there was a paucity of studies in this area. Multilevel TCFFFTA did show a significant reduction in RDI, in the short term. Analysis of AHI was not completed as this outcome was not consistently reported within the studies. The authors reported that the studies were generally of low quality and there was significant heterogeneity which did not allow for strong conclusions. Studies with longer-term outcomes would be useful in evaluating the benefits of this procedure.

In 2008, Farrar published a meta-analysis of RFA for the treatment of OSA in patients with a RDI of 5 or more.[6] Sixteen studies met the inclusion criteria; three were randomized and 13 were nonrandomized. Six studies treated both the base of the tongue and the soft palate, two treated the soft palate only, and eight ablated the base of the tongue only. The population was in the overweight, but not obese, category, with a mean BMI of 28.5. In half of the studies, the average baseline RDI was less than 30, and in six of the studies, the average baseline ESS was less than 10. The meta-analysis indicated a 31% reduction in both ESS and RDI. The lowest oxygen saturation level was not improved by RFA. The mean number of treatments required for patient satisfaction was 3.7 for the soft palate, 4.3 for the base of the tongue, and 4.8 for both sites (range, 3-7). Complications were noted in 4% of patients; two tongue abscesses progressed to airway obstruction requiring tracheotomy. Only two of the studies provided 2-year follow-up, with a 32% reduction in ESS and a 45% reduction in RDI. The number of patients who were successfully treated (e.g., 50% reduction in RDI) was not reported. This meta-analysis is limited by the inclusion of poor-quality uncontrolled studies.

Randomized Controlled Trials

McKay (2020) published the results of a randomized controlled trial (RCT, multicenter, parallel-group, open-label) that compared multilevel surgery (modified uvulopalatopharyngoplasty and radiofrequency tongue volume reduction; n=51) and ongoing medical management (e.g., advice on sleep positioning, weight loss; n=51) for the treatment of OSA.[16] There was a statistically significantly greater improvement from baseline to six months in AHI in the surgery group (47.9 vs. 20.8) than in the ongoing medical management group (45.3 vs. 34.5, mean baseline-adjusted between-group difference,−17.6 events/h of sleep [95%CI,−26.8 to −8.4]; p<0.001) and in the ESS in the surgery group (12.4 vs 5.3) compared with the ongoing medical management group (11.1 vs 10.5, mean baseline adjusted between-group difference,−6.7 [95%CI,−8.2 to−5.2]; p<0.001). There were six serious adverse events in four participants in the surgery group and no serious adverse events in the ongoing medical management group. Although the results of this study did surpass the minimal clinically important difference for AHI, they did not meet the sufficiently important difference for AHI (the amount needed to account for the cost and potential morbidity of surgery), indicating that further studies are needed to establish the long-term effectiveness, safety, and cost-effectiveness of this surgical treatment for OSA. In addition, women were underrepresented in the trial and the study cohort was limited to a select population that excluded patients with severe obesity (BMI of 38 or greater), patients older than 70 years, and patients with retrognathia and significant comorbidities, limiting generalizability of the outcomes. No comparison of UPPP alone to RF tongue reduction alone or of these procedures alone compared to medical management was provided. Ultimately, the authors conclude “further research is needed to confirm these findings in additional populations and to understand clinical utility, long-term efficacy, and safety of multilevel upper airway surgery for treatment of patients with OSA.”
A single-blinded RCT of single-stage radiofrequency surgery of the soft palate was reported in 2009 by Back.[17] Thirty-two patients with mild OSA (AHI between 5 and 15), habitual snoring, and excessive daytime sleepiness according to subjective patient history, were randomized to a single session of RFA or sham ablation. There was no difference between the groups for baseline to posttreatment (4-6 months) changes in the Epworth Sleepiness Scale (ESS) (3-point improvement in ESS for both groups), reports of snoring (1-point improvement in both groups), AHI (no clinically significant change), or any other outcome measure. None of the patients reported any treatment-related symptoms or complications four months after treatment. Results of this small single-blinded RCT indicate that single-stage RFA of the soft palate is not effective for the treatment of mild OSA.

A RCT from 2009 by Fernandez-Julian compared efficacy and adverse effects of two tongue-based procedures (RFA or tongue-base suspension) when combined with UPPP in 57 patients with moderate-to-severe sleep apnea (AHI ≥15).[18] Patients with a BMI of 35 kg/m^2 or greater were excluded. Although interpretation of results is limited by the lack of a control group treated with UPPP alone, the success rate for combined RFA + UPPP (defined as a ≥50% reduction and final AHI <15) was 51%. BMI was the main predictor of success, with success rates of only 12.5% in patients with a BMI between 30 and less than 35 kg/m^2.

A 2003 two-site RCT study by Woodson compared the use of multilevel RFA with the current criterion standard of CPAP.[12] The study included patients with mild obesity levels (BMI ≥34 kg/m^2) who had mild to moderate sleep apnea with an AHI between 10 and 30. Statistically significant improvement was noted with RFA and CPAP over placebo in OSA-specific quality of life using the Functional Outcomes of Sleep Questionnaire. However, the small size of the trial resulted in most outcomes not being statistically significant. The same group of authors reported a further subgroup analysis from the same trial, focusing on the 26 patients randomized to the RFA arm of the trial to determine whether additional treatments improved outcomes.[19] Specifically, the authors focused on multilevel treatments on various combinations of palatal and tongue tissues. Greater improvements in quality of life were reported for those patients who had a total of five treatments compared with 3. Another subgroup analysis focused on multilevel treatments in 26 patients.[20] This subgroup likely contains overlapping patients with the previous report, and the results were similar (i.e., greater improvements were reported in those patients who had a total of five treatments).

Nonrandomized Studies

A 2008 retrospective cohort study assessed the incremental value of RFA of the tongue in combination with UPPP.[21] All patients with both palatal and retroglossal obstruction, an RDI between 5 and 50, and no previous OSA surgery were included in the study. Seventy-five patients meeting the inclusion criteria had been treated with UPPP during the three year period, 38 had UPPP alone, 37 had UPPP plus RFA. The groups were comparable for age, sex, BMI, AHI, and mean arterial oxygen saturation (Sao2); however, no details were provided regarding the choice of procedure. With surgical success rate defined as more than 50% reduction of the AHI and AHI below 20, the success rate was 42% with UPPP alone and 49% with RFA (not significantly different). Two patients had an additional RFA treatment. No major complications were observed. The study concluded that the addition of RFA to UPPP resulted in only limited improvement, but there was no major downside to it.

Two earlier case series have been published by Steward (2005) and Stuck (2004) on the use of radiofrequency ablation of both tongue base and soft palate tissue, referred to as a
combined or multi-level radiofrequency tissue ablation technique. Both case series reported significant improvements, including reductions in mean respiratory disturbance and apnea-hypopnea indexes, and in one case series these improvements persisted for a median of 23 months. However, both case series are limited by size, including 29 and 20 patients, respectively, and potential selection bias among the included participants. In addition, the ability to detect true long-term efficacy of this treatment is limited by the case series study design with lack of control group.

Radiofrequency Volumetric Tissue Reduction of the Tongue Base or Palatal Tissues

Section Summary

The evidence for the use of radiofrequency volumetric tissue reduction of the tongue base or palatal tissues for the treatment of obstructive sleep apnea or upper airway resistance syndrome includes two systematic reviews, three randomized controlled trials, and three non-randomized studies. The considerable heterogeneity of outcomes tested across studies does not allow for conclusions about the potential benefit of these procedures. Additional appropriately controlled studies are needed to inform the clinical outcomes of these procedures alone or in addition to standard of care, as well as to evaluate the long-term benefits of these procedures.

TONGUE BASE SUSPENSION PROCEDURES

Systematic Reviews

In 2013, Handler reported a systematic review of tongue suspension versus hypopharyngeal surgery for the treatment of OSA. The review included 27 studies reporting on four separate procedures; tongue suspension alone, tongue suspension + UPPP, genioglossus advancement (GA) + UPPP, and genioglossus advancement + hyoid suspension (GAHM) + UPPP. A successful treatment was defined as a 50% decrease in the RDI or AHI and a postoperative RDI or AHI less than 20. Tongue suspension alone (six studies, 82 patients) had a success rate of 36.6%, while the success rate of tongue suspension + UPPP (eight studies, 167 patients) was 62.3%. A success rate of 61.1% was found for GA + UPPP (seven studies, 151 patients) and for GAHM + UPPP (12 studies, 467 patients). The adverse effects of tongue suspension appear to be milder than GA or GAHM and are reversible. Most of the studies identified in this review were level IV evidence (case series).

Randomized Controlled Trial

One level II RCT by Fernandez-Julian (2009) included in the systematic review compared two tongue base surgeries (RFA or tongue-base suspension) combined with UPPP for moderate to severe sleep apnea (AHI ≥15). In the tongue suspension plus UPPP group (n=28), the mean AHI decreased from 33.1 to 15.1 events per hour. The success rate for the combined procedure (defined as a ≥50% reduction, final AHI <15, and ESS <11) was 57.1%, compared with a success rate of 51.7% in the UPPP plus RFA group (p=0.79). BMI was the main predictor of success, with a success rate for tongue base suspension plus UPPP of only 10% in patients with a BMI between 30 and 35 kg/m². Morbidity and complications were higher with the tongue suspension procedure compared with RFA.

Nonrandomized Studies

In 2013, Li conducted a nonrandomized comparative study to evaluate the use of the Repose system in conjunction with UPPP to treat patients with obstructive sleep apnea hypopnea...
syndrome (OSAHS) caused by suspected glossoptosis. Seventy-eight patients with OSAHS caused by suspected glossoptosis were non-randomly divided into two groups. The 45 patients in the first group received UPPP and tongue-base suspension (Repose). The 33 patients in the second group received UPPP alone. Follow-up was conducted over six months, and polysomnography was used to determine the effects of treatment. Follow-up results at six months revealed that the degree of improvement in patients treated with UPPP + Repose was significantly greater than that seen in patients treated with UPPP alone. In the UPPP + Repose group, 17 patients were cured, 23 showed marked improvement, and five did not improve. In the UPPP alone group, one patient was cured, 16 showed marked improvement, and 16 did not improve. The marked improvement rates of the two groups were 88.9 and 51.5 %, respectively, a significant difference.

In a 2010 multicenter, prospective case series, Woodson assessed the safety and effectiveness of an adjustable lingual suspension device (Advance System) for treating OSA. Forty two surgically naive patients with moderate to severe OSA and tongue base obstruction underwent surgical insertion of a midline tissue anchor into the posterior tongue and connected to an adjustable mandibular bone anchor with a flexible tether. Outcomes included changes in AHI, sleepiness, sleep-related quality-of-life, snoring, swallowing, speech and pain. After six months, all patients noted improvement for AHI, sleepiness and sleep-related quality of life. Post implant pain scores were mild to moderate at day one and resolved by day five. Device related adverse events included wound infection (7%) and edema or seroma (5%), which resolved. However, in 31 percent of patients, asymptomatic tissue anchor barb fractures were observed radiographically. The tissue anchor failure rate of the tested device precludes its clinical use. Further investigation is warranted.

In 2002, Miller conducted a retrospective analysis of the Repose System for the treatment of OSA to describe preliminary experience using the system in conjunction with UPPP in the multilevel surgical approach. The authors evaluated 19 consecutive patients undergoing UPPP and the Repose System tongue base suspension for the management of OSA during a one-year period. Fifteen patients had complete preoperative and postoperative PSG data. A 46% reduction in RDI was demonstrated at a mean of 3.8 months after surgery. The apnea index demonstrated a 39% reduction. The authors concluded that the Repose System in conjunction with UPPP has been shown to produce significant reductions in the RDI and apnea index, as well as a significant increase in oxygen saturation. Despite the improvement in these objective parameters, the overall surgical cure rate was only 20% (three of 15 patients) in this retrospective series. Further research is warranted to define the role of the Repose System in the management of obstructive sleep apnea patients.

In 2000, DeRowe performed minimally invasive technique for tongue-base suspension with the Repose system in 16 patients with sleep-disordered breathing. Fourteen patients reported an improvement in daytime sleepiness, and their bed partners reported an improvement in snoring. The mean respiratory distress index before surgery was 35. Two months after surgery, the mean respiratory distress index was 17, an improvement of 51.4%. These preliminary results show the initial efficacy and safety of this new surgical procedure. Similar improvements were reported in other small case series (n=8-14 patients with OSA) who underwent the same procedure.

Tongue Base Suspension Procedures Section Summary
Evidence for the tongue base suspension procedures for the treatment of sleep apnea or upper airway resistance syndrome includes one systematic review, one randomized controlled trial, and four non-randomized studies. These studies report low success rates of the procedure, particularly in obese individuals, and adverse events including wound infection, edema, pain, and tissue anchor barb fractures are reported. Long-term outcomes of the procedure are not well characterized. Additional studies with longer end-points including those addressing safety and efficacy are needed.

LASER-ASSISTED PALATOPLASTY

Systematic Reviews

Wischhusen (2019) published a SR evaluating the complications and side effects of laser-assisted uvulopalatoplasty (LAUP) across 42 studies (N=3,093). Mean follow-up was 16.1 months (median six months, range of 0.5 – 134 months). Across all 42 studies, the total number of LAUP complications based on a population of 1,000 patients with a 95% CI was reported as 255.71 ± 23.33. The authors also calculated relative risk of specific complications compared to published population studies and found significant effects for complications of globus sensation and velopharyngeal (VP) insufficiency with 95% CI of 1.07–2.06 and 1.29–3.94, respectively. In the four studies with the longest follow-up duration with a mean of 100.5 months, these complications were 12.2% and 10.8%, respectively, suggesting that these may be long-term complications of the procedure. The authors conclude “based on the findings of this systematic review, we recommend that LAUP be performed with caution using the tissue-sparing approach or avoided altogether, given the potential for complications identified in the current literature.”

Randomized Controlled Trials

Ferguson (2003) reported a trial that randomized 45 subjects with mild-to-moderate sleep apnea (defined as an AHI ranging between 10-27 per hour) to either uvulopalatoplasty (LAUP) or no treatment. The LAUP procedure was repeated at 1- to 2-month intervals until either the snoring was significantly reduced, no more tissue could safely be removed, or the patient refused further procedures. The primary outcome measurement was the reduction in AHI in the LAUP group versus the control group. An AHI of less than 10 was considered a successful treatment. In the treatment group, 24% were considered treatment successes and 76% were failures. In the control group (who received no therapy), 16.7% were considered treatment successes. The authors concluded that LAUP can be effective in some patients, but the reduction in AHI and the level of symptomatic improvement were minor overall.

Nonrandomized Studies

In 1995, Walker prospectively evaluated the outcomes of 65 patients who underwent LAUP for the treatment of OSA. Of the 65 OSAS patients treated with LAUP, postoperative polysomnograms were obtained in 33 patients (51%). Surgical success was achieved in 16 (48%) of the 33 patients. However, seven patients (21%) had repeat polysomnograms that were worse than their preoperative polysomnograms, and five patients (15%) had no significant change.

CAUTERY-ASSISTED PALATAL STIFFENING OPERATION

Systematic Reviews
Llewellyn (2018) published a SR with meta-analysis of outcomes for cautery-assisted palatal stiffening operation (CAPSO) as a treatment for adult OSA. This SR included eight studies (N=307) conducted in adult patients with sleep disordered breathing.\[34\] Additional inclusion criteria for the SR were: “outcomes for sleep study information, snoring and/or sleepiness; anterior palatoplasty or palatal stiffening operation or CAPSO or modified CAPSO with or without tonsillectomy/expansion pharyngoplasty (plication of palatopharyngeus);” and no other surgical procedures performed at the same time. Among these studies, four were considered to have high risk of bias in patient selection per QUADAS-2. The authors reported the following improvements (mean ± standard deviation [M ± SD] events per hour, percent change) in AHI: CAPSO alone (N=80 patients), (16.8 ± 11.9) to (9.9 ± 10.9), a 41.1% decrease; mixed CAPSO with/without tonsillectomy (N=92), (24.8 ± 12.6) to (10.6 ± 9.5), a 61.7% decrease; CAPSO with expansion pharyngoplasty (N=78), (26.3 ± 17.7) to (12.6 ± 5.8), a 52.1% decrease. The authors also reported the following improvement in lowest oxygen saturation (LSAT): CAPSO alone (N=90), 5.4 point improvement; mixed CAPSO with/without tonsillectomy (N=77), 10.6 point improvement; and CAPSO with expansion pharyngoplasty (N=78), 5.2 point improvement. Although the authors reported effect sizes for pre- and post-surgery outcomes across all data, for none of the above analyses evaluating effects of CAPSO alone or in combination with other interventions were assessments of statistical significance (p values) reported. This SR included studies by Mair (2000) and Pang (2007), which focused on patients with simple snoring (AHI <5) or mild sleep apnea (AHI <15).\[35, 36\] A study with long-term follow-up reported in this SR found that 38% of patients with mild to moderate OSA had globus sensation and inability to clear phlegm 2 years after the operation.\[37\] Future RCTs evaluating the specific and long-term benefit of CAPSO in OSA are needed.

Randomized Controlled Trials

No additional RCTs beyond those addressed in the SR above on the use of cautery-assisted palatal stiffening operation in the treatment of OSA or UARS have been identified.

PALATAL IMPLANTS

Systematic Reviews

No SRs for the use of palatal implants for the treatment of OSA or UARS have been identified.

Randomized Controlled Trials

In 2012, Maurer reported a randomized double-blind, sham-controlled trial of the Pillar palatal implant in 20 patients with mild to moderate OSA because of palatal obstruction.\[38\] At 90 days, the AHI in the treatment group improved from 19.1 to 8.2 events per hour and lowest oxygen saturation improved from 82.8% to 88.3%. These measures did not improve significantly in the control group, and there was no significant difference in outcomes between the implant and control groups in this small trial. The ESS did not improve significantly in either group.

In a 2008 trial by Steward, 100 patients with mild to moderate OSA and suspected retropalatal obstruction were randomly assigned to palatal implants or sham placebo.\[39\] Patients with BMI greater than 32 kg/m\(^2\) were excluded from the study. About 1000 patients were evaluated to identify the 100 study patients. At three-month follow-up, the average AHI increased in both groups from a baseline of about 17, although the increase was greater in the placebo group (8.9 vs 2.9, respectively). A reduction in AHI by at least 50% or to below 20 was more common
in the implant group (26% vs 10%, respectively; p=0.05). Improvement in ESS did not differ from that of sham (p=0.62). Partial implant extrusion occurred in two patients (4%).

In 2008, Friedman reported an industry-sponsored randomized double-blind, sham-controlled trial of palatal implants in 62 patients with symptoms of OSA.\[40\] Other inclusion criteria included: Friedman tongue position I, II, or III; diagnosis of mild to moderate OSA (AHI ≥5 and <40) on baseline polysomnography (PSG); a soft palate of 2 cm or more but less than 3.5 cm; and BMI less than 32 kg/m². AHI at baseline was 23.8 events per hour in the implant group and 20.1 in controls. Seven patients did not return for repeat PSG and were considered treatment failures in the intention-to-treat analysis. At three-month follow-up, the AHI improved to 15.9 events per hour in the implant group but did not change significantly in the controls (21.0). The ESS improved from 12.7 to 10.2 in the implant group and did not change significantly in the controls (11.7 to 11.1). With success defined as an AHI reduction of 50% or more and AHI less than 20, palatal implantation resulted in the successful treatment of 41.9% of implanted patients compared with 0% of controls. Two patients had partial implant extrusion.

Nonrandomized Studies

Neruntarat (2011) reported a case series with a minimum of 24-month follow-up.\[41\] This study included 92 patients with mild to moderate OSA (AHI ≤30 with daytime sleepiness or disturbed sleep) who had received palatal implants after failed medical management. At baseline, the mean AHI was 21.7 events per hour, and the lowest oxygen saturation was 87.4%. At mean 28.9-month follow-up, the AHI had decreased to 10.8, and the lowest oxygen saturation improved to 89.2%. Sleep efficiency improved from 80.6% to 87.2%, and the ESS score improved from a mean of 12.3 to 7.9. Implant extrusion occurred in seven patients (7.6%), and palatal abscess occurred in one patient (1.1%). Confounding factors, such as significantly lower BMI in “responders” may have affected the interpretation of the efficacy of this procedure in this patient population.

Walker published 90-day and 15-month follow-up from a multicenter study on palatal implants (Pillar System) in 63 subjects.\[42, 43\] The AHI decreased from a baseline of 25 to 22 in the 53 patients (84%) who were evaluated at 90 days. Twenty-two patients (35%) were available for the follow-up study; 13 had shown a decrease in AHI (from a baseline of 20 to 13) at 90 days. Of these, 10 (77% of the 13) maintained the decrease at 15 months. The nine patients whose AHI had not improved at 90 days had no subsequent improvement at the extended follow-up. Mean snoring was rated as eight at baseline (visual analog scale), and 4 at both 90 days and 15 months. Subjective daytime sleepiness measured by the ESS was reduced at 90 days (11 to 7) but returned to a score of 11 at the longer follow-up. In addition to the very large loss to follow-up, questions remain about the clinical significance of a three- to seven-point improvement in AHI.

In a prospective study, Nordgard (2007) assessed the long-term effectiveness of palatal implants for treatment of mild-to-moderate OSA.\[44\] A total of 26 referred patients with a pre-treatment AHI of 10 to 30 and a BMI of less than or equal to 30, representing an extended follow-up of a subset of 41 patients enrolled in previous short-term trials were included. Twenty-one of 26 patients (80.8 %) experienced a decrease in AHI. Fifteen of 26 patients (57.7 %) had a follow-up AHI less than 10 at one year, whereas 13 patients (50 %) had a 50 % or greater reduction to an AHI less than 10 at one year. Mean AHI was reduced from 16.5 +/- 4.5 at baseline to 12.5 +/- 10.5 at three months (p < 0.014) and to 12.3 +/- 12.7 at one year (p < 0.019). The authors concluded that patients initially responding to palatal implants with
improved AHI maintained improvement through long-term follow-up at one year. The main limitation of this study was its small sample size. The authors noted that additional studies with longer follow-up would be appropriate.

Nordgard (2006) conducted a prospective nonrandomized study of 25 patients with untreated OSA with an AHI of 10–30, as determined by preoperative PSG, and BMI ≤ 30. Three permanent implants were placed in the soft palate of each patient in an office setting under local anesthesia. A repeat PSG showed a mean decrease in AHI from 16.2 to 12.1 for the study group. Twenty of 25 patients demonstrated a reduced AHI, and 12 of 25 patients demonstrated an AHI of 10 or less 90 days post-implant. The mean ESS score decreased from 9.7 to 5.5. The authors concluded that palatal implants can significantly improve AHI and other sleep-related parameters in patients with mild to moderate OSA and BMI ≤ 30, with short-term results comparable to those reported for UPPP. The authors acknowledged the lack of long-term outcomes in this study and the limited number of patients. As with other palatal procedures, reduction in effectiveness over time may be expected. The authors further concluded that while short-term durability and effectiveness have been established, longer-term research needs to be conducted.

In a retrospective, nonrandomized, controlled study, Friedman (2006) evaluated the Pillar implant system alone and in combination with other procedures for treatment of mild-to-moderate OSA/hypopnea syndrome (OSAHS). A total of 125 patients who had mild-to-moderate OSAHS were assigned to palatal implantation alone (palatal group, n=29), or in combination with other procedures. Most of the procedures other than palatal implantation were not defined clearly. After a mean follow-up of eight months, mean AHI for the palatal group had decreased from 13.8 to 12.13; however, this difference was not statistically significant compared with baseline. Using the criteria of AHI < 20 and > 50% reduction of AHI as "cured," Friedman reported that seven (24%) palatal group patients and 43 (34%) of all patients were "cured." One of the study limitations was that many patients had an AHI < 20 at baseline, particularly in the Palatal Group, which had a baseline AHI of 13.8.

Three other small, uncontrolled studies have been performed to evaluate the Pillar Palatal Implant System for mild-to moderate OSA. These studies enrolled 16 to 26 patients who had an AHI score of 5 to 30. These studies reported that, compared with baseline, patients obtained small-to-moderate but statistically significant improvements in outcomes such as AHI and Epworth Sleepiness Scale (ESS) scores at up to one year of follow-up; however, these studies do not provide reliable evidence of efficacy since they did not involve any control or comparison groups.

Palatal Implants Section Summary

The literature on palatal implants consists of three moderately-sized RCTs and additional case series with medium-term follow-up. Evidence from sham-controlled trials shows a statistically significant but modest reduction in AHI and improvement in lowest oxygen saturation compared with placebo, with limited effects on daytime sleepiness. Additional studies are needed to determine whether there is a defined subset of patients who might benefit from this procedure. Studies with longer term follow-up are also needed to evaluate the potential for extrusion of the implants at longer time intervals.

PRACTICE GUIDELINE SUMMARY

THE US DEPARTMENT OF VETERANS AFFAIRS AND THE DEPARTMENT OF DEFENSE

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
The 2019 US Department of Veterans Affairs and Department of Defense (VA/DoD) Guideline for the Management of Chronic Insomnia Disorder and Obstructive Sleep Apnea provide the following recommendations regarding surgical treatment of OSA:\[49\]

For patients with severe obstructive sleep apnea who cannot tolerate or are not appropriate candidates for other recommended therapies, we suggest evaluation for alternative treatment with maxillomandibular advancement surgery. (Strength of recommendation: weak for. Category: new recommendation following review of the evidence)

AMERICAN ACADEMY OF OTOLARYNGOLOGY - HEAD AND NECK SURGERY

The American Academy of Otolaryngology - Head and Neck Surgery (AAO-HNS) has published a number of consensus-based policy statements on various techniques for surgical management of obstructive sleep apnea.\[4, 50-54\] AAO-HNS position statements, by definition are “based on an informal process of expert or committee consensus that draws upon best available evidence and quality products.” thus each of the position statements may be supported to varying degrees by evidence. Procedures the AAO-HNS supports as effective and not considered investigational when part of a comprehensive approach in the medical and surgical management of adults with OSA include palatal advancement, uvulopalatopharyngoplasty, uvulopalatoplasty (including laser assisted and other techniques), genioglossal advancement, hyoid myotomy, midline glossectomy, tongue suspension, and maxillary and mandibular advancement.

No evidence-based practice guidelines from the AAO-HNS were identified.

SUMMARY

There is enough research to suggest that uvulopalatopharyngoplasty (UPPP) and its variants, hyoid suspension, mandible osteotomy, partial glossectomy, and maxillofacial surgeries such as maxillo-mandibular advancement (MMA) may improve health outcomes for some patients with obstructive sleep apnea (OSA) or airway resistance syndrome (UARS). These procedures have become a standard of care and may therefore be considered medically necessary when the policy criteria are met.

There is not enough research to support surgery as first-line treatment of obstructive sleep apnea (OSA) or upper airway resistance syndrome (UARS). Therefore, surgical treatments may be considered medically necessary only after failed medical therapy, including nasal continuous positive airway pressure (PAP) and a custom-made mandibular repositioning appliance. In addition, surgical treatments including uvulopalatopharyngoplasty (UPPP) and its variants, hyoid suspension, mandible osteotomy, partial glossectomy, and maxillofacial surgeries such as maxillo-mandibular advancement (MMA) are considered not medically necessary when criteria are not met.

There is not enough research to determine the safety and efficacy of surgical interventions including but not limited to uvulectomy, and minimally invasive surgical procedures such as laser-assisted uvuloplasty (LAUP), radiofrequency tongue base or tissue volume reduction, palatal stiffening procedures, and palatal implants. The use of these interventions is...
considered investigational for the treatment of obstructive sleep apnea (OSA) or airway resistance syndrome (UARS).

Snoring in the absence of clinically significant obstructive sleep apnea (OSA) is not considered a medical condition. Therefore, any surgical intervention, including but not limited to uvulopalatopharyngoplasty (UPPP), laser-assisted uvulopalatoplasty (LAUP), radiofrequency volumetric tissue reduction of the palate, or palatal stiffening procedures for snoring alone is considered not medically necessary.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

57. KA Ferguson, R Cartwright, R Rogers, W Schmidt-Nowara. Oral appliances for snoring and obstructive sleep apnea: a review. *Sleep.* 2006;29(2):244-62. PMID: 1649093
59. BlueCross BlueShield Association Medical Policy Reference Manual "Diagnosis and Medical Management of Obstructive Sleep Apnea Syndrome." Policy No. 2.01.18

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>21121</td>
<td>Genioplasty; sliding osteotomy, single piece</td>
</tr>
</tbody>
</table>
Codes

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21122</td>
<td>Genioplasty; sliding osteotomies, two or more osteotomies (eg, wedge excision or bone wedge reversal for asymmetrical chin)</td>
</tr>
<tr>
<td>21141</td>
<td>Reconstruction midface, LeFort 1; single piece, segment movement in any direction (eg, for Long Face Syndrome), without bone graft</td>
</tr>
<tr>
<td>21145</td>
<td>Reconstruction midface, LeFort 1; single piece, segment movement in any direction, requiring bone grafts (includes obtaining autografts)</td>
</tr>
<tr>
<td>21196</td>
<td>Reconstruction of mandibular rami and/or body, sagittal split; with internal rigid fixation</td>
</tr>
<tr>
<td>21198</td>
<td>Osteotomy, mandible, segmental</td>
</tr>
<tr>
<td>21199</td>
<td>Osteotomy, mandible, segmental; with genioglossus advancement</td>
</tr>
<tr>
<td>21685</td>
<td>Hyoid myotomy and suspension</td>
</tr>
<tr>
<td>41120</td>
<td>Glossectomy; less than one-half tongue</td>
</tr>
<tr>
<td>41512</td>
<td>Tongue base suspension, permanent suture technique</td>
</tr>
<tr>
<td>41530</td>
<td>Submucosal ablation of the tongue base, radiofrequency, one or more sites, per session</td>
</tr>
<tr>
<td>41599</td>
<td>Unlisted procedure, tongue, floor of mouth</td>
</tr>
<tr>
<td>42140</td>
<td>Uvulectomy, excision of uvula</td>
</tr>
<tr>
<td>42145</td>
<td>Palatopharyngoplasty (eg, Uvulopalatopharyngoplasty, Uvulopharyngoplasty)</td>
</tr>
<tr>
<td>42160</td>
<td>Destruction of lesion, palate or uvula (thermal, cryo, or chemical)</td>
</tr>
<tr>
<td>42299</td>
<td>Unlisted procedure, palate, uvula</td>
</tr>
<tr>
<td>S2080</td>
<td>Laser-assisted uvulopalatoplasty (LAUP)</td>
</tr>
</tbody>
</table>

Appendix 1: Procedures for the Diagnosis of Sleep Disordered Breathing

Polysomnography (PSG)

Full night PSG consists of five to eight hours of monitoring, supervised by a sleep technician, while the patient sleeps. It is performed in a sleep lab and involves the following monitoring modalities: electroencephalogram (EEG) (to stage sleep and detect arousals), electro-oculogram (EOG) (to detect arousal and REM sleep) submental electromyogram, (EMG), electrocardiogram (EKG), two-leg EMG, respiratory airflow and effort (to detect apnea), snoring, oxygen saturation, time and position. In addition, a full night PSG may include additional monitoring modalities as indicated, such as esophageal pressure monitoring, blood pressure monitoring, carbon dioxide trends, and pulse transit time.

The first three elements listed above (EEG, submental electromyogram, and electro-oculogram) are required for sleep staging. By definition, a polysomnogram always includes sleep staging, while a “sleep study” does not include sleep staging. The actual components of the study will be dictated by the clinical situation. Typically, the evaluation of obstructive sleep apnea would include respiratory airflow and effort, electro-oculogram, and oxygen desaturation. An EEG may not be considered necessary to evaluate OSA, although it is required to evaluate UARS, REM sleep behavior disorder (RBD), narcolepsy or other sleep disturbances.

Split Night Polysomnography

A split night study utilizes the first two or three hours for evaluating the presence of sleep apnea and the second half to titrate and adjust CPAP. The same monitoring modalities used in full night PSG are used in split night study. In patients with severe obstructive sleep apnea, a reliable assessment of the respiratory disturbance index is possible with a partial night study. Half night study for CPAP titration is reliable in selected cases of obstructive sleep apnea.
Appendix 1: Procedures for the Diagnosis of Sleep Disordered Breathing

<table>
<thead>
<tr>
<th>Home Sleep Apnea Testing Device (HSAT Device)</th>
<th>Split night studies are appropriate in patients with severe sleep apnea syndrome. The decision to conduct a split night study depends on the technical skill and experience of the staff, the initial sleep latency period, the severity and frequency of respiratory events and patient compliance. Careful patient selection and education is required to conduct a successful split night study.</th>
</tr>
</thead>
</table>
| | Per the 2017 American Academy of Sleep Medicine (AASM) Clinical Practice Guideline for diagnostic testing for adult obstructive sleep apnea, home sleep apnea testing with a technically adequate device may be used for the diagnosis of obstructive sleep apnea (OSA) in uncomplicated adult patients presenting with signs and symptoms that indicate an increased risk of moderate to severe OSA.[1]

An uncomplicated patient is defined by the absence of:

1. Conditions that place the patient at increased risk of non-obstructive sleep-disordered breathing (e.g., central sleep apnea, hypoventilation and sleep related hypoxemia). Examples of these conditions include significant cardiopulmonary disease, potential respiratory muscle weakness due to neuromuscular conditions, history of stroke and chronic opiate medication use.

2. Concern for significant non-respiratory sleep disorder(s) that require evaluation (e.g., disorders of central hypersomnolence, parasomnias, sleep related movement disorders) or interfere with accuracy of HSAT (e.g., severe insomnia).

3. Environmental or personal factors that preclude the adequate acquisition and interpretation of data from HSAT.

An increased risk of moderate to severe OSA is indicated by the presence of excessive daytime sleepiness and at least two of the following three criteria: habitual loud snoring, witnessed apnea or gasping or choking, or diagnosed hypertension.

HSAT is to be administered by an accredited sleep center under the supervision of a board-certified sleep medicine physician, or a board-eligible sleep medicine provider.

A single HSAT recording is conducted over at least one night.

A technically adequate HSAT device incorporates a minimum of the following sensors: nasal pressure, chest and abdominal respiratory inductance plethysmography, and oximetry; or else peripheral arterial tone (PAT) with oximetry and actigraphy.

A technically adequate diagnostic test includes a minimum of 4 hours of technically adequate oximetry and flow data, obtained during a recording attempt that encompasses the habitual sleep period.

If a single HSAT is negative, inconclusive, or technically inadequate, polysomnography should be performed for the diagnosis of OSA.

<table>
<thead>
<tr>
<th>SNAP™ Testing</th>
<th>The SNAP testing system is a reflective acoustic device marketed as a screening and analysis system to locate the source of snoring and detect sleep apnea conditions.</th>
</tr>
</thead>
</table>
Appendix 1: Procedures for the Diagnosis of Sleep Disordered Breathing

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Sleep Latency Tests (MSLT)</td>
<td>The MSLT measures the speed of falling asleep under conditions that favor sleep, in a series of 20-minute trials during the patient’s habitual periods of wakefulness. MSLT is the preferred method of establishing the presence of true physiological sleepiness but is accurate only if following strict protocols. MSLT is used in patients with complaints of irresistible daytime sleepiness suggestive of narcolepsy.</td>
</tr>
<tr>
<td>Maintenance of Wakefulness Test (MWT)</td>
<td>The patient is monitored during the usual periods of wakefulness but the patient is instructed not to fall asleep as a test of the patient's ability to stay awake. It may be used to evaluate the safety of drivers and their ability to stay alert.</td>
</tr>
<tr>
<td>Radiologic Studies</td>
<td>Radiologic images of the head and neck for anatomic abnormalities include MRI, CT scan, and cephalometry. Such studies are intended to assess for hypopharyngeal obstruction or other suspected pathology that might explain the symptoms associated with sleep disordered breathing.</td>
</tr>
<tr>
<td>Endoscopic Studies</td>
<td>Nasopharyngeal and laryngeal endoscopic measurements of structure and function of the upper airway are used in selected patients with suspected abnormal anatomy as an aid in the diagnosis of OSA or in the management of complications of treatment.</td>
</tr>
<tr>
<td>Epworth Sleepiness Scale</td>
<td>Excessive daytime sleepiness is predominantly a subjective symptom. The Epworth sleepiness scale is a self-administered questionnaire, performed as part of the clinical evaluation, that asks patients their likelihood of falling asleep in eight situations ranked from 0 (would never fall asleep) to 3 (high chance of dozing). The numbers are then added together to give a global score between 0 and 24. A value of 10 or below is considered normal. A decrease of 2 points is considered the minimum important difference (MID). [56]</td>
</tr>
<tr>
<td>Apnea-Hypopnea Index (AHI); Respiratory Disturbance Index (RDI)</td>
<td>Apnea is defined as the cessation of respiration for at least 10 seconds. Hypopnea is a reduction but not cessation of air exchange. Apneic and hypopneic events are combined into the apnea-hypopnea index (AHI). In turn the AHI is often referred to as the respiratory disturbance index (RDI), although more recently the RDI has been redefined by some physicians to include EEG arousals in addition to apneic and hypopneic events. An AHI of greater than or equal to 20 is typically considered moderate OSA, and AHI of greater than 50 is considered severe OSA. An increase in mortality is associated with an AHI of greater than 15.</td>
</tr>
<tr>
<td>Polysomnography (PSG)</td>
<td>Full night PSG consists of five to eight hours of monitoring, supervised by a sleep technician, while the patient sleeps. It is performed in a sleep lab and involves the following monitoring modalities: electroencephalogram (EEG) (to stage sleep and detect arousals), electro-oculogram (EOG) (to detect arousal and REM sleep), submental electromyogram, (EMG), electrocardiogram (EKG), two-leg EMG, respiratory airflow and effort (to detect apnea), snoring, oxygen saturation, time and position. In addition, a full night PSG may include additional monitoring modalities as indicated, such as esophageal pressure monitoring, blood pressure monitoring, carbon dioxide trends, and pulse transit time.</td>
</tr>
</tbody>
</table>
Appendix 1: Procedures for the Diagnosis of Sleep Disordered Breathing

The first three elements listed above (EEG, submental electromyogram, and electro-oculogram) are required for sleep staging. By definition, a polysomnogram always includes sleep staging, while a “sleep study” does not include sleep staging. The actual components of the study will be dictated by the clinical situation. Typically, the evaluation of obstructive sleep apnea would include respiratory airflow and effort, electro-oculogram, and oxygen desaturation. An EEG may not be considered necessary to evaluate OSA, although it is required to evaluate UARS, REM sleep behavior disorder (RBD), narcolepsy or other sleep disturbances.

Split Night Polysomnography

A split night study utilizes the first two or three hours for evaluating the presence of sleep apnea and the second half to titrate and adjust CPAP. The same monitoring modalities used in full night PSG are used in split night study. In patients with severe obstructive sleep apnea, a reliable assessment of the respiratory disturbance index is possible with a partial night study. Half night study for CPAP titration is reliable in selected cases of obstructive sleep apnea.

Split night studies are appropriate in patients with severe sleep apnea syndrome. The decision to conduct a split night study depends on the technical skill and experience of the staff, the initial sleep latency period, the severity and frequency of respiratory events and patient compliance. Careful patient selection and education is required to conduct a successful split night study.

Appendix 2: Nonsurgical Devices for Treatment of OSA or UARS

CPAP

Nasal or oral continuous positive airway pressure (CPAP) or auto-titrating continuous positive airway pressure (APAP) is continuous positive airway pressure applied through the nose or via oral appliance. It is delivered by a flow generator through a mask to supply a pressure level sufficient to keep the upper airway patent. The pressure used is determined individually with a range of three to 15 centimeters of water.

BiPAP®

Bi-level respiratory assist device delivers alternating levels of positive airway pressure instead of the continuous pressure applied by CPAP.

A bi-level positive airway pressure device with back-up rate feature is a ventilation support system. These devices are in the FDA category of non-continuous ventilator, and as such, are primarily intended to augment patient ventilation.

The term BiPAP® is a registered trademark of Respironics Inc., but is widely used to describe any bi-level positive airway pressure device as described above.

APAP

Auto-adjusting CPAP (APAP) is a more recent technology which alternates airway pressure between exhalation and inhalation on a breath-by-breath basis. With the C-Flex™ (Respironics, Inc) airway pressure is reduced during early exhalation in proportion to the patient’s expiratory flow rate. Pressure is then increased again toward the end of exhalation when airway collapse is most likely. Unlike BiPAP which delivers a static lower expiratory pressure, the C-Flex varies the pressure within the expiratory phase.
Appendix 2: Nonsurgical Devices for Treatment of OSA or UARS

| Oral Appliances (OA) | OA for the treatment of sleep disordered breathing are devices worn in the mouth during sleep to maintain a patent airway by raising the uvula, depressing the tongue, and/or advancing the mandible (in which case they are also known as mandibular advancement devices [MAD]). Commercially available devices are usually custom-molded or custom-fitted for the individual patient by a qualified dental health professional trained and experienced in the overall care of oral health, the temporomandibular joint, dental occlusion and associated oral structures. According to the American Academy of Sleep Medicine, dental management of patients with oral appliances should be overseen by practitioners who trained in sleep medicine and sleep related breathing disorders.[56, 57] Oral appliances can range from simple retaining devices, to adjustable, hinged, or two-piece designs. Some designs can be used in conjunction with a CPAP device (e.g., OPAP) |

Date of Origin: March 2009
Medical Policy Manual

Occipital Nerve Stimulation

Effective: April 1, 2022

Next Review: February 2023
Last Review: February 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Occipital nerve stimulation (ONS) delivers a small electrical charge to the occipital nerve in an attempt to prevent migraines and other headaches in patients who have not responded to medications. The device consists of a subcutaneously implanted pulse generator (in the chest wall or abdomen) attached to extension leads that are tunneled to join electrodes placed across one or both occipital nerves at the base of the skull. Continuous or intermittent stimulation may be used.

MEDICAL POLICY CRITERIA

Occipital nerve stimulation is considered **investigational** for all indications, including but not limited to headaches.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES

1. Interferential Current Stimulation, Durable Medical Equipment, Policy No. 83.07
2. Sphenopalatine Ganglion Block for Headache and Pain, Medicine, Policy No. 160
3. Spinal Cord Stimulation, Surgery, Policy No. 45
4. Implantable Peripheral Nerve Stimulation for Chronic Pain of Peripheral Nerve Origin, Surgery, Policy No. 205

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Implanted peripheral nerve stimulators have been used for treatment of refractory pain for many years but only recently proposed for management of craniofacial pain. Occipital, supraorbital, and infraorbital stimulation have been reported in the literature.

There are four types of headache: vascular, muscle contraction (tension), traction, and inflammatory. Primary (not the result of another condition) chronic headache is defined as headache occurring more than 15 days of the month for at least three months. An estimated 45 million Americans experience chronic headaches. For at least half of these people, the problem is severe and sometimes disabling.

Migraine is the most common type of vascular headache. Migraine headaches are usually characterized by severe pain on one or both sides of the head, an upset stomach, and, at times, disturbed vision. One-year prevalence of migraine ranges from 6% to 15% in adult men and from 14% to 35% in adult women. Migraine headaches may last a day or more and can strike as often as several times a week or as rarely as once every few years. Drug therapy for migraine is often combined with biofeedback and relaxation training. Sumatriptan is commonly used for relief of symptoms. Drugs used to prevent migraine include methysergide maleate, propranolol hydrochloride, ergotamine tartrate; amitriptyline, valproic acid, and verapamil.

Hemicrania continua, also a vascular headache, causes moderate pain with occasional severe pain on only one side of the head. At least one of the following symptoms must also occur: conjunctival injection and/or lacrimation, nasal congestion and/or rhinorrhea, or ptosis and/or miosis. Headache occurs daily and is continuous with no pain-free periods. Hemicrania continua occurs mainly in women, and its true prevalence is not known. Indomethacin usually provides rapid relief of symptoms. Other nonsteroidal anti-inflammatories (NSAIDs), including ibuprofen, celecoxib, and naproxen, can provide some relief from symptoms. Amitriptyline and other tricyclic antidepressants are effective in some patients.

Cluster headache is a vascular headache that occurs in cyclical patterns or clusters of severe or very severe unilateral orbital or supraorbital and/or temporal pain. The headache is accompanied by at least one of the following autonomic symptoms: ptosis (drooping eyelid), conjunctival injection, lacrimation, rhinorrhea, and, less commonly, facial blushing, swelling, or sweating. Bouts of one headache every other day to eight attacks per day may last from weeks to months, usually followed by remission periods when the headache attacks stop completely. The pattern varies from one person to another, but most people have one or two cluster periods a year. During remission, no headaches occur for months, and sometimes even years. The intense pain is caused by the dilation of blood vessels, which creates pressure on the trigeminal nerve. While this process is the immediate cause of the pain, the etiology is not fully understood. It is more common in men than in women. One-year prevalence is estimated to be 0.5 to 1.0/1,000. Management of cluster headache consists of abortive and preventive treatment. Abortive treatments include subcutaneous injection of sumatriptan, topical anesthetics sprayed into the nasal cavity, and strong coffee. Some patients respond to rapidly inhaled pure oxygen. A variety of other pharmacologic and behavioral methods of aborting and preventing attacks have been reported with wide variation in patient response.

REGULATORY STATUS

The U.S. Food and Drug Administration (FDA) has not yet cleared any occipital nerve stimulation device for treatment of headache.
The Synergy™ IPG (implantable pulse generator) device from Medtronic received marketing clearance in 1999 for management of chronic, intractable pain of the trunk or limbs, and off-label use for headache is described in the literature.

The Genesis™ neuromodulation system (St. Jude Medical) is approved by the FDA for spinal cord stimulation and has received CE mark approval in Europe for the treatment of chronic migraines.

EVIDENCE SUMMARY

The principal outcomes associated with treatment of headache are relief of pain, return to work, and improved functional level. Relief of pain can be a subjective outcome associated with a placebo effect. Therefore, data from adequately powered, blinded, randomized controlled trials (RCT) are required to control for the placebo effect and determine whether any treatment effect provides a significant advantage.

The technology must also be evaluated in general groups of patients against existing treatments. In patients with mild to moderate symptoms, occipital nerve stimulation may be compared to other forms of conservative therapy such as topical anesthetics, rest, or non-steroidal anti-inflammatory or migraine medications.

Therefore, the focus of the evidence summary is on RCTs comparing occipital nerve stimulation (ONS)-treated patients with those in a sham treatment or standard of care group.

SYSTEMATIC REVIEWS

As part of a consensus development process Barad (2022) published the results of a systematic review of studies on percutaneous strategies for migraine intervention.[1] This review included four randomized controlled trials (RCTs) on implantable ONS (Serra 2012, Slotty 2015, Silberstein 2012, and Saper 2011). An additional publication (Mekhail 2017) was excluded, as it was a subgroup analysis of the Silberstein cohort. The overall strength for the certainty of evidence for reduction of headache days was moderate with a moderate effect size. The strength of certainty of evidence for reduction in acute medication use was very low with a low, nonsignificant effect size. The strength of certainty of evidence for impairment as related to patient-related outcomes was moderate at 12 weeks with a moderate effect size. Implantable ONS had significantly more adverse events that other interventional therapies examined. The recommendation was “weak” for the potential net benefit of implantable ONS for chronic migraine prevention.

Patel (2021) published a systematic review (SR) of data from RCTs on electrical nerve stimulation modalities, including occipital nerve stimulation (ONS), in the treatment of migraine.[2] Although 16 studies were included in the review, only three (Mekhail 2017, Dodick 2015, and Slotty 2015) were studies of ONS. Studies were rated low risk of bias in most domains, however, the authors note two of the ONS studies had “unknown” risk of bias due to open-label study design or high occurrence of adverse events. No pooled or quantitative comparisons for any outcomes were reported for any of the modalities.

A SR with meta-analysis of neuromodulation for acute and preventative migraine treatment was published by Moisset (2020).[3] This broad review included three studies of invasive ONS, all investigating its use for the treatment of chronic migraine. Only one of the identified studies was of high quality (Silbertstein 2012) which, as discussed below, did not identify a significant
effect of the intervention on the primary outcome, although positive effects were found for secondary outcomes. The other two trials included in the review (Saper 2011 and Serra 2012) were low and moderate quality due to risk of biases in selective reporting, sample calculation, statistical methods, and/or blinding. Outcomes of the meta-analysis favored a positive effect of invasive ONS, with a large effect size (−1.090; 95%CI: −1.977 to −0.204) however high heterogeneity between studies (I² = 88%) was reported. Ultimately, the authors conclude that larger well-conducted studies are needed to confirm treatment efficacy and determine true effect sizes.

Cadalso (2017) published a systematic review (SR) evaluating the impact occipital nerve stimulation had on healthcare outcomes, for intractable primary headache disorders. The SR included four RCTs, one follow-up study, and 19 case series. The authors stated that although the RCTs showed a decrease in headache frequency and improved migraine disability assessment scores, ONS did not improve pain intensity and there was heterogeneity of outcomes. In addition, the RCTs had small sample sizes and risk of bias.

Yang (2016) identified the same five RCTs as the 2015 SR by Chen, summarized below. The Yang review only included studies conducted with patients with migraine of at least six months in duration who did not respond to oral medications. In addition to the RCTs, five case series met the inclusion criteria. Yang et al did not pool study findings. The definition of response rate varied across studies and could include frequency and/or severity of headaches. Response rates in three case series with self-reported efficacy were 100% each, and response rates in the other two series were 50% and 89%, respectively. Complication rates in the series ranged from 40% to 100%. The authors noted that the case series were subject to biases (e.g., inability to control for the placebo effect), that RCT evidence was limited, and that complication rates were high.

Two SRs of the literature on occipital nerve stimulation (ONS) were published in 2015. Both included RCTs and observational studies. Chen identified five RCTs and seven case series with at least 10 patients. Three of the RCTs were industry-sponsored, multicenter, parallel-group trials and two were single-center crossover trials. All five included a sham control group and one trial also included a medication management group. Risk of bias was judged to be high or unclear for all trials. Meta-analyses were performed on two outcomes. A pooled analysis of 2 studies did not find a significant difference in response rate between active and sham stimulation (risk ratio [RR], 2.07; 95% confidence interval [CI], 0.50 to 8.55; p=0.31) and a pooled analysis of three studies showed a significantly greater reduction in the number of days with prolonged moderate-to-severe headache (mean difference, 2.59; 95% CI, 0.91 to 4.27; p=0.003. Sweet (2015) published a SR that identified nine small case series (<15 patients each) assessing the efficacy of ONS for treating medically refractory occipital neuralgia. The authors did not pool study findings. No conclusions can be drawn about the impact of ONS on occipital neuralgia due to the lack of RCTs or other controlled studies.

The National Institute for Health and Care Excellence (NICE, 2013) evaluated two RCTs and one case series to determine if ONS was effective in decreasing headache frequency, duration and severity. Both RCTs compared ONS with sham stimulation at three months. Although the smaller RCT with 67 patients determined that the ONS group responded better than the sham group, the larger RCT with 157 patients showed no difference in responder rate. NICE concluded that ONS for intractable chronic migraines is efficacious in the short-term, but there is little evidence to indicate long-term outcome effects. NICE stated ONS should only be used for clinical governance, consent, and audit or research.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
RANDOMIZED CONTROLLED TRIALS

Wilbrink (2021) published the safety and efficacy data from a multicenter randomized controlled trial (RCT) of ONS for medically intractable chronic cluster headache (MICCH). This trial is termed the ICON study (ClinicalTrials.gov NCT01151631). Patients were randomized (1:1) to 24 weeks of ONS at either 100% or 30% of the individually determined range between paraesthesia threshold and near-discomfort. Because ONS causes paraesthesia precluding masked comparison to placebo, high-intensity was compared to low-intensity stimulation, which is hypothesized to cause similar paraesthesia but with different efficacy. There were 150 patients enrolled and 131 were randomly assigned to treatment: 65 patients to 100% ONS and 66 to 30% ONS. In weeks 25-48, participants received individually optimized open-label ONS. The primary outcome was the weekly mean attack frequency in weeks 21-24 compared with baseline. In the 100% ONS stimulation group, attack frequency decreased from 17.58 (9.83 to 29.33) at baseline to 9.50 (3.00 to 21.25) at 21-24 weeks (median change from baseline -4.08, -11.92 to -0.25), and for the 30% ONS stimulation group, attack frequency decreased from 15.00 (9.25 to 22.33) to 6.75 (1.50 to 16.50; -6.50, -10.83 to -0.08). The difference in attack frequency between groups at the end of the masked phase in weeks 21-24 was -2.42 (95% CI -5.17 to 3.33). In the masked study phase, 129 adverse events occurred in the 100% ONS group and 95 occurred in the 30% ONS group. Of these, 17 and eight of the adverse events in the 100% and 30% groups, respectively, were considered serious, as they required hospital admission for minor hardware-related issues. The most common adverse events were local pain, impaired wound healing, neck stiffness, and hardware damage.

Serra and Marchioretto (2012) conducted a crossover RCT in which 30 patients with chronic migraine (100% of patients) and medication overuse headache (85% of patients) were implanted with an ONS and randomized to “Stimulation On” or “Stimulation Off” arms. After one month, or if headaches worsened during the off period, patients were crossed over to the other arm. The mean number of days when patients randomized to the off condition turned on the generators was 4.65 days (range, 1-12 days). Follow-up examinations were conducted at one, three, six, and 12 months after nerve stimulator implantation, during which time the stimulation parameters were adjusted in order to optimize the perception of paresthesia. In addition, the patients were provided with remote controls to modify the stimulation amplitude. At baseline, the average frequency of migraines was 5.8 days per week and the median headache severity was eight on an 11-point numerical rating scale. Headache intensity and/or frequency were significantly lower in the on arm compared to the off arm and decreased from baseline to each follow-up visit in all patients with Stimulation On. For example, the number of headaches decreased from a median of 6.3 days per week in the off phase to 2.1 days per week in the on phase. The median Migraine Disability Assessment (MIDAS) score decreased from 79 at baseline to 10 at 12-month follow-up. Quality of life measured by the SF-36 significantly improved from baseline throughout the follow-up period. Use of triptans decreased from a median of 20 to three doses/month and use of nonsteroidal anti-inflammatory drug (NSAIDs) use decreased from a median of 25.5 to two doses/month. There were two infections (6.7%) and three lead migrations (10%) during the study. This study is limited by the lack of a control group during follow-up and lack of blinding, although blinding of patients may be difficult due to paresthesia with this treatment.

Silberstein (2012) published a RCT of patients diagnosed with chronic migraine (CM), implanted with a neurostimulation device and randomized 2:1 to active (n=105) or sham (n=52) stimulation. Authors defined the primary endpoint as the difference in the percentage of
responders (defined as patients that achieved a ≥50% reduction in mean daily visual analog scale scores) in each group at 12 weeks. A significant difference was reported at a secondary endpoint of 30% reduction; however, no difference was reported between groups at the primary endpoint of 50% reduction. At a 30% reduction, significant difference in reduction of number of headaches, migraine-related disability, and direct reports of pain relief were reported compared to the sham group, but it is unknown if these results are clinically meaningful considering researchers did not meet their established primary endpoint of at least a 50% reduction in mean daily analog scores. In addition, the overall treatment effect was low, with only 17.1% of the active group and 13.5% of the control group classified as responders.

Results from the 52-week open-label extension of this study were published in 2014.[12] Results were reported for the intent-to-treat (ITT) population and for the 125 patients who met criteria for intractable chronic migraine. Twenty-four patients were excluded from analysis due to explantation of the system (n=18) or other loss to follow-up. Mean headache days at baseline were 21.6 for the ITT population and 24.2 for the intractable chronic migraine group. In the ITT population, headache days were reduced by 6.7 days, and a 50% or greater reduction in headache days and/or pain intensity was observed in 47.8% of patients. Sixty-eight percent of patients were satisfied with the headache relief provided by the device. Seventy percent experienced at least one of 183 device-related adverse events, of which 8.6% required hospitalization and 40.7% required surgical intervention. Eighteen percent of patients had persistent pain and/or numbness with the device.

A small industry-sponsored feasibility RCT reported preliminary safety and efficacy data on ONS for treatment of medically intractable chronic migraine (CM).[13] However, the findings from this small (n=110) and very short (follow-up=three months) study must be interpreted with caution due to the exploratory nature of the design:

- The sample size was chosen to gain experience with ONS and the study was not prospectively powered for efficacy evaluation.
- No primary end points were specified at the outset; at three months, a range of efficacy measures were evaluated in comparison to baseline.

Although the findings from this study may provide direction for future research, they do not provide reliable evidence on the clinical utility of ONS. Per the authors, “reliable conclusions regarding efficacy cannot be established on the basis of this study alone.”

NONRANDOMIZED STUDIES

Evidence from nonrandomized studies of occipital nerve stimulation (ONS) for treatment of headaches is considered insufficient due to methodological limitation such as nonrandom allocation of treatment, lack of adequate comparison groups, small sample size, and short-term follow-up, all of which limit conclusions regarding the safety and effectiveness of ONS treatment.[14-17] Of note, several of these nonrandomized studies reported high rates of ONS revision (20-60%)[18-20] and/or complications (20-60%)[14, 19, 21-24].

PRACTICE GUIDELINE SUMMARY

AMERICAN ACADEMY OF PAIN MEDICINE

A 2022 evidence-based practice guideline from the American Academy of Pain Medicine on percutaneous interventional strategies for the prevention of migraine provides a “weak”
recommendation of implantable stimulation (based on studies of occipital nerve stimulation) for chronic migraine prevention.[1] Implantable stimulation was noted to have significantly more adverse events than other percutaneous interventions, contributing to this “weak” recommendation.

CONGRESS OF NEUROLOGICAL SURGEONS

A 2015 evidence-based guideline from the Congress of Neurological Surgeons states: “the use of occipital nerve stimulation is a treatment option for patients with medically refractory occipital neuralgia.”[7] The guideline was jointly funded by Congress of Neurological Surgeons and the Joint Section on Pain of the American Association of Neurological Surgeons/Congress of Neurological Surgeon. The statement had a level III recommendation based on a systematic review of the literature that only included case series with methodological limitations.

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

A 2013 National Institute for Health and Care Excellence (NICE) guideline noted that the evidence on ONS for intractable chronic migraine shows some efficacy for short-term outcomes but very little evidence about long-term outcomes.[8] With regard to safety, NICE indicated that there are risks of complications that may need further surgery. Therefore, this procedure should only be used with special arrangements for clinical governance, consent, and audit or research. NICE has recommended that clinicians wanting to undertake ONS for intractable chronic migraine should ensure that patients understand the uncertainty about the procedure’s safety and efficacy, and provide them with clear written information.

SUMMARY

There is not enough research to show that occipital nerve stimulation (ONS) improves net health outcomes for patients with any condition. Clinical guidelines based on research list ONS as a treatment option, but highlight the uncertainty around safety and health outcomes. Therefore, ONS is considered investigational for all indications, including but not limited to as a treatment of headache.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0466T</td>
<td>Insertion of chest wall respiratory sensor electrode or electrode array, including connection to pulse generator (List separately in addition to code for primary procedure) (Deleted 01/01/2022)</td>
</tr>
<tr>
<td></td>
<td>61885</td>
<td>Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to a single electrode array</td>
</tr>
<tr>
<td></td>
<td>61886</td>
<td>Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to 2 or more electrode arrays</td>
</tr>
<tr>
<td></td>
<td>64553</td>
<td>Percutaneous implantation of neurostimulator electrode array; cranial nerve</td>
</tr>
<tr>
<td></td>
<td>64555</td>
<td>Percutaneous implantation of neurostimulator electrode array; peripheral nerve (excludes sacral nerve)</td>
</tr>
<tr>
<td></td>
<td>64568</td>
<td>Open implantation of cranial nerve (eg, vagus nerve) neurostimulator electrode array and pulse generator</td>
</tr>
<tr>
<td></td>
<td>64569</td>
<td>Revision or replacement of cranial nerve (e.g., vagus nerve) neurostimulator electrode array, including connection to existing pulse generator</td>
</tr>
<tr>
<td></td>
<td>64570</td>
<td>Removal of cranial nerve (e.g., vagus nerve) neurostimulator electrode array and pulse generator</td>
</tr>
<tr>
<td></td>
<td>64575</td>
<td>Open implantation of neurostimulator electrode array; peripheral nerve (excludes sacral nerve)</td>
</tr>
<tr>
<td></td>
<td>64585</td>
<td>Revision or removal of peripheral neurostimulator electrode array</td>
</tr>
<tr>
<td></td>
<td>64590</td>
<td>Insertion or replacement of peripheral or gastric neurostimulator pulse generator or receiver, direct or inductive coupling</td>
</tr>
<tr>
<td></td>
<td>64999</td>
<td>Unlisted procedure, nervous system</td>
</tr>
<tr>
<td></td>
<td>95970</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulsewidth, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with brain, cranial nerve, spinal cord, peripheral nerve, or sacral nerve, neurostimulator pulse generator/transmitter, without programming</td>
</tr>
<tr>
<td></td>
<td>95971</td>
<td>;with simple spinal cord, or peripheral nerve (eg, sacral nerve) neurostimulator pulse generator/transmitter, programming by physician or other qualified health care professional</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95972</td>
<td>;with complex spinal cord, or peripheral nerve (eg, sacral nerve) neurostimulator pulse generator/transmitter programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C1820</td>
<td>Generator, neurostimulator (implantable), with rechargeable battery and charging system</td>
</tr>
<tr>
<td></td>
<td>L8679</td>
<td>Implantable neurostimulator, pulse generator, any type</td>
</tr>
<tr>
<td></td>
<td>L8680</td>
<td>Implantable neurostimulator electrode, each</td>
</tr>
<tr>
<td></td>
<td>L8681</td>
<td>Patient programmer (external) for use with implantable programmable neurostimulator pulse generator, replacement only</td>
</tr>
<tr>
<td></td>
<td>L8682</td>
<td>Implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td></td>
<td>L8683</td>
<td>Radiofrequency transmitter (external) for use with implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td></td>
<td>L8685</td>
<td>Implantable neurostimulator pulse generator, single array, rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8686</td>
<td>Implantable neurostimulator pulse generator, single array, non-rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8687</td>
<td>Implantable neurostimulator pulse generator, dual array, rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8688</td>
<td>Implantable neurostimulator pulse generator, dual array, non-rechargeable, includes extension</td>
</tr>
<tr>
<td></td>
<td>L8689</td>
<td>External recharging system for battery (internal) for use with implantable neurostimulator</td>
</tr>
</tbody>
</table>

Date of Origin: June 2010
Adipose-derived Stem Cell Enrichment in Autologous Fat Grafting to the Breast

Effective: February 1, 2022

Next Review: October 2022
Last Review: December 2021

DESCRIPTION

Autologous fat grafting to the breast has been used as an adjunct to reconstructive breast surgery to address issues such as post-mastectomy pain and irradiated skin. Adipose-derived stem cells have been proposed as a supplement to the fat graft in an attempt to improve graft survival.

MEDICAL POLICY CRITERIA

Notes:

- This policy does not address the use of autologous fat grafting without adipose stem cell enrichment for breast reconstruction, which may be considered medically necessary.
- This policy does not address free flap autologous fat grafting with microvascularization.
- This policy does not address the use of autologous fat tissue in aesthetic breast augmentation (i.e., cosmesis).

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.
The use of autologous fat grafting to the breast with supplemented adipose-derived stem cells is considered investigative.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES
1. Gender Affirming Interventions for Gender Dysphoria, Medicine, Policy No. 153
2. Endometrial Ablation, Surgery, Policy No. 01
3. Cosmetic and Reconstructive Surgery, Surgery, Policy No. 12
4. Reconstructive Breast Surgery/Mastopexy, and Management of Breast Implants, Surgery, Policy No. 40
5. Reduction Mammaplasty, Surgery, Policy No. 60

BACKGROUND

AUTOLOGOUS FAT GRAFTING TO THE BREAST

Autologous fat grafting to the breast has been proposed for indications which include breast augmentation and following oncologic surgery. Proposed indications following oncologic surgery include as an adjunct to reconstruction post mastectomy or lumpectomy for contour deformities and improved shape and volume of the breast, for post mastectomy pain syndrome (neuropathic pain), and for irradiated skin to soften the skin and restore it to non-irradiated appearance and consistency.

ADIPOSE-DERIVED STEM CELLS (ADSCS)

Stem cell biology, and the related field of regenerative medicine, involves multipotent stem cells that exist within a variety of tissues, including bone marrow and adipose tissue. Studies have shown that 1 gram of adipose tissue yields approximately 5 x 10^3 stem cells, which is up to 500 times greater than the number of mesenchymal stem cells in 1 gram of bone marrow.[1] Stem cells, because of their pluripotentiality and unlimited capacity for self-renewal, offer promise for tissue engineering and advances in reconstructive procedures. Adipose tissue in particular represents an abundant and easily accessible source of adipose-derived stem cells (ADSCs), which can differentiate along multiple mesodermal lineages.[1] ADSCs may allow for improved graft survival and generation of new fat tissue after transfer from another site.

This identification of several potentially beneficial therapeutic properties of ADSC has led to proposed novel techniques of fat grafting in conjunction with ADSC therapy for breast fat grafting, including the differentiation of ADSC into adipocytes as a reservoir for adipose tissue turnover, the differentiation of ADSC into endothelial cells and the subsequent increase in blood supply to the grafted fat tissue, thereby decreasing the rate of graft resorption, the release of angiogenic growth factors by ADSC and the induction of angiogenesis, protection of the graft from ischemic reperfusion injury by ADSC, and acceleration of wound healing at the recipient site.[1]

Current methods for isolating ADSCs can involve various processes, which may include centrifugation and enzymatic techniques that rely on collagenase digestion followed by centrifugal separation to isolate the stem cells from primary adipocytes. Isolated ADSCs can be expanded in monolayer on standard tissue culture plastic with a basal medium containing 10% fetal bovine serum,[2] and newly developed culture conditions provide an environment
within which the study of ADSCs can be done without the interference of animal serum. They also allow rapid expansion of autologous ADSCs in culture for use in human clinical trials. A standard expansion method has not yet been established.

Yoshimura (2008), in an effort to address the problems of unpredictability and low rates of fat graft survival, developed a technique known as cell-assisted lipotransfer (CAL), which produces autogenous fat rich in ADSCs.\(^3\) In CAL, half of the lipoaspirate is centrifuged to obtain a fraction of concentrated ADSCs, while the other half is washed, enzymatically digested, filtered, and spun down to an ADSC-rich pellet. The latter is then mixed with the former, converting a relatively ADSC-poor aspirated fat to ADSC-enriched fat.

REGULATORY STATUS

A point-of-care system is available for concentrating ADSCs from mature fat. The Celution™ system (Cytori Therapeutics, Inc.) is designed to transfer a patient’s own adipose tissue from one part of the body to another in the same surgical procedure. The system received 510(k) marketing clearance from the U.S. Food and Drug Administration as a cell saver device. The system is cleared for the collection, concentration, washing and re-infusion of a patient’s own cells for applications that may include, but are not limited to, cardiovascular, plastic and reconstructive, orthopedic, vascular, and urological surgeries and procedures.

In 2017, the Revolve Envi 600 Advanced Adipose System (LifeCell Corporation, Branchburg, NJ) was cleared for marketing by the FDA through the 510(k) process. The system harvests, filters, and transfers autologous adipose tissue for fat grafting. Uses include reconstructive surgery. In May of 2020, the Revolve Envi 600 System underwent various design modifications (K163647). FDA product code: MUU.

EVIDENCE SUMMARY

The literature on the use of fat grafting to the breast with the use of adipose-derived stem cell (ADSC) enrichment consists of retrospective cohort studies, case series, and case reports. The following is a summary of the key literature to date, including all identified case series using fat grafting to the breast with the supportive use of ADSCs.

Systematic Reviews

A 2021 SR published by Li and Chen compared the efficacy of CAL and conventional lipotransfer in breast augmentation.\(^4\) Six studies including 353 patients met inclusion criteria. Of these, one was a randomized trial, four were retrospective observational case-series, and one was a prospective controlled trial. No evaluation of study quality was reported. The fat survival rate was significantly higher in the CAL group than in the control group (standard mean difference [SMD]=1.79, 95% CI 0.28 to 3.31; p=0.02). No statistically significant differences in complication rates between groups (SMD=1.79, 95% CI 0.28 to 3.31; p=0.02). There were also no statistically significant differences identified in the subgroup analyses between the groups in fat survival rate (SMD=1.52, 95% CI -0.21 to 3.24; p=0.08).

In 2017, Lazole conducted a SR to evaluate the safety and efficacy of CAL. Twenty-five studies addressing fat grafting to the breast and face were included in the systematic review and 16 in the meta-analysis.\(^5\) The fat survival rate was significantly higher with CAL than non-CAL fat graft, only for injection volumes < 100 mL. There was no significant difference between...
groups in frequency of multiple procedures after fat grafting. The incidence of complications was significantly higher in the CAL group.

In 2016, Zhou conducted a SR with the same purpose as the above systematic review, and included seventeen articles (n=387) for all indications, including breast.[6] For all indications combined, the pooled fat survival rate was significantly higher in the CAL group than in the nonlipotransfer group (60% vs. 45%, p=0.0096). Complication incidence was similar in the two groups. In breast fat grafting fat survival was improved by only 9% in the CAL group, which was not statistically significant. In addition, lipotransfer in breast cases was associated with a higher complication incidence compared with other indications (p<0.001).

Nonrandomized Studies

Mazur (2018) evaluated the risk of cancer recurrence in 56 patients having the breast reconstructed with autologous ASC (transplanted as the subpopulation present in the stromal vascular fraction [SVF]).[7] Tumor recurrence in these patients was compared with tumor recurrence in 252 matched patients that did not receive breast reconstruction. Cancer recurrence in the ASC and control groups was 3.7% and 4.13%, respectively, which was not significantly different (p=1.0).

In 2016, Jung conducted a small single-arm, prospective study to evaluate the impact of ADSCs, using CAL, on graft survival, including five patients.[8] One year after CAL, breast volume had decreased to 47% of the initial postoperative volume. The ratio of ADSC cell count to grafted fat volume showed no correlation with graft survival. The addition of SVF cells did not appear to improve the retention of grafted fat in these patients. Skin tension may be an important factor influencing the absorption pattern of grafted fat.

In 2013, Peltoniemi conducted a prospective comparative study to evaluate if stem cell enrichment is important for success in lipofilling for cosmetic breast augmentation.[9] A total of 18 women underwent breast augmentation, with 10 of the cases including transferred lipoaspirate enriched with ADSCs using the Cytori Celution(®) system MRI-based volumetric analysis was done preoperatively and six months post-procedure. MRI analysis revealed mean graft survival was not significantly different between groups (54% in nonADSC group vs. 50% in the ADSC-enrichment patients). After centrifugation survival was not significantly different between groups (79% in nonADSC group vs. 74% in the ADSC-enrichment patients. The investigators concluded that they did not see any advantage in stem cell enrichment by the Celution(®) system in cosmetic fat transplantation to the breast.

In 2012, Pérez-Cano conducted a single-arm, prospective, multicenter clinical trial of 71 women who underwent breast conserving surgery for breast cancer and autologous adipose-derived regenerative cell (ADRC)-enriched fat grafting for reconstruction of defects ≤150 mL (the RESTORE-2 trial).[10] Trial endpoints included patient and investigator satisfaction with functional and cosmetic results and improvement in overall breast deformity at 12 months post-procedure. Female patients (18 to 75 years of age) presenting with partial mastectomy defects and without breast prosthesis were eligible. The RESTORE-2 protocol allowed for up to two treatment sessions and 24 patients elected to undergo a second procedure following the six-month follow-up visit. Of the 67 patients treated, 50 reported satisfaction with treatment results through 12 months. Sixty-one patients underwent radiation therapy as part of their treatment; two patients did not receive radiation and the status of radiation treatment was not known for the other four patients. Using the same metric, investigators reported satisfaction with 57 out of 67 patients. There were no serious adverse events associated with the ADRC-enriched fat...
graft injection procedure. There were no reported local cancer recurrences. The LENT-SOMA scale included investigator and patient assessment of post-radiation signs and symptoms. The investigators of the trial found that LENT-SOMA was insufficiently sensitive to adequately reflect the clinical improvements seen in the trial population. Patients with LENT-SOMA III and IV scores (most severe symptoms) were excluded during screening, which may have contributed to the subtle LENT-SOMA score changes observed in the trial. The investigators reported improvement from baseline through 12 months in the degree of retraction or atrophy in 29 out of 67 patients, while 34 patients had no change and four patients reported worse symptoms. Post-radiation fibrosis at 12 months was reported as improved in 29 patients, while 35 patients had no change and three patients had worse symptoms. Management of atrophy was reported as improved in 17 patients, with 48 patients having no change and two patients reporting worse symptoms. Improvement in these measures reached statistical significance. The authors concluded that future comparative studies are needed to determine the incremental benefit of ADRC-enriched fat grafting as compared to traditional fat grafting in various clinical circumstances.

In 2011, Kamakura and Ito reported on the use of ADSC enriched fat grafting for breast augmentation in a prospective, nonrandomized open-label study of 20 Japanese women.[11] After the adipose tissue was harvested by liposuction, it was processed in the Celution 800 System® to wash and isolate the adipose-derived regenerative cells and produce a fat graft enriched with the regenerative cells. Clinical outcomes measured included improvement in circumferential breast measurement from baseline state. There was improvement in circumferential breast measurement in all patients, and breast measurements were stable by three months after grafting. At nine months, the mean breast measurement had increased 3.3 cm from preoperative measurements. The procedure was well-tolerated without any serious adverse events. Postoperative cyst formation was seen in two patients.

In 2008, Yoshimura and colleagues reported on the development of CAL, in which autologous ADSCs are used in combination with lipoinjection.[3] From 2003 to 2007, the group performed CAL in 70 patients: in the breast in 60 patients (including eight who had breast reconstruction after mastectomy). They reported outcomes for 40 patients with healthy thoraxes and breasts who underwent CAL for purely cosmetic breast augmentation; patients undergoing breast reconstruction for an inborn anomaly or after mastectomy were not included. Nineteen of the 40 patients had been followed for more than six months, with a maximum follow-up of 42 months. The authors observed that the transplanted adipose tissue was gradually absorbed during the first two postoperative months, and the breast volume showed a minimal change thereafter. Final breast volume showed augmentation by 100 to 200 mL after a mean fat amount of 270 mL was injected. The difference in breast circumference (defined as the chest circumference at the nipple minus the chest circumference at the inframammary fold) had increased in all cases by 4 to 8 cm at six months. Cyst formation or microcalcification was detected in four patients. The authors concluded that their preliminary results suggest that CAL is effective and safe for soft tissue augmentation and superior to conventional lipoinjection but that additional study is necessary to further evaluate the efficacy of this technique.

In 2007, Rigotti reported the results of a pilot study on the presence and effectiveness of ADSCs in 20 consecutive patients undergoing therapy for adverse effects of radiation treatment to the breast, chest wall or supraclavicular region, with severe symptoms or irreversible function damage (LENT-SOMA scale grade 3 and 4). LENT-SOMA is one of the most common systems to assess the late effects of radiotherapy.[12] The mean patient age was 51 years (range, 37 to 71 years). The rationale behind the study was that the ADSCs, which
have been shown to secrete angiogenic and antiapoptotic factors and to differentiate into endothelial cells, could promote neovascularization in ischemic tissue such as irradiated tissue. Targeted areas included the supraclavicular region, the anterior chest wall after mastectomy with or without breast prosthesis, and breast after quadrantectomy. A lipoaspirate purification procedure was performed by centrifugation to remove a large part of the triglyceride portion of the tissue and disrupt the cytoplasm of the mature adipocytes to favor their rapid clearance after injection. A stromal-vascular fraction was isolated by enzymatic digestion of extracellular matrix, centrifugation and filtration, and the fractions were cultured for two to three weeks to obtain a homogenous cell population. To assess the presence of mesenchymal stem cells, the stromal-vascular fraction derived from the adipose tissue was cultured and characterized by flow cytometry. The number of procedures was one in five patients, two in eight patients, three in six patients, and six in one patient. Clinical follow-up varied between 18 and 33 months (mean, 30 months). Clinical results after treatment with lipoaspirates were assessed by LENT-SOMA scoring. The 11 patients initially classified as LENT-SOMA grade 4 (irreversible functional damage) progressed to grade 0 (no symptoms), grade 1 and grade 2 in four, five, and one cases, respectively. In one case, no improvements were observed. In the four patients who had undergone mastectomy and had breast prostheses and areas of skin necrosis, the necrosis showed complete remission. In the group of nine patients classified as LENT-SOMA grade 3, fibrosis, atrophy, and retraction progressed to grade 0 and 1 in five and four cases, respectively.

PRACTICE GUIDELINE SUMMARY

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE (NICE)

In 2012 NICE published an evidence-based clinical practice guideline addressing breast reconstruction using lipomodelling after breast cancer treatment. Regarding the use of stem cell enrichment, it states, “Further information about the outcomes of this and other adaptations of the technique of lipomodelling is desirable for guiding their future use in clinical management.”[13]

AMERICAN SOCIETY OF AESTHETIC PLASTIC SURGERY AND AMERICAN SOCIETY OF PLASTIC SURGEONS[14]

A joint task force of the American Society for Aesthetic Plastic Surgery (ASAPS) and the American Society of Plastic Surgeons released a position statement on the use of stem cells in aesthetic surgery during the 2011 annual meeting of ASAPS.[14] Based on a systematic review of the peer-reviewed literature, the task force concluded that while there is potential for the future use of stem cells in aesthetic surgical procedures, the scientific evidence and other data are very limited in terms of assessing the safety or efficacy of stem cell therapies in aesthetic medicine.

SUMMARY

The current research on the use of supplemented adipose-derived stem cells in combination with fat grafting to the breast has many limitations. In addition, the research is starting to show that the use of these cells does not increase graft survival or decrease resorption rates. More research is needed on the long-term effectiveness and safety of enrichment of adipose-derived stem cells in fat grafting to the breast. In addition, no evidence-based clinical practice guidelines recommend the use of adipose-derived stem cell enrichment in

SUR182 | 6
fat grafting to the breast. Therefore, the use of adipose-derived stem cell enrichment in conjunction with fat grafting to the breast is considered investigational.

REFERENCES

CODES

NOTE: There is no specific code to report the use of the additional adipose-derived stem cell enrichment in autologous fat grafting.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>11950</td>
<td>Subcutaneous injection of filling material (eg, collagen); 1 cc or less</td>
</tr>
<tr>
<td></td>
<td>11951</td>
<td>Subcutaneous injection of filling material (eg, collagen); 1.1 to 5.0 cc</td>
</tr>
<tr>
<td></td>
<td>11952</td>
<td>Subcutaneous injection of filling material (eg, collagen); 5.1 to 10.0 cc</td>
</tr>
<tr>
<td></td>
<td>11954</td>
<td>Subcutaneous injection of filling material (eg, collagen); over 10.0 cc</td>
</tr>
<tr>
<td></td>
<td>15769</td>
<td>Grafting of autologous soft tissue, other, harvested by direct excision (eg, fat, dermis, fascia)</td>
</tr>
<tr>
<td></td>
<td>15771</td>
<td>Grafting of autologous fat harvested by liposuction technique to trunk, breasts, scalp, arms, and/or legs; 50 cc or less injectate</td>
</tr>
<tr>
<td></td>
<td>15772</td>
<td>Grafting of autologous fat harvested by liposuction technique to trunk, breasts, scalp, arms, and/or legs; each additional 50 cc injectate, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>19380</td>
<td>Revision of reconstructed breast (eg, significant removal of tissue, re-advancement and/or re-inset of flaps in autologous reconstruction or significant capsular revision combined with soft tissue excision in implant-based reconstruction)</td>
</tr>
<tr>
<td></td>
<td>19499</td>
<td>Unlisted procedure, breast</td>
</tr>
</tbody>
</table>

HCPCS None

Date of Origin: November 2011
Bronchial Valves

Effective: May 1, 2022

Next Review: March 2023

Last Review: March 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Bronchial (endobronchial, intrabronchial) valves are synthetic devices that are deployed with bronchoscopy into ventilatory airways of the lung for the purpose of controlling airflow.

MEDICAL POLICY CRITERIA

I. The use of a bronchial valve may be considered **medically necessary** for the treatment of **severe emphysema** when all of the following Criteria (A.- O.) are met:

A. The valve has been approved by the FDA (Zephyr® Endobronchial Valve System or Spiration® Valve System); and

B. Patient is age 40 years or older; and

C. Body mass index (BMI) less than 35kg/m²; and

D. Patient has completed a pulmonary rehabilitation program prior to valve placement; and

E. The patient is not a cigarette smoker OR there is clinical documentation that the patient has been abstinent from cigarette smoking for at least four consecutive months prior to and throughout evaluation for the procedure; and

F. Little or no collateral ventilation as determined using the Chartis (Zephyr) or
SeleCT (Spiration) systems (see Policy Guidelines) is present; and

G. Total lung capacity (TLC) is greater than 100% predicted; and

H. Six-minute walking distance (6MWD) ≥100m and <500m; and

I. Patient has not had any of the following: prior lung transplant, lung volume reduction surgery (LVRS), ipsilateral bullectomy, or lobectomy; and

J. Residual volume (RV) is greater than or equal to 175% predicted; and

K. High resolution computed tomography (HRCT) obtained within 90 days of screening demonstrates all of the following (1.- 3.):
 1. Absence of large bullae encompassing greater than 30% of either lung; and
 2. Target lobe has greater than or equal to 40% emphysema destruction; and
 3. Greater than or equal to 10% disease severity difference (heterogenous emphysema) between the targeted lobe and the ipsilateral lobe; and

L. Post-bronchodilator forced expiratory volume (FEV1) is between 15% and 45% of predicted value; and

M. PaCO2 <60mmHg and PaO2 >45mm Hg on room air; and

N. Stable with less than 20 mg daily of prednisone (or equivalent); and

O. Patient has no record of any of the following contraindications as documented by an echocardiogram, right heart catheterization, and/or electrocardiogram completed within 90 days from screening:
 1. Uncontrolled pulmonary hypertension (systolic pulmonary arterial pressure greater than 45 mm Hg); and
 2. Left ventricular ejection fraction (LVEF) less than 45%; and
 3. Evidence or history of cor pulmonale; and
 4. Congestive heart failure; and
 5. Resting bradycardia (less than 50 beats/min).

II. Removal, replacement, or revision of a U.S. Food and Drug Administration (FDA) approved bronchial valve (Zephyr® Endobronchial Valve System or Spiration® Valve System) may be considered medically necessary once the valve has been placed for the treatment of emphysema.

III. The use of a bronchial valve is considered investigational for all other indications, including but not limited to the following:
 A. For the treatment of emphysema when Criterion I. is not met; or
 B. For the treatment of air leaks.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

The goal of bronchial valve treatment is to achieve a lobar volume reduction or atelectasis
(collapse). In many patients, atelectasis cannot be achieved due to interlobar collateral ventilation (CV) generated through incomplete lobar fissures. There are several methods to assess the presence of CV, with endobronchial pulmonary assessment (e.g., the Chartis System) and CT-fissure analysis (e.g., SeleCT or StratX) being the most common.

CT-fissure analysis can be used to assess the completeness of the fissure. Typically, the analysis is done by experienced radiologists or pulmonologists. The target lobe and ipsilateral lobe must be separated with an intact fissure and an intact fissure is estimated visually to be ≥90% complete with no segmental vessels crossing from one lobe to the adjacent lobe after viewing the high-resolution CT in three dimensions (sagittal, axial, and coronal). Automated methods (SeleCT) to provide exact quantifications and support visual readings are recommended.

The Chartis system is used for bronchoscopic assessment of collateral ventilation and consists of a catheter with a balloon component at the distal tip. The Chartis system was originally validated in spontaneous breathing patients under conscious sedation, however the measurement has been performed under general anesthesia with positive pressure support or high frequency jet ventilation. The airway is blocked when the balloon is inflated and air from the targeted segment or lobe can flow only through the catheter. This air is directed to the Chartis console, which can assess both expiratory air flow, pressure, and resistance. Presence of collateral airflow is observed if expiratory airflow persists after occlusion of a lobe, and if there is no flow, this indicates no collateral airflow.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

The information below must be submitted for review to determine whether policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- Medical records, including history and physical/chart notes related to documenting that all of the requirements in Criteria I. are met, including but not limited to:
 - results of high-resolution CT obtained within 90 days of screening documenting the sub-criteria in Criterion I. are met
 - results of echocardiogram, right heart catheterization, and/or electrocardiogram documenting sub-criteria in Criterion I. are met
 - the type of valve system to be used.

CROSS REFERENCES

None

BACKGROUND

Proper lung functioning is dependent upon a separation between the air-containing parts of the lung and the small vacuum-containing space around the lung called the pleural space. When air leaks into the pleural space, the lung is unable to inflate resulting in hypoventilation and hypoxemia; this condition is known as a pneumothorax. A pneumothorax can result from a variety of processes including trauma, high airway pressures induced during mechanical ventilation, lung surgery, and rupture of lung blebs or bullae, which may be congenital or a result of chronic obstructive pulmonary disease (COPD).
Bronchial valves are synthetic devices deployed with bronchoscopy into ventilatory airways of the lung to control airflow. They have been investigated for use in patients who have prolonged bronchopleural air leaks and as an alternative to lung volume reduction surgery in patients with hyperinflation from severe or advanced emphysema.

Emphysema, a form of COPD, is a progressive, debilitating disease characterized by irreversible destruction of alveolar tissue. This destruction results in reduced elastic recoil, progressive hyperinflation and gas trapping with patients experiencing chronic dyspnea, limited exercise tolerance and poor health related quality of life. In emphysematous COPD, diseased portions of the lung ventilate poorly, cause air trapping, and hyperinflate, compressing relatively normal lung tissue. The patterns and degree of emphysema heterogeneity (i.e., the extent and distribution of air space enlargements) can be measured using computed tomography (CT) density as an indicator for tissue destruction. The most diseased portions of lung can then potentially be targeted for lung volume reduction procedures. In homogeneous emphysema, there is minor or no regional difference in disease within or between lobes of the lung. Bronchial valves are synthetic devices deployed with bronchoscopy into ventilatory airways of the lung to control airflow. During inhalation, the valve is closed, preventing air flow into the diseased area of the lung. The valve can open during exhalation to allow air to escape from the diseased area of the lung. They have been investigated for use in patients who have prolonged bronchopleural air leaks and in patients with hyperinflation from severe or advanced emphysema.

When used to treat persistent air leaks from the lung into the pleural space, the bronchial valve theoretically permits less air flow across the diseased portion of the lung during inhalation, aiding in air leak closure. The valve may be placed, and subsequently removed by bronchoscopy. The use of bronchial valves to treat emphysema is based on the improvement observed in patients who have undergone lung volume reduction surgery. Lung volume reduction surgery involves excision of peripheral emphysematous lung tissue, generally from the upper lobes. The precise mechanism of clinical improvement for patients undergoing lung volume reduction has not been firmly established. However, it is believed that elastic recoil and diaphragmatic function are improved by reducing the volume of the diseased lung. Currently, and at the time the clinical trials were designed, very few lung volume reduction procedures were performed. The procedure is designed to relieve dyspnea and improve functional lung capacity and quality of life; it is not curative. Medical management remains the most common treatment for a majority of patients with severe emphysema.

In early trials of bronchial valves for treatment of emphysema, absence of collateral ventilation (pathways that bypass the normal bronchial airways) was associated with better outcomes, presumably because patients with collateral ventilation did not develop lobar volume reduction or atelectasis (collapse). In subsequent trials, patients were selected for absence of collateral ventilation, and it is current practice for patients to be assessed for the presence of collateral ventilation prior to undergoing the procedure. Collateral ventilation is measured by the Chartis system, which requires bronchoscopy, or as a surrogate, CT scanning to assess the completeness of fissures, SeleCT or StratX systems. After 45 days post-procedure, residual volume can provide information on whether lung volume reduction has been achieved successfully.

REGULATORY STATUS

Currently, two endobronchial valve systems are FDA-approved for treatment of patients with...
severe emphysema (FDA product code: NJK). Both are one-way valves which work to prevent air flow to the diseased area of the lung during inhalation. The valves allow air to escape from the treated lobe(s) during exhalation. In June 2018, the FDA granted the Zephyr® Endobronchial Valve (formerly Emphasys, now Pulmonx) system breakthrough device status with expedited approval for the bronchoscopic treatment of adult patients with hyperinflation associated with severe emphysema in regions of the lung that have little to no collateral ventilation.[1] The Zephyr Endobronchial Valve (EBV) is a one-way, removable, silicone, duckbill valve mounted in a nitinol, self-expanding retainer that is covered with a thin silicone membrane. The valve is available in three sizes and implanted during bronchoscopy in bronchial lumens ranging from 4.0 to 8.5 mm in diameter. In December 2018, the FDA approved the Spiration® Valve System.[2] The Spiration® Valves are one-way endobronchial valves intended for adult patients with shortness of breath and hyperinflation associated with severe emphysema in regions of the lung that have low collateral ventilation. The Spiration® Valve System is deployed into the bronchial tree using the deployment catheter passed through the working channel of a flexible bronchoscope with working channel 2.6 mm or greater. The Spiration valves are provided in four sizes to accommodate airway diameters ranging from 4.75 to 8.75 mm. Both valves may require repeat procedures to reposition or restore functioning. Although more than one valve may be needed to achieve the desired clinical outcome, FDA safety testing assumed no more than 10 valves will be placed in a clinical procedure for the treatment of severe emphysema.

The intrabronchial IBV® Valve System (Spiration, Inc) was approved by the U.S. Food and Drug Administration (FDA) under the Humanitarian Device Exemption (HDE) number H060002. It is intended for use in controlling prolonged air leaks of the lung or significant air leaks that are likely to become prolonged air leaks following lobectomy, segmentectomy, or lung volume reduction surgery (LVRS), for a duration up to 6 weeks.[3]

EVIDENCE SUMMARY

PROLONGED OR SIGNIFICANT AIR LEAKS

The principal outcome associated with treatment of prolonged or significant air leaks include resolution of the leak. In order to understand the impact of bronchial valves for treatment of prolonged or significant air leaks, well-designed randomized controlled trials (RCTs) that compare this therapy to standard medical treatment, such as chest tube placement, performing a thoracotomy with mechanical or chemical pleurodesis, or additional operations, are needed.[3]

Systematic Review

No systematic reviews (SRs) were identified on the use of endobronchial or intrabronchial valves for prolonged or significant air leaks.

Randomized Controlled Trials

No randomized controlled trials (RCTs) were identified on the use of endobronchial or intrabronchial valves for prolonged or significant air leaks.

Nonrandomized studies

No comparative observational studies were identified. Nonrandomized studies have reported on the use of either intrabronchial[4], endobronchial valves[5, 8], or both types[7]. Conclusions...
cannot be reached from of these studies, as the data are limited by a variety of factors, including but not limited to:

- Small study populations, less than 100 patients total, which limit the ability to rule out the role of chance as an explanation of study findings;[4, 5, 7] and
- Retrospectively abstracted records, leading to potential study bias in sample selection, including selection criteria.[5, 7]
- Follow-up of study subjects was over a short period of time, less than 6 months, so medium and long-term effects of endobronchial valves treatment are unknown.[4, 5, 7]

ADVANCED EMPHYSEMA

In patients with advanced emphysema, valves may be compared to other forms of medical treatment, such as bronchodilators, short courses of systemic corticosteroids, noninvasive positive pressure ventilation (NIPPV) and/or oxygen therapy. In patients who have exhausted conservative therapy, valves must be compared to more invasive treatment, such as lung volume reduction surgery. RCTs are needed in order to isolate the contribution of these implants from other components of therapy. Further, for treatment of chronic conditions, particularly those with a poor prognosis, an understanding of any adverse treatment effects must be carefully weighed against any benefits to understand the net treatment effect.

Systematic Reviews

A 2020 systematic review (SR) with network meta-analysis by Iftikhar evaluated the effect of bronchial valves in patients with heterogeneous emphysema without lobar collateral ventilation (CV).[8] The review included 10 RCTs studying adult COPD patients with severe emphysema on optimal medical management and undergoing intervention with Zephyr or Spiration valves or coils for the intervention and standard of care as the comparator. A total of 912 total study participants (544 in intervention arms and 368 in control arms) were included in the meta-analysis. No statistical evidence of funnel plot asymmetry (or publication bias) was found. In patients with heterogeneous emphysema without CV, both Spiration and Zephyr valves showed significant increases in forced expiratory volume in 1 second (FEV1) (0.11 L [95% confidence interval (CI), 0.05 to 0.16] and 0.14 L [0.08 to 0.19], respectively) and in reducing St. Georges Respiratory Questionnaire (SGRQ) scores (-9.32 [-14.18 to -4.45] and -8.14 [-11.94 to -4.35], respectively) as compared with control, with no significant differences between interventions. Significant improvement (52.3 m [95% CI, 26.53 to 77.93]) in six-minute walk distance (6MWD) also was found for Zephyr valves, specifically. Both Spiration and Zephyr valves were associated with more frequent pneumothorax as compared with control (odds ratio, 10.32 [1.35 to 79.13] and 11.47 [2.91 to 45.27], respectively). No statistically significant association for COPD exacerbations was found for any of the interventions.

Majid (2020) published a systematic review (SR) with meta-analysis of four RCTs (N= 629) evaluating the Spiration® Valve System (SVS) in patients with severe emphysema and hyperinflation.[9] The RCTs included were published by Ninane (2012),[10] Wood (2014),[11] Li (2019),[12] and Criner (2019).[13] Outcomes evaluated were changes in: forced expiratory volume in 1s (FEV1), 6-min walking test (6MWT), residual volume, modified medical research council (mMRC) and Saint George respiratory questionnaire (SGRQ), as well as all-cause mortality, risk of pneumothorax, and risk of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). An overall change of 0.03 L (-0.07 to 0.13, I² = 90%) in FEV1 and 2.03% (-2.50 to 6.57, I² = 96%) in the predicted FEV1 compared to baseline was found with SVS but no benefit in 6MWT (mean difference = 4.56 m [95% CI -21.88 to 31.00, I² =
Relative risk of mortality was 2.54 (95% CI 0.81-7.96, I² = 0%), for pneumothorax 3.3 (95% CI 0.61-18.12, I² = 0%) and AECOPD 1.68 (95% CI 1.04-2.70, I² = 0%). In patients with severe heterogeneous emphysema and hyperinflation without collateral ventilation, treatment with SVS improved pulmonary function, quality of life, and dyspnea score. However, the significantly increased relative risk of adverse events, including mortality, warrants additional RCTs addressing the safety and long-term benefit of this treatment.

In a SR with network meta-analysis by Xu (2020), bronchoscopic lung volume reduction treatments for emphysema, including intrabronchial valve (IBV) and endobronchial valve (EBV) treatments, were evaluated. Thirteen trials were included (N=1993), seven of which were on IBV or EBV, including some studies reported in previous SRs. The quality of evidence was rated as moderate in most comparisons using the GRADE framework. Medical care (MC) was associated with the fewer adverse events than IBV (-2.5, [-4.70 to -0.29]) and EBV (-1.73, [-2.37 to -1.09]) treatments. Less of an improvement in FEV1 and 6MWT was found in MC compared with EBV (-0.45, [-0.69 to -0.20] and -0.39, [-0.71 to -0.07], respectively) and significantly more positive change in SGRQ was found in EBV compared with MC (0.44, [0.11 to 0.78]). This analysis provides important comparisons of bronchial valve treatments to medical care alone for emphysema. Although clinical and quality of life variables improved with valve treatment, more adverse events occurred with both IBV and EBV treatment compared to MC alone, which is consistent with other systematic reviews evaluating safety of these devices.

A SR with meta-analysis published by Low (2019) evaluated RCTs comparing EBV implantation versus standard medical treatment or sham bronchoscopy for advanced emphysema. This SR included five RCTs (N= 703) published by Valipour (2016), Sciruba (2010), Klooster (2015), Herth (2012), and Davey (2015). Across these studies, the percentage change of FEV1 was significantly improved in the EBV group compared with the control group [weighted mean difference (WMD)=11.43; 95% confidence interval (CI), 6.05-16.80; P<0.0001] as was the SGRQ score (WMD=5.69; 95% CI, -8.67 to -2.70; P=0.0002). No group difference was found in the 6MWT (WMD=14.12; 95% CI, -4.71 to 32.95; P=0.14). There was an increased rate of pneumothorax [relative risk (RR)=8.16; 95% CI, 2.21-30.11; P=0.002], any hemoptysis (RR=5.01; 95% CI, 1.12-22.49; P=0.04) and valve migration (RR=8.64; 95% CI, 2.01-37.13; P=0.004) in the EBV group. Although there were short-term improvements in lung function and quality of life observed with the EBV, the significant increases in complication rates demonstrate the need for additional studies to determine the long-term safety and effectiveness of the treatment.

La Barca (2019) published a SR with meta-analysis of RCTs evaluating the efficacy and safety of the Zephyr® valve.

Seven RCTs reported on Zephyr® valves and five RCTs included only patients without collateral ventilation. Outcomes evaluated were change in: FEV1, 6MWT, SGRQ, and in residual volume (RV). Safety analysis included relative risk (RR) of pneumothorax. Treatment with the Zephyr® valve improved FEV1 with a mean difference (MD) of 20.74% (CI, 15.68, 25.79, I² = 25%). Subgroup analysis showed significant FEV1 improvement following Zephyr® placement in patients with heterogeneous emphysema distribution: MD = 25.98% (CI, 17.72, 34.24, I² = 58%) and 16.27% (CI, 8.78-23.76, I² = 0%) in patients with homogeneous emphysema. Follow-up of 6-12 months showed a consistent improvement of FEV1 MD = 17.90% (CI, 11.47-24.33, I² = 0%). Despite these positive clinical outcomes, the relative risk of pneumothorax was 6.32 (CI, 3.74-10.67, I² = 0%). While this SR found clinically meaningful improvements with Zephyr® valve, there also was a significant increase in adverse events with the device. These conclusions are consistent with a
comprehensive review of lung volume reducing surgical and endoscopic interventions for emphysema published by van Geffen (2019) that also included seven RCTs of the Zephyr® valve.\[25\] Five of the studies are included in Table 1 under Endobronchial Valve Studies, and the additional two are LIBERATE\[26, 27\] and TRANSFORM\[28\]. Participants in the included studies were those with emphysema, older than 35 years, post-bronchodilator FEV1 < 60% of predicted, and residual volume >150% of predicted (N = 620 total, range per study varied 50-190). Studies lasted from 3-12 months in duration. Meta analyses found adverse events including mortality to be greater in those who received valves: OR 9.58 (5.56 to 16.50), p=<0.00001.

A 2017 SR with meta-analysis by Wang evaluated bronchoscopic lung volume reduction therapy in patients with severe emphysema which included six RCTs for EBVs and two RCTs for IBVs.\[29\] Better response in minimal clinically important difference (MCID) was found in EBV trials for FEV1 (RR = 2.96, 95% CI = 1.49 – 5.87, p = 0.002, I² = 58%), for 6MWT (RR = 2.90, 95% CI = 1.24 – 6.79, p = 0.01, I² = 80%), for SGRQ (RR = 1.53, 95% CI = 1.22 – 1.92, p = 0.0002, I² = 0%), as well as for mMRC (RR = 2.53, 95% CI = 1.71 – 3.76, p <0.00001, I² = 0%). Similarly, EBV therapy was associated with significant improvement in ΔFEV1 (WMD = 11.44%, 95% CI = 6.11 – 16.77, p < 0.0001, I² = 57%), in Δ6WMT (WMD = 33.86m, 95% CI = 11.54 – 56.19, p = 0.003, I² = 76%), and in ΔSGRQ (WMD = -7.06 points, 95% CI = -10.71 – -3.41, p = 0.0001, I² = 63%), in ΔmMRC (WMD = -0.35 point, 95% CI = -0.56 – -0.14, p = 0.0008, I² = 30%). The IBV group was not found to be superior to the conventional group. No sub-analysis was provided for emphysema type (homogenous vs. heterogenous).

In 2017, a Cochrane Systematic Review evaluating bronchoscopic lung volume procedures for COPD was published by van Agteren.\[30\] Authors conducted in-depth analyses aimed at assessing the effects of bronchoscopic lung volume reduction procedures on the short- and long-term health outcomes in participants with moderate to severe COPD and determining the effectiveness of each technique. Endobronchial and intrabronchial valves were among the six techniques analyzed; only individually and cluster randomized controlled trials were included. See Table 1 for endobronchial and intrabronchial valve studies included for analyses. Studies including participants with giant or bullous emphysema were excluded. Primary outcomes included: lung capacity as measured by FEV1; survival as measured by perioperative and postoperative mortality; and health-related quality of life, measured by questionnaire (e.g., St Georges Respiratory Questionnaire [SGRQ]). Given the heterogeneity in treatment approaches, outcomes were meta-analyzed only per treatment type. Outcomes for continuous or dichotomous data were analyzed using a fixed-effect model up to the end of follow-up. Continuous outcomes were calculated using mean differences, and dichotomous outcomes with odds ratios, both with 95% confidence intervals. Heterogeneity was calculated using the I² statistic, and subgroup analysis was performed as appropriate. Studies were graded for bias as high, low, or unclear, with rationale reported. Quality of evidence was rated using the GRADE scale. EBV and IBV studies included both heterogenous and homogeneous disease status patients, though majority of the EBV studies included participants with only a heterogenous disease distribution. The average of participants ranged between 58 and 65 years of age; the STELVIO 2015 trial having the youngest average age (58 to 59 years of age); the IBV Valve Trial 2014 and the VENT US 2010 studies having the highest average age ranging between 64.7 and 64.8, and 64.9 and 65.3, respectively. Majority of the trials recruited more males than females.

Table 1. RCTs included in 2017 Cochrane Review
Endobronchial Valve Studies (Year)	Intrabronchial Valve Studies (Year)
Believer HiFi (2015)\(^{[15, 31]}\) | Eberhardt (2012)\(^{[32]}\)
IMPACT (2016)\(^{[21]}\) | IBV Valve Trial (2014)\(^{[11]}\)
STELVIO (2015)\(^{[23, 33]}\) | Ninane (2012)\(^{[10]}\)
VENT EU (2012)\(^{[19]}\) |
VENT US (2010)\(^{[22, 34-39]}\)

Endobronchial Valves

The conclusions from the EBV studies were drawn from five studies totalling 703 participants, which used standard medical care as the comparator. The results from the Cochrane SR by van Agteren are consistent with the subsequent SRs noted above. The number of adverse events experienced by patients with endobronchial valves was higher than those who received standard medical treatment (OR [95% confidence interval], 5.85 [2.16, 15.84], high quality of evidence), though no significant difference in mortality was found. From baseline to follow-up, between-group differences in the EBV group compared to control, change in lung function (FEV1, standardized mean difference [SMD], of 0.48 [95% CI: 0.32 to 0.64], low-quality evidence), quality of life (mean difference [MD], -6.20 units [95% CI: -8.19 to -4.20]; low quality of evidence), and exercise capacity (38.40 meters [95% CI: 24.69 to 52.12]; low quality of evidence) were significantly improved. While positive results may have been found, due to high confidence intervals and standard deviations, the authors urged caution in interpreting the means reported for outcomes of their systematic review. Earlier trials found better outcomes in patients with intact fissures which affected selection criteria in future trials, and thus improvement in functional outcomes.

Intrabronchial Valves

Two RCTs comparing intrabronchial valves to standard medical treatment were included for review,\(^{[10, 11]}\) as well as one trial comparing unilateral versus partial bilateral valve placement with intrabronchial valves\(^{[32]}\). Adverse events experienced by patients with intrabronchial valves was higher than those who received standard medical treatment (OR, 3.41 [1.48, 7.84]), and no significant risk in mortality. Between group difference in exercise capacity was found to favor controls (MD -19.54 meters; [95% CI -37.11 to -1.98], moderate-quality evidence), as did lung function. Lack of difference in the IBV Valve trials by Wood (2014) and Ninane (2012) may be explained by the Eberhardt (2012) trial, as the latter found those treated with unilateral valve placement as opposed to partial bilateral treatment showed significantly better results in lung function, quality of life, and exercise capacity. The other two trials did not specifically address collateral ventilation, nor did they aim to achieve lobar occlusion; this is supported by the EBV trials which all aimed to achieve lobar occlusion and found better functional results when achieved.

Overall, findings in the Cochrane meta-analyses are limited by the lack of long-term follow-up data, significant heterogeneity in results, presence of skew and high CIs, and the open-label character of a number of the studies.

Choi (2015) published a systematic review evaluating bronchoscopic lung volume reduction using a one-way endobronchial valve.\(^{[40]}\) The systematic review included 15 studies and meta-analyzed RCTs. Forced expiratory volume in one second (FEV1) improved compared to control groups in favor of the valve group (mean difference of 6.71, 95% CI: 3.31-10.11). The six-minute walking distance and cycle workload were also improved. A subgroup analysis of patients with complete fissure, reported that the FEV1 change was higher in the valve group at
six and 12-months compared to the control group. No deaths were reported for the bronchial valve group although the pneumothorax incidence and respiratory failure rates were higher in the EBV group.

Randomized Controlled Trials

RCTs not included in the above-described systematic reviews are summarized here.

Gompelmann (2019) published long-term follow-up data on patients with severe emphysema with no collateral ventilation treated with endobronchial or intrabronchial valves.[41] Of the 256 patients, 220, 200, 187, 100 and 66 patients completed the three-month, six-month, one-year, two-year and three-year follow-up visit, respectively. Lung function parameters [FEV1, vital capacity (VC), residual volume (RV), total lung capacity (TLC)] and exercise capacity [6-minute walk test (6-MWT)] were outcomes evaluated. Response rates were calculated as the number of patients who met the minimal important difference (MID) of >100 ml improvement in FEV1, >430 ml reduction in RV and >26 m improvement in 6-MWT. Patients who underwent further interventional strategies (LVRS, coil therapy, polymeric lung volume reduction, lung transplantation) within the observation timeframe were excluded after the additional therapeutic intervention. At six-month follow-up, 37% of the patients met the efficacy threshold of greater than 100 ml improvement in FEV1, 78% of the patients developed a greater than 430 ml reduction in RV and 58% of the patients experienced a greater than 26 m improvement on the 6-MWT. At one-year follow-up, significant improvement from baseline (p<0.05 in paired t-tests, uncontrolled for repeated observations) was found for lung function parameters including FEV1 and RV and exercise capacity (6-MWT). At three-year follow-up (n=66), the proportion of patients achieving the MID from baseline in RV and 6-MWT was 71% and 46%, respectively. Radiological follow up was assessed in 251 of the patients, and of these, 22% (56/251) developed a pneumothorax. Management of pneumothorax was via chest tube insertion in 86% (48/56) of these patients, and in 41% (23/56), valve removal was necessary for pneumothorax management. Over the three-year observation, all valves were permanently removed in 24.6% (63/256) of the patients. Permanent valve removal was conducted due to the following reasons: missing clinical benefit in 55.6% (35/63), pneumothorax in 11.1% (7/63), definitive LVRS in 19% (12/63), poststenotic pneumonia in 6.3% (4/63), lung cancer in 3.2% (2/63), respiratory insufficiency in 3.2% (2/63) and recurrent pulmonary infections in 1.6% (1/63). No analyses specific to endobronchial versus intrabronchial valve use was provided. This trial is limited by the lack of a comparative group such as medical management alone and by the retrospective design, as well as considerable loss to follow-up. Despite these limitations, this study provides important data regarding longer-term outcomes for highly-selected patients undergoing endobronchial valve treatment for severe emphysema and indicate clinically meaningful improvement can be achieved in these selected patients.

In 2017, Klooster reported one-year follow-up data from the STELVIO study not included in the SRs above.[42] An intention-to-treat analysis showed greater improvements in all primary outcomes in the EBV group compared to the controls. However, of the 64 patients with follow-up data available, 47 serious adverse events were reported from 0-6 mos, and 11 from 6 mos to one year. Two patients in the valve group died.

Nonrandomized Studies

Hartman (2021) conducted a prospective cohort study to investigate patient satisfaction and patient-specific treatment goals among individuals who received bronchial valves for treatment of severe emphysema at a single hospital in The Netherlands.[43] Patient satisfaction was
measured by a questionnaire administered one year after valve placement. Patient-specific goals were measured using the Dutch patient-specific complaint (PSC) questionnaire. In this questionnaire, patients reported their three most personally desired post-treatment goals and used a numeric rating scale (0-10) to score the level of disability per goal before and one year after treatment. Lung function, exercise capacity, dyspnea severity, and quality of life were also measured before treatment and at one-year follow-up. Of 134 patients who underwent bronchial valve placement prior to January 1, 2019, 109 (81.3%) completed the patient-satisfaction questionnaire, 88 (65.7%) completed the PSC questionnaire at baseline and follow-up, and 94 (70.1%) returned to the hospital for a follow-up visit at one year. Reasons for loss to follow-up in 40 patients were bronchial valve removed (16 patients), died (n=5), comorbidity (n=5), revision at that time (n=3) lung volume reduction surgery (LVRS) or lung transplant (n=2), and other (n=9). The PSC-questionnaire score significantly improved one year after bronchial valve treatment, from 23.7 to 17.1 points (mean decrease of 6.5 points; p =0.001) and an improvement in the PSC-questionnaire sum score was significantly associated with a larger improvement in FEV1, residual volume, exercise capacity, dyspnea severity, and quality of life. Seventy-five percent of the patients who completed the questionnaire were satisfied or very satisfied with the treatment and 11% were unsatisfied or very unsatisfied. Just over half of the questionnaire respondents (52.6%) were satisfied or very satisfied with the reduction in their symptoms after treatment, and 24.9% were unsatisfied or very unsatisfied. For the question of whether the treatment satisfied their expectations (range 1 to 5), the mean score was 3.29 (standard deviation 1.43). Most of those who completed the questionnaire (91.4%) would recommend the treatment to other patients. This study was limited by its uncontrolled design and relatively high loss to follow-up (29.9%), but it provides information on outcomes important to patients.

A retrospective review of 1500 patients with severe COPD referred for bronchoscopic lung volume reduction (BLVR) treatment was conducted by Welling (2020) to investigate the differences between patients selected for BLVR and patients that were not.[44] Of those reviewed, 282 (19%) patients were selected for BLVR treatment, and of these, 175 patients (62%) were selected for EBV, 93 patients (33%) for lung volume reduction coil (LVRC), three patients (0.2%) for airway bypass stents, nine patients (3%) for polymeric lung volume reduction and two patients (0.1%) for a pneumostoma. Although the authors found that patients who were selected for any BLVR option lived significantly longer than those who were not selected for BLVR (median 3060 versus 2079 days, p<0.001), these patients also were significantly younger (59 versus 63 years), had a lower FEV1 (28% versus 34% of predicted) and a higher residual volume (237% versus 215% of predicted) compared to the group of patients not selected for BLVR (all p<0.001). No significant survival difference was observed between patients who were selected for EBV treatment and those who were selected for LVRC (p=0.45).

Skowasch (2016) reported six month follow-up results from the VENT trial, a retrospective analysis of registry data for patients who have received endobronchial valves also described below.[45] Although lung function (FEV1 and residual volume), and COPD Assessment Test scores improved, 66 serious adverse events were reported in 55 patients. In the subsequent six months of follow-up, a total of 170 serious adverse events were reported in 125 patients.

Liberator (2016) published a retrospective analysis of the VENT trial.[37] The analysis evaluated outcomes and response based on lobe selection in patients receiving EBV therapy. The authors concluded that lobe selection does have a major role in EBV therapy. There was no difference in FEV1 outcomes between upper and lower lobe treatment groups. The authors
further conclude that complete fissure status preprocedure has the greatest influence on FEV1 outcome improvement.

Several other small case series (n<100) have been published on the use of the Zephyr or IBV valves for severe emphysema. The ability to draw conclusions based on these data is limited by a variety of factors, including small sample sizes, limited long-term follow-up data, and heterogeneity in study design including patient inclusion criteria and varying numbers of valves placed per patient. For example, a mean of four (SD: 1.6) and range of 1-8 in one study and a mean of 6.7 and range of 3-11 in the other, and unreported mean and range in the third, limiting comparisons of treatment effectiveness.

Section Summary: Advanced Emphysema

In patients with severe emphysema and low collateral ventilation, RCTs provide consistent evidence of clinically meaningful benefit for endobronchial valves compared to standard medical management on measures of lung function and quality of life. Systematic review of the available evidence also finds significant improvement in clinical and functional outcomes in select patients treated with endobronchial valves compared to standard medical management. Systematic review of the current evidence also indicates there is a greater risk of serious adverse events compared to usual care, including mortality and pneumothorax.

PRACTICE GUIDELINE SUMMARY

The 2021 Global Initiative for Chronic Obstructive Lung Disease (GOLD) report on the Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease makes the following statements on lung volume reduction interventions:

- In selected patients with heterogeneous or homogeneous emphysema and significant hyperinflation refractory to optimized medical care, surgical or bronchoscopic modes of lung volume reduction (e.g., endobronchial one-way valves, lung coils, or thermal ablation) may be considered.
- In select patients with advanced emphysema, bronchoscopic interventions reduce end-expiratory lung volume and improve exercise tolerance, health status and lung function at 6-12 months following treatment (Evidence Level A for endobronchial valves: well-designed RCTs with consistent findings in the intended population without any important limitations).

NICE guidance on the diagnosis and management of COPD (2018) included the following recommendations on lung volume reduction procedures:

- Offer a respiratory review to assess whether a lung volume reduction procedure is a possibility for people with COPD when they complete pulmonary rehabilitation and at other subsequent reviews, if all of the following apply:
 - they have severe COPD, with FEV1 less than 50% and breathlessness that affects their quality of life despite optimal medical treatment
 - they do not smoke
 - they can complete a 6-minute walk distance of at least 140 m (if limited by breathlessness).
At the respiratory review, refer the person with COPD to a lung volume reduction multidisciplinary team to assess whether lung volume reduction surgery or endobronchial valves are suitable if they have:

- hyperinflation, assessed by lung function testing with body plethysmography and
- emphysema on unenhanced CT chest scan and
- optimized treatment for other comorbidities.

For more guidance on lung volume reduction procedures, see the NICE interventional procedures guidance on lung volume reduction surgery, endobronchial valves.

In December 2017, the National Institute for Health and Care Excellence (NICE) issued the following recommendations on EBV insertion to reduce lung volume in emphysema:

- Current evidence on the safety and efficacy of EBV insertion to reduce lung volume in emphysema is adequate in quantity and quality to support the use of this procedure provided that standard arrangements are in place for clinical governance, consent and audit.
- Patient selection should be done by a multidisciplinary team experienced in managing emphysema, which should typically include a chest physician, a radiologist, a thoracic surgeon and a respiratory nurse.
- Patients selected for treatment should have had pulmonary rehabilitation.
- The procedure should only be done to occlude volumes of the lung where there is no collateral ventilation, by clinicians with specific training in doing the procedure.

SUMMARY

There is enough research to show that bronchial valves improve net health outcomes (balance of benefit and harm) compared to current standard of care for highly selected patients with advanced emphysema. Clinical guidelines based on research recommend endobronchial valves in the treatment of advanced emphysema for select patients. Therefore, US Food and Drug Administration (FDA) – approved endobronchial valve placement may be considered medically necessary for the treatment of advanced emphysema when policy criteria are met.

Removal, replacement, or revision of bronchial valves placed for the treatment of severe emphysema may be required after the device has been placed. In these cases, revision may be medically appropriate to allow for the proper functioning of the device or removal may be appropriate when the condition of the patient has changed. Therefore, revision, replacement, or removal of an existing US Food and Drug Administration (FDA) – approved endobronchial valve may be considered medically necessary after the device has been placed.

There is not enough research to show that bronchial valves improve net health outcomes (balance of benefit and harm) compared to current standard of care for any indication other than for the treatment of severe emphysema when criteria are met. Clinical guidelines based on research recommend bronchial valves only in select patients. Therefore, bronchial valve placement is considered investigational for all indications other than for the treatment of severe emphysema.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
severe emphysema when policy criteria are met, including for the treatment of air leaks and for the treatment of emphysema when policy criteria are not met.

REFERENCES

30. JE van Agteren, K Hnin, D Grosser, KV Carson, BJ Smith. Bronchoscopic lung volume
reduction procedures for chronic obstructive pulmonary disease. *The Cochrane
database of systematic reviews.* 2017;2:CD012158. PMID: 28230230
endobronchial valves for patients with heterogeneous emphysema and intact interlobar
32. R Eberhardt, D Gompelmann, M Schuhmann, CP Heussel, FJ Herth. Complete
unilateral vs partial bilateral endoscopic lung volume reduction in patients with bilateral
33. JE Hartman, K Klooster, DJ Slebos, NH Ten Hacken. Improvement of physical activity
34. RG Argula, C Strange, V Ramakrishnan, J Goldin. Baseline regional perfusion impacts
exercise response to endobronchial valve therapy in advanced pulmonary emphysema.
Chest. 2013;144(5):1578-86. PMID: 23828481
35. MS Brown, HJ Kim, FG Abtin, et al. Emphysema lung lobe volume reduction: effects on
the ipsilateral and contralateral lobes. *European radiology.* 2012;22(7):1547-55. PMID: 22466511
Outcomes in Upper versus Lower Lobe Endobronchial Valve Treatment in Severe
37. C Liberator, K Shenoy, N Marchetti, G Criner. The Role of Lobe Selection on FEV1
2014;88(5):389-98. PMID: 25277549
BMC pulmonary medicine. 2007;7:10. PMID: 17711594
using unilateral endobronchial valve: a systematic review and meta-analysis. *Int J
Chron Obstruct Pulmon Dis.* 2015;10:703-10. PMID: 25848246
41. D Gompelmann, T Heinhold, M Rotting, et al. Long-term follow up after endoscopic
valve therapy in patients with severe emphysema. *Therapeutic advances in respiratory
disease.* 2019;13:1753466619866101. PMID: 31373259
42. K Klooster, JE Hartman, NH Ten Hacken, DJ Slebos. One-Year Follow-Up after
Endobronchial Valve Treatment in Patients with Emphysema without Collateral
43. JE Hartman, K Klooster, NHT Ten Hacken, M van Dijk, DJ Slebos. Patient Satisfaction
and Attainment of Patient-Specific Goals after Endobronchial Valve Treatment. *Ann Am
44. JBA Welling, JE Hartman, SWS Augustijn, et al. Patient Selection for Bronchoscopic
45. D Skowasch, A Fertl, B Schwick, H Schafer, A Hellmann, FJ Herth. A Long-Term
Follow-Up Investigation of Endobronchial Valves in Emphysema (the LIVE Study):
Study Protocol and Six-Month Interim Analysis Results of a Prospective Five-Year Observational Study. *Respiration.* 2016;92(2):118-26. PMID: 27562904

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>31647</td>
<td>Bronchoscopy, rigid or flexible, including fluoroscopic guidance, when performed; with balloon occlusion, when performed, assessment of air leak, airway sizing, and insertion of bronchial valve(s), initial lobe</td>
</tr>
<tr>
<td></td>
<td>31648</td>
<td>Bronchoscopy, rigid or flexible, including fluoroscopic guidance, when performed; with removal of bronchial valve(s), initial lobe</td>
</tr>
<tr>
<td></td>
<td>31649</td>
<td>Bronchoscopy, rigid or flexible, including fluoroscopic guidance, when performed; with removal of bronchial valve(s), each additional lobe (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>31651</td>
<td>Bronchoscopy, rigid or flexible, including fluoroscopic guidance, when performed; with balloon occlusion, when performed, assessment of air leak, airway sizing, and insertion of bronchial valve(s), each additional lobe (List separately in addition to code for primary procedure[s])</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: February 2012
Gastroesophageal Reflux Surgery

Effective: April 1, 2022

Next Review: December 2022
Last Review: February 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Surgical fundoplication involves wrapping the fundus of the stomach around the lower esophagus in order to create a high-pressure zone that reduces gastroesophageal reflux.

MEDICAL POLICY CRITERIA

I. Esophagogastric fundoplication may be considered medically necessary for one or more of the following:
 A. In children and adolescents age 17 years and younger; or
 B. In patients with pulmonary fibrosis with symptomatic or asymptomatic gastroesophageal reflux disease; or
 C. When the procedure is performed with a paraesophageal hiatal hernia (Types II-IV), and the paraesophageal hiatal hernia is confirmed by imaging; or
 D. When the procedure is performed with esophageal myotomy in patients with achalasia; or
 E. Initial esophagogastric fundoplication to treat symptomatic gastroesophageal reflux disease (e.g., heartburn, regurgitation) when all of the following criteria (1.-3.) are met:

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
1. Symptoms are unresponsive to lifestyle modifications as appropriate to the individual patient (e.g., weight loss for overweight or obese patients, avoidance of late meals, elevation of the head of the bed); and
2. Medication therapy that meets one or more of the following:
 i. A 4-month total trial of proton pump inhibitors (PPIs) is ineffective, contraindicated, or not tolerated; or
 ii. PPIs are used for 12 or more consecutive months within the past 18 months, and surgery is considered an alternative to long-term medication use.
3. There is objective diagnostic confirmation by either of the following:
 i. Reflux and/or esophagitis is confirmed via endoscopy; or
 ii. If endoscopy is normal, objective evidence of reflux should include one or more of the following:
 a.) 24-hour ambulatory esophageal pH monitoring; or
 b.) Barium swallow.
F. Repeat esophagogastric fundoplication for a failed previous antireflux procedure when one or more of the following criteria are met:
 1. Criteria I.E.1.-3. for initial esophagogastric fundoplication above are met; or
 2. Repeat surgery is for a documented mechanical failure of previous antireflux procedure (e.g., obstruction).
II. Esophagogastric fundoplication is considered not medically necessary for the treatment of symptomatic gastroesophageal reflux disease (e.g., heartburn, regurgitation) when Criterion I. is not met.
III. The following surgical procedures are considered investigational for the treatment of gastroesophageal reflux:
 A. Distal or partial gastrectomy performed with or without gastroduodenostomy, gastrojejunostomy, or Roux-en-Y reconstruction.
 B. Hiatal hernia repair without current or prior fundoplication, including repair of sliding or paraesophageal hernia.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could our impact review and decision outcome.

- The specific surgical procedure and treatment plan;
- Medical records must document the following:
o symptomatic gastroesophageal reflux disease (GERD; e.g., heartburn, regurgitation, etc);
o any lifestyle modifications attempted and the outcomes (e.g., weight loss if appropriate, avoidance of late meals or foods that cause heartburn, avoidance of activities that cause heartburn, elevation of the head, etc.);
o medication therapies, including PPIs, that have been attempted, and their outcomes;
o diagnostic confirmation of reflux and/or esophagitis via endoscopy, 24-hour ambulatory esophageal pH monitoring, or barium swallow.
o A paraesophageal hernia (Types II-IV) must be clearly documented by imaging for coverage of paraesophageal hernia repair. For example, esophagram, upper GI study, and CT scan are acceptable forms of documentation.
 ▪ Hernia Classifications-
 • Type I- Hiatal hernia, commonly known as a sliding hernia.
 • Types II-IV- Paraesophageal hiatal hernias.
 ▪ Repair of the typical Type I hiatal hernia (e.g. sliding hernias) cannot be coded by a paraesophageal hernia (Types II-IV) repair code per CPT code definitions. The paraesophageal hiatal hernia repair codes cannot be reported unless a paraesophageal hiatal hernia is clearly documented.

• Indicate if request is for an initial treatment or a repeat esophagogastric fundoplication and reason for the need to repeat the procedure (e.g., continued symptoms, mechanical failure, etc.)

• Presence of other conditions, such as pulmonary fibrosis, hiatal hernia, achalasia, etc.

CROSS REFERENCES

1. Bariatric Surgery, Surgery, Policy No. 58
2. Transesophageal Endoscopic Therapies for Gastroesophageal Reflux Disease (GERD), Surgery, Policy No. 110
3. Magnetic Esophageal Ring to Treat Gastroesophageal Reflux Disease (GERD), Surgery, Policy No. 190
4. Peroral Endoscopic Myotomy for Treatment of Esophageal Achalasia, Surgery, Policy No. 196
5. Hiatal Hernia Repair / Gastropexy When Performed With Major Surgical Procedures, Reimbursement Policy, Surgery, Policy No. 104

BACKGROUND

Gastroesophageal reflux disease (GERD) is a chronic medical condition, defined as “troublesome symptoms and/or complications” caused by reflux or regurgitation of stomach acid.[1] GERD is a common disorder; the proportion of North American adults with GERD (those who report experiencing symptoms such as heartburn or acid reflux at least once a week, or those with a physician diagnosis of GERD) is estimated to be around 19.8-20%.[2] GERD has also been associated with extraesophageal symptoms or conditions, such as cough, laryngitis, asthma and pulmonary fibrosis, although a direct causal relationship with GERD has not been established.
Standard treatment of GERD may address lifestyle modifications as appropriate to individual patients such as weight loss, smoking cessation, avoidance of specific foods that may precipitate reflux or heartburn, elevating the head of the bed, and avoiding recumbent positions until 2-3 hours after a meal.[1] When these actions are not successful, treatment generally consists of a daily regimen of proton pump inhibitors (PPIs). However, some patients with chronic GERD are unable or unwilling to continue ongoing medical treatment. For these patients, surgical treatment may be considered.

Surgical fundoplication involves wrapping the fundus of the stomach around the lower esophagus in order to create a high pressure zone that reduces gastroesophageal reflux. The fundal wrap can be either total (360 degrees) or partial (<360 degrees). Fundoplication may be performed as an open procedure but is more commonly performed laparoscopically.

ESOPHAGOGASTRIC FUNDOPPLICATION WITH PARAESOPHAGEAL HIATAL HERNIA REPAIR

Paraesophageal hiatal hernias, also known as Type II or III hiatal hernias, occur when the stomach, and in some cases the gastroesophageal junction (GEJ), herniates through the diaphragmatic esophageal hiatus into the mediastinum. These cases are rare compared to the more common Type I or “sliding” type hiatal hernia. Diagnosis of a “true” paraesophageal hiatal hernia is confirmed through endoscopy or imaging studies. Prophylactic surgical treatment of paraesophageal hiatal hernias is usually required as they account for most of the complications associated with hiatal hernias, including but not limited to obstruction, perforation and strangulation.[3] In some cases, patients may exhibit a paraesophageal hiatal hernia with additional symptoms of GERD, requiring not only a hiatal hernia repair, but additionally a fundoplication.[4]

Hiatal hernia classification

The hiatus is an opening in the diaphragm where the distal esophagus passes through to enter the abdomen. A hiatal hernia occurs when intrabdominal contents, such as the stomach, bulge up into the chest through the hiatus. There are four types of hiatal hernias:[5]

- **Type I** – A hiatal hernia, commonly known as a sliding hernia, (type I), occurs when there is protrusion of the upper part of the stomach and esophagus (gastroesophageal junction) into the chest. This is the most common type (about 95%) of all hiatal hernias. This is also called a sliding hiatal hernia. A hiatal hernia of this type may also contain the upper segment of a sleeve gastrectomy or the pouch of a gastric band or gastric bypass. Additionally, if less than 50% of the stomach is located above the diaphragm, this is still considered a type I hiatal hernia and is not considered a paraesophageal hiatal hernia.

- **Type II** - A paraesophageal hernia (type II) occurs when the esophagus and the gastroesophageal junction remain in their normal location but a part of the stomach, typically the fundus, protrudes through the hiatus next to the esophagus into the chest. These ‘pure’ type II paraesophageal hiatal hernias seldom occur.

- **Type III** – A paraesophageal hiatal hernia (type III) occurs when there is a combination of both type I and II hiatal hernias, when the stomach and esophagus protrude into the chest AND the fundus of the stomach lies above the gastroesophageal junction and rotates along its long axis in a rolling or twisting fashion, referred to as an organo-axial
torsion. A "giant" hiatal hernia is a subset of type III hiatal hernias and defined when greater than 50% of the stomach has protruded into the chest. The majority of paraesophageal hernias are type III. However, all types of paraesophageal hiatal hernias make up about 5% of hiatal hernias but account for most of the hiatal hernia complications. The complications are primarily due to interference with the blood flow from the left gastric artery to the twisted fundus.

- Type IV – A paraesophageal hiatal hernia (type IV) occurs when a structure other than the stomach, such as the large intestine, small intestine, or omentum protrude through the hiatus into the chest.

ESOPHAGOGASTRIC FUNDOPLICATION IN PATIENTS WITH PULMONARY FIBROSIS

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease which is often associated with additional comorbidities (e.g., pulmonary hypertension and gastroesophageal reflux) and symptoms (e.g., dyspnea, exercise limitation, fatigue, anxiety, mood disturbance, sleep disorders) that negatively affect patients’ lives. GERD is highly prevalent in patients with IPF with up to 50% of patients with asymptomatic disease. Although the pathological significance of GERD in IPF remains uncertain, studies indicate that medical or surgical treatment of GERD may stabilize lung function and increase oxygenation.[6-9] It is hypothesized that fundoplication surgery may offer increased benefit over medication treatment by reducing acid as well as microaspirations of the gastric contents into the lungs.[6]

Due to the complexities of IPF, treatment protocols are not rigid or standardized and often require a management approach which is tailored to the patients’ specific conditions and symptoms. Nissen fundoplication surgery is one option which may be considered for treating patients with pulmonary fibrosis with symptomatic or asymptomatic GERD.

Note: This policy does not address transesophageal endoscopic therapies for GERD, which are addressed separately in Surgery Policy No. 110 (see Cross References).

EVIDENCE SUMMARY

In order to determine whether the benefits of surgical fundoplication in patients with chronic GERD outweigh the risks, well-designed randomized controlled trials (RCTs) are necessary, comparing medical therapy (proton pump inhibitors) with surgical fundoplication and reporting on relevant clinical outcomes.

The focus of the following literature review is on systematic reviews, randomized trials published after the systematic reviews, and clinical practice guidelines.

FUNDOPICATION

Systematic Reviews

In 2018, Richter reported results from a systematic review with network meta-analysis or randomized controlled trials comparing efficacy of laparoscopic Nissen fundoplication (LNF) to proton pump inhibitors in patients with GERD.[10] The authors also compared the Nissen procedure to transoral incisionless fundoplication, which is not within the scope of this policy, but is summarized elsewhere (see Cross References). Overall, 7 trials were included, totalling 1128 patients. Network meta-analysis using Bayesian methods under random-effects multiple treatment comparisons were implemented for analysis, as well as ranking probability by

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
surface under the cumulative ranking curve. Patients who underwent LNF had a higher probability of persistent esophagitis (0.38) than those on PPI therapy (0.19). Out of all the interventions studied, LNF had the highest probability of increasing percent time at pH <4 (0.99), followed by PPIs (0.64), and LNF also had a higher probability of increasing patients' health-related quality of life (0.66) than those on PPI therapy (0.05).

In 2010, The Cochrane Collaboration published a systematic review on medical versus surgical management for GERD in adults. In the review were all randomized or quasi-randomized controlled trials comparing laparoscopic fundoplication with medical management; nonrandomized studies were excluded. Four trials with a total of 1232 patients were included. All reported outcomes at one year, with only one reporting outcomes up to three years. There were no studies that followed patients longer than three years. Overall, the authors concluded that in the short- to medium-term there is evidence that laparoscopic fundoplication is more effective than medical management.

A 2015 update concluded that there is considerable uncertainty in the balance of benefits versus harms of laparoscopic fundoplication compared to long-term medical treatment with proton pump inhibitors. Four randomized controlled trials were included for meta-analysis, consisting of three studies previously reported in the 2010 review, and longer term follow-up for the Anvari study. The available evidence was rated low or very low, and further high-quality studies are needed.

Randomized Controlled Trials

In 2017, Emken reported results of a secondary analysis of an industry sponsored multicenter randomized controlled trial comparing anti-reflux surgery (open fundoplication) to proton pump inhibitor (omeprazole) therapy. From the same study, 3-year trial results were described by Lundell in 2000, followed by 12-year outcomes in 2009. Several of the authors were former employees of the industry sponsor.

Study design: Three hundred and ten patients across 16 centers in 4 Nordic countries were originally enrolled in the trial, randomized in a 1:1 design (N=155 in each arm). Overall study duration was 14 years, from 1991-2005. In a pre-entry study period, all patients were treated with omeprazole 20mg twice daily with the option of increasing to 40mg if needed to achieve healing of esophageal lesions and control of symptoms. Of the 155 patients randomized to open fundoplication, 144 went on to have surgery; 129 had data available at 3-years follow-up. Of the 154 patients in the omeprazole therapy group (one dropped out prior to starting therapy), 139 had 3-year data available. The secondary analysis report (2017) included 1- and 10-year outcomes from patients who underwent surgery (N=137) and long-term treatment with omeprazole 20–60mg daily (N=108).

Outcomes from 1-, 3-, 10-, and 12-years are summarized here:

- At 3-years follow-up, the authors concluded efficacy from both approaches when omeprazole dose was adjusted over time.
- In 2009, 12-year results were available for 71 who were given omeprazole (46%) and 53 treated with surgery (37%).
 - There was no difference in percent of patients in continuous remission between treatment groups (including those who had a dose adjustment and those who did not).
- Of the patients who underwent surgery, 38% required a change in therapeutic strategy (e.g., to medical therapy or additional surgeries), compared to 15% of those on omeprazole.

- Adverse events: Therapies were generally well-tolerated in both groups, though heartburn and regurgitation were significantly more common in patients given omeprazole; whereas dysphagia, rectal flatulence, and the inability to belch or vomit were significantly more common in surgical patients. Over the entire follow-up period, fatal outcomes and those of heart-related cause were more common in the omeprazole group than the surgery group. Mean hemoglobin values did not change over time in either group, though mean ferritin levels increased after ten years in the medication treated group. Procedural complications were listed as more common serious adverse events in the surgery group as compared to the omeprazole group, as expected. Authors reported no surgery-related deaths in the original study; two of the surgery patients died of heart-related causes, and two experienced non-fatal heart attacks. In the omeprazole treated group, 8 patients died of heart-related causes, and 9 experienced non-fatal heart attacks. The authors reported that an Food and Drug Administration analysis of these events concluded that baseline differences between groups may have biased the safety outcomes. For example, the median age was four years greater in the medication group, and more patients had experienced a previous heart attack in the medication group as compared to the surgery group (six and zero, respectively).

- At 1- and 10-years follow-up, data were available for 108 patients in the omeprazole group, and 137 patients in the surgery group. One hundred fourteen patients had complete data for both timepoints, and 79 had only 1-year data. There were no statistically significant differences in demographics, manometry measurements, or 24-hour pH-monitoring measurements between those with complete data versus those with only 1-year of data.

- In those who underwent surgery, measurement of lower esophageal sphincter (LOS) function (via manometry) showed statistically significant increase in median resting pressure at 1-year, which was sustained at 10-years. There were no significant changes in resting pressure in the omeprazole group.

- Those in the surgery group had statistically significant increases in median total and intra-abdominal length of LOS at 1- and 10-years. In the omeprazole group, the median total and intra-abdominal length of LOS did not change from baseline to the 1-year manometry, however, at 10-years the results were comparable to the surgery group.

Included in the publication of the 2015 Cochrane review, Anvari reported 3-year outcomes from a prospective RCT (one-year results were included in the 2010 Cochrane review).

Of the original 104 subjects, 93 were available for the 3-year follow-up assessment. The authors reported the following outcomes:
Improvement from baseline in GERD symptoms was significant in both the medical treatment and surgical groups. Differences between the two groups were not significant. (Primary outcome)

Surgical patients experienced a mean of 1.35 more heartburn-free days per week compared with the medical group, a significant difference. (Primary outcome)

Both groups demonstrated improvements in acid reflux and did not differ significantly in change from baseline. (Secondary outcome)

The surgical group had significantly better lower esophageal sphincter pressure than the medical group. (Secondary outcome)

With respect to global symptom control compared with baseline measurements, medically treated patients maintained their control, but the surgical patients demonstrated a statistically significant improvement from baseline. (Secondary outcome)

Significant improvements in quality of life scores were also seen in the surgical group compared with the medical group. (Secondary outcome)

6 (11.8%) patients in the surgical group and 8 (16%) patients in the medical group failed their primary treatment.

No adverse events were reported in the medical treatment group. In the surgical group:

- There were no intraoperative complications, major morbidities, or mortality
- 7 patients experienced minor postoperative complications
- 4 patients reported dysphagia; 7 reported postprandial bloating at 3 months
- 2 patients required dilation of the wrap

SURGICAL TREATMENT OF GERD PATIENTS WITH PULMONARY FIBROSIS

Current evidence regarding fundoplication in patients with pulmonary fibrosis (PF) mainly consist of case series\(^{[21-23]}\) and review articles, which indicated that silent reflux, or asymptomatic GERD, occurs in about one third of PF patients.\(^{[7-9]}\) Only a single case series was identified regarding the efficacy of reflux surgery in patients with idiopathic PF (IPF) and GERD symptoms who were awaiting lung transplant:

In 2006, Linden and colleagues evaluated Laparoscopic fundoplication in patients with GERD symptoms and end-stage lung disease awaiting transplantation.\(^{[8]}\) Of 149 patients on the transplant wait list, 19 were identified as having a history of reflux and of those, 14 were diagnosed with IPF. All 14 IPF patients underwent a Nissen fundoplication and were compared to 31 patients with IPF on the transplant list who did not have fundoplication surgery. No perioperative complications or decreases in lung function were reported over a mean 15-month follow-up period. Authors reported that, "patients with idiopathic pulmonary fibrosis treated with fundoplication had stable oxygen requirements, whereas control patients with idiopathic pulmonary fibrosis on the waiting list had a statistically significant deterioration in oxygen requirement."

Overall, the evidence regarding Nissen fundoplication as a treatment of gastrointestinal reflux disease (GERD) in patients with pulmonary fibrosis (PF) is limited; however, treatment of PF is often tailored to treat a patients’ specific condition and symptoms. Potential benefits of fundoplication surgery in PF patients include improved oxygenation and reduction of acid and microaspiration into the lungs. Considering no standardized treatment protocol for patients with PF if available, Nissen fundoplication surgery may be considered in patients with symptomatic or asymptomatic GERD to reduce acid reflux and microaspirations to the lungs.
GASTRECTOMY

Gastrectomy involves a partial or full surgical removal of the stomach and is most often performed to treat cancer, non-cancerous tumors, perforation, polyps, ulcers, or obesity. In order to determine whether the benefits of surgical gastrectomy in patients with chronic GERD outweigh the risks, well-designed RCTs are necessary, comparing gastrectomy to medical therapy and accepted surgical interventions (fundoplication).

Systematic Reviews and Randomized Controlled Trials

In 2016, Oor published results of a systematic review and meta-analysis of 33 studies examining the impact of laparoscopic sleeve gastrectomy on prevalence of GERD.[24] Pooled data from seven studies using validated symptom questionnaires for new-onset of GERD symptoms resulted in a 20% incidence following LSG (follow-up time ranging from one- to 60-months). There was heterogeneity amongst these studies ($I^2=68\%$). For difference in prevalence of GERD before and after LSG, as reported by questionnaire, the pooled risk difference was found to be 4.3%; with heterogeneity present ($I^2=89\%$). Of the 24 studies reviewed, the authors found new-onset GERD symptom incidence to range from zero to 34.9%. Data for new-onset esophagitis, changes in the use of antireflux medication, 24-hour pH monitoring, manometry, and combined pH-impedance results could not be pooled. The authors therefore concluded that LSG could induce serious GERD symptoms in patients with no preoperative GERD complaints. The heterogeneity found in analyses may be due to a lack of a standardized approach to LSG, as well as the variability in follow-up length. The authors also noted that range in prevalence of GERD symptoms may be in part due to the variability in reported preoperative BMI, as the LSG will be a more technically challenging procedure in those with a BMI of 60 kg/m2 versus those with a BMI of 40 kg/m2.

Nonrandomized Studies

Current evidence regarding the use of distal, partial or complete gastrectomy with or without gastroduodenostomy, gastrojejunostomy, or Roux-en-Y reconstruction as a treatment of gastric reflux disease consists of small case series.[25-27] These studies do not permit conclusions due to the small sample size, lack of a control group, differences in patient characteristics and surgical techniques, and other methodological limitations. In addition, several studies[27-31] were identified which reported on GERD reduction after sleeve gastrectomy in obese patients; however, the primary focus of these studies was on weight reduction and the reduction of GERD symptoms was a secondary outcome. In order to isolate the direct effects of gastrectomy upon chronic GERD symptoms, well-designed RCTs are required which compare health outcomes of patients treated with gastrectomy versus medication or fundoplication.

HIATAL HERNIA REPAIR WITHOUT FUNDOPICATION

Several studies were identified which reported an improvement in GERD symptoms associated with sliding type hernia repair; however, no studies were identified which evaluated the use of hiatal hernia repair as an independent treatment of gastric reflux disease.

PRACTICE GUIDELINE SUMMARY

Three evidence-based clinical practice guidelines address surgical treatment of GERD. These guidelines offer differing recommendations concerning indications for surgery. No evidence-
based clinical practice guidelines were identified which recommend fundoplication surgery as a
treatment of GERD in patients with pulmonary fibrosis. In addition, no evidence-based clinical
practice guidelines were identified which address the use of gastrectomy or hiatal hernia repair
as a treatment of GERD.

SOCIETY OF AMERICAN GASTROINTESTINAL AND ENDOSCOPIC SURGEONS

The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) guidelines
recommend surgical therapy when the diagnosis of reflux is objectively confirmed, in
individuals who:[32]

1) have failed medical management (inadequate symptom control, severe regurgitation not
controlled with acid suppression, or medication side effects)
 OR
2) opt for surgery despite successful medical management (due to quality of life
 considerations, lifelong need for medication intake, expense of medications, etc.)
 OR
3) have complications of GERD (e.g., Barrett's esophagus, peptic stricture)
 OR
4) have extra-esophageal manifestations (asthma, hoarseness, cough, chest pain,
 aspiration)

“Surgical therapy for GERD is an equally effective alternative to medical therapy and
should be offered to appropriately selected patients by appropriately skilled surgeons
(Grade A*). Surgical therapy effectively addresses the mechanical issues associated with
the disease and results in long-term patient satisfaction (Grade A). For surgery to compete
with medical treatment, it has to be associated with minimal morbidity and cost.”

*Definitions

• Grade A: “Based on high level (Level I or II), well-performed studies with uniform
interpretation and conclusions by the expert panels”
• Level I Evidence: “Evidence from properly conducted randomized, controlled trials
• Level II Evidence: “Evidence from controlled trials without randomization; cohort or
case-control studies; multiple time series; dramatic uncontrolled experiments

AMERICAN GASTROENTEROLOGICAL ASSOCIATION

In 2008, the American Gastroenterological Association (AGA) published a guideline regarding
the management of gastroesophageal reflux disease which made the following
recommendations:[1]

• “When antireflux surgery and PPI therapy are judged to offer similar efficacy in a patient
with an esophageal GERD syndrome, PPI therapy should be recommended as initial
therapy because of superior safety.” (Grade A**)
• “When a patient with an esophageal GERD syndrome is responsive to, but intolerant of,
acid suppressive therapy, antireflux surgery should be recommended as an alternative.”
(Grade A)
• Antireflux surgery is recommended “for patients with an esophageal GERD syndrome
with persistent troublesome symptoms, especially troublesome regurgitation, despite
PPI therapy. The potential benefits of antireflux surgery should be weighed against the
deleterious effect of new symptoms consequent from surgery, particularly dysphagia, flatulence, an inability to belch, and postsurgery bowel symptoms.” (Grade B**)

- “Patients with an extraesophageal GERD syndrome with persistent troublesome symptoms despite PPI therapy should be considered for antireflux surgery. The potential benefits of antireflux surgery should be weighed against the deleterious effect of new symptoms consequent from surgery, particularly dysphagia, flatulence, an inability to belch, and postsurgery bowel symptoms.” (Grade C**)

- The AGA recommends against antireflux surgery (Grade D**):
 - “for patients with an esophageal syndrome with or without tissue damage who are symptomatically well controlled on medical therapy.”
 - “as an antineoplastic measure in patients with Barrett’s metaplasia.”

Definitions

- Grade A: “strongly recommended based on good evidence that it improves important health outcomes.”
- Grade B: “recommended with fair evidence that it improves important outcomes”
- Grade C: “balance of benefits and harms is too close to justify a general recommendation”
- Grade D: “recommend against, fair evidence that it is ineffective or harms outweigh benefits”

AMERICAN COLLEGE OF GASTROENTEROLOGY

In 2013, the American College of Gastroenterology (ACG) issued a guideline for the diagnosis and management of gastroesophageal reflux disease and made numerous recommendations regarding the management and surgical options for GERD.[33] The following are some of the major recommendations regarding PPI use and fundoplication:

- In patients with partial response to PPI therapy, increasing the dose to twice daily therapy or switching to a different PPI may provide additional symptom relief. (Conditional recommendation, low level evidence)
- Surgical therapy is a treatment option for long-term therapy in GERD patients. (Strong recommendation, high level of evidence)
- Surgical therapy is generally not recommended in patients who do not respond to PPI therapy. (Strong recommendation, high level of evidence)
- Surgical therapy is as effective as medical therapy for carefully selected patients with chronic GERD when performed by an experienced surgeon. (Strong recommendation, high level of evidence)

Definitions

- The strength of a recommendation was graded as "strong" when the desirable effects of an intervention clearly outweigh the undesirable effects and as "conditional" when there is uncertainty about the trade-offs.
- The level of evidence could range from "high" (implying that further research was unlikely to change the authors' confidence in the estimate of the effect) to "moderate" (further research would be likely to have an impact on the confidence in the estimate of effect) or "low" (further research would be expected to have an important impact on the confidence in the estimate of the effect and would be likely to change the estimate).
ESOPHAGOGASTRIC FUNDOPPLICATION

There is enough research to show that initial or repeat esophagogastric fundoplication improves symptomatic gastroesophageal reflux disease (GERD) for most patients with chronic GERD who have tried lifestyle changes and long-term use of proton pump inhibitors (PPIs), or in those with a documented mechanical failure from a previous antireflux procedure. It appears that initial or repeat esophagogastric fundoplication may also improve symptoms in patients with pulmonary fibrosis. When esophagogastric fundoplication is performed with a paraesophageal hiatal hernia repair, patients with a paraesophageal type of hiatal hernia may also benefit. Patients with achalasia may also have improved health outcomes when esophagogastric fundoplication is performed with an esophageal myotomy. Clinical guidelines based on research recommend fundoplication for select patients. Therefore, initial or repeat esophagogastric fundoplication may be considered medically necessary when policy criteria are met.

There is not enough research to show that initial or repeat esophagogastric fundoplication for GERD improves health outcomes when policy criteria are not met. Therefore, initial or repeat esophagogastric fundoplication for GERD when policy criteria are not met is considered not medically necessary.

GASTRECTOMY

There is not enough research to show that distal, partial or complete gastrectomy with or without gastroduodenostomy, gastrojejunostomy, or Roux-en-Y reconstruction improves health outcomes for people with gastrointestinal reflux disease (GERD). No clinical practice guidelines based on research recommend gastrectomy for people with GERD. Therefore, distal, partial or complete gastrectomy with or without gastroduodenostomy, gastrojejunostomy, or Roux-en-Y reconstruction is considered investigational as a treatment of GERD.

HIATAL HERNIA REPAIR WITHOUT FUNDOPPLICATION

There is not enough research to show that hiatal hernia repair without fundoplication, including repair of sliding or paraesophageal hernia, improves health outcomes for people with gastrointestinal reflux disease (GERD). No clinical practice guidelines based on research recommend independent hiatal hernia repair as a treatment for GERD. Therefore hiatal hernia repair without fundoplication is considered investigational as an independent treatment of GERD.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

CODES

NOTES:
- Repair of the typical Type I hiatal hernia cannot be coded by a paraesophageal hernia repair code per CPT code definitions.
- The paraesophageal hiatal hernia repair codes cannot be reported unless a paraesophageal hiatal hernia is clearly documented.
- CPT 43280 cannot be reported unless a fundoplication is performed.
- There are related procedures without specific CPT codes, including sliding hiatal hernia repair and the Hill procedure, and these are reported by unlisted codes.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>43279</td>
<td>Laparoscopy, surgical, esophagomyotomy (Heller type), with fundopasty, when performed</td>
</tr>
<tr>
<td></td>
<td>43280</td>
<td>Laparoscopy, surgical, esophagogastric fundopasty (eg, Nissen, Toupet procedures)</td>
</tr>
<tr>
<td></td>
<td>43281</td>
<td>Laparoscopy, surgical, repair of paraesophageal hernia, includes fundopasty, when performed; without implantation of mesh</td>
</tr>
<tr>
<td></td>
<td>43282</td>
<td>; with implantation of mesh</td>
</tr>
<tr>
<td></td>
<td>43325</td>
<td>Esophagogastric fundopasty; with fundic patch (Thal-Nissen procedure)</td>
</tr>
<tr>
<td></td>
<td>43327</td>
<td>Esophagogastric fundopasty partial or complete; laparotomy</td>
</tr>
<tr>
<td></td>
<td>43328</td>
<td>; thoracotomy</td>
</tr>
<tr>
<td></td>
<td>43332</td>
<td>Repair, paraesophageal hiatal hernia (including fundoplication), via laparotomy, except neonatal; without implantation of mesh or other prosthesis</td>
</tr>
<tr>
<td></td>
<td>43333</td>
<td>; with implantation of mesh or other prosthesis</td>
</tr>
<tr>
<td></td>
<td>43334</td>
<td>Repair, paraesophageal hiatal hernia (including fundoplication), via thoracotomy, except neonatal; without implantation of mesh or other prosthesis</td>
</tr>
<tr>
<td></td>
<td>43335</td>
<td>; with implantation of mesh or other prosthesis</td>
</tr>
<tr>
<td></td>
<td>43336</td>
<td>Repair, paraesophageal hiatal hernia (including fundoplication), via thoracoabdominal incision, except neonatal; without implantation of mesh or other prosthesis</td>
</tr>
<tr>
<td></td>
<td>43337</td>
<td>; with implantation of mesh or other prosthesis</td>
</tr>
<tr>
<td></td>
<td>43338</td>
<td>Esophageal lengthening procedure (eg, Collis gastroplasty or wedge gastroplasty) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>43631</td>
<td>Gastrectomy, partial, distal; with gastroduodenostomy</td>
</tr>
<tr>
<td></td>
<td>43632</td>
<td>; with gastrojejunostomy</td>
</tr>
<tr>
<td></td>
<td>43633</td>
<td>; with roux-en-Y reconstruction</td>
</tr>
<tr>
<td></td>
<td>43634</td>
<td>; with formation of intestinal pouch</td>
</tr>
</tbody>
</table>

HCPCS None

Date of Origin: November 2012
Microwave Tumor Ablation

Effective: March 1, 2022

Next Review: November 2022
Last Review: January 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Microwave ablation (MWA) uses microwave thermal energy to create thermal coagulation and localized tissue necrosis. MWA is proposed for treating tumors, controlling local tumor growth and palliating symptoms.

MEDICAL POLICY CRITERIA

Note: This policy does not address liver tumors (primary or metastatic). See Cross References.

I. Microwave ablation may be considered medically necessary to treat tumors when one or more of the following criteria are met:
 A. Isolated peripheral non-small cell lung cancer (NSCLC) lesion that is no more than 3 cm in size when both of the following criteria are met:
 1. Surgical resection or radiation treatment with curative intent is considered appropriate based on stage of disease, however, medical co-morbidity renders the individual unfit for those interventions; and
 2. Tumor is located at least 1 cm from the trachea, main bronchi, esophagus, aorta, aortic arch branches, pulmonary artery and the heart.
B. Malignant non-pulmonary tumor(s) metastatic to the lung that are no more than 3 cm in size when all of the following criteria (1. – 3.) are met:

1. In order to preserve lung function when surgical resection or radiation treatment is likely to substantially worsen pulmonary status, or the patient is not considered a surgical candidate; and
2. There is no evidence of extrapulmonary metastases; and
3. The tumor is located at least 1 cm from the trachea, main bronchi, esophagus, aorta, aortic arch branches, pulmonary artery and the heart.

II. Microwave ablation is considered investigational as a technique for ablating all other benign or malignant tumors other than liver tumors that do not meet the policy criteria above.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES

1. Radioembolization, Transarterial Embolization (TAE), and Transarterial Chemoembolization (TACE), Medicine, Policy No. 140
2. Radiofrequency Ablation (RFA) of Tumors Other than Liver, Surgery, Policy No. 92
3. Cryosurgical Ablation of Miscellaneous Solid Organ and Breast Tumors, Surgery, Policy No. 132
4. Magnetic Resonance (MR) Guided Focused Ultrasound (MRgFUS) and High Intensity Focused Ultrasound (HIFU) Ablation, Surgery, Policy No. 139
5. Ablation of Primary and Metastatic Liver Tumors, Surgery, Policy No. 204

BACKGROUND

MICROWAVE ABLATION

MWA is a technique in which the use of microwave energy induces an ultra-high speed, 915 MHz or 2.450 MHz (2.45 GHz), alternating electric field which causes water molecule rotation and the creation of heat. This results in thermal coagulation and localized tissue necrosis. In MWA, a single microwave antenna or multiple antennas connected to a generator are inserted directly into the tumor or tissue to be ablated; energy from the antennas generates friction and heat. The local heat coagulates the tissue adjacent to the probe, resulting in a small, approximately 2 to 3 cm elliptical area (5 x 3 cm) of tissue ablation. In tumors greater than 2 cm in diameter, 2 to 3 antennas may be used simultaneously to increase the targeted area of MWA and shorten operative time. Multiple antennas may also be used simultaneously to ablate multiple tumors. Tissue ablation occurs quickly, within one minute after a pulse of energy, and multiple pulses may be delivered within a treatment session depending on the size of the tumor. The cells killed by MWA are typically not removed but are gradually replaced by fibrosis and scar tissue. If there is local recurrence, it occurs at the edges. Treatment may be repeated as needed. MWA may be used to: 1) control local tumor growth and prevent recurrence; 2) palliate symptoms; and 3) extend survival duration.

Complications from MWA are usually considered mild and may include pain and fever. Other potential complications associated with MWA include those caused by heat damage to normal tissue adjacent to the tumor (e.g., intestinal damage during MWA of the kidney or liver), structural damage along the probe track (e.g., pneumothorax as a consequence of
procedures on the lung), liver enzyme elevation, liver abscess, ascites, pleural effusion, diaphragm injury or secondary tumors if cells seed during probe removal. MWA should be avoided in pregnant patients since potential risks to the patient and/or fetus have not been established and in patients with implanted electronic devices such as implantable pacemakers that may be adversely affected by microwave power output.

MWA is an ablative technique similar to radiofrequency or cryosurgical ablation; however, MWA may have some advantages. In MWA, the heating process is active, which produces higher temperatures than the passive heating of radiofrequency ablation and should allow for more complete thermal ablation in a shorter period of time. The higher temperatures reached with MWA (over 100° C) can overcome the “heat sink” effect in which tissue cooling occurs from nearby blood flow in large vessels potentially resulting in incomplete tumor ablation. MWA does not rely on the conduction of electricity for heating, and therefore, does not have electrical current flow through patients and does not require grounding pads be used during the procedure to prevent skin burns. Unlike radiofrequency ablation, MWA does not produce electric noise, which allows ultrasound guidance to occur during the procedure without interference. Finally, MWA can be completed in less time than radiofrequency ablation since multiple antennas can be used simultaneously.

APPLICATIONS

MWA was first used percutaneously in 1986 as an adjunct to liver biopsy. Since then, MWA has been used to ablate tumors and tissue to treat many conditions including hepatocellular carcinoma, breast cancer, colorectal cancer metastatic to the liver, renal cell carcinoma, renal hamartoma, adrenal malignant carcinoma, non-small-cell lung cancer, intrahepatic primary cholangiocarcinoma, secondary splenomegaly and hypersplenism, abdominal tumors, and other tumors not amenable to resection. Well-established local or systemic treatment alternatives are available for each of these malignancies. The potential advantages of MWA for these cancers include improved local control and other advantages common to any minimally invasive procedure (eg, preserving normal organ tissue, decreasing morbidity, shortening length of hospitalization). MWA also has been investigated as a treatment for unresectable hepatic tumors (see Cross References).

REGULATORY STATUS

There are several devices cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for MWA. Covidien’s (a subsidiary of Tyco Healthcare) Evident Microwave Ablation System has 510(k) clearance for soft tissue ablation, including partial or complete ablation of non-resectable liver tumors. The following are selected microwave ablation devices that have 510(k) clearance for MWA of (unspecified) soft tissue:

- BSD Medical Corporation’s MicroThermX® Microwave Ablation System (MTX-180);
- Microsulis Holdings Ltd’s Acculis Accu2i;
- MedWaves Microwave Coagulation/Ablation System;
- Covidien’s Emprint™ Ablation System and Emprint™ SX Ablation Platform with Thermosphere™ Technology;
- Angiodynamics’ Solero Microwave Tissue Ablation System;
- Surgnova Healthcare Technologies’ Microwave Ablation System; and
- Johnson & Johnson’s NEUWAVE Microwave Ablation System

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
FDA determined that these devices were substantially equivalent to existing radiofrequency and MWA devices. FDA product code: NEY.

EVIDENCE SUMMARY

The principal health outcomes associated with treatment of malignancies are typically measured in units of survival past treatment: disease-free survival (DFS), a period of time following treatment where the disease is undetectable; progression-free survival (PFS), the duration of time after treatment before the advancement or progression of disease; and overall survival (OS), the period of time the patient remains alive following treatment.

In order to understand the impact of microwave ablation (MWA) on these outcomes, well-designed randomized controlled trials (RCTs) are needed that compare this therapy with standard medical and/or surgical treatment of primary and metastatic tumors.

BREAST

SYSTEMATIC REVIEWS

A 2017 systematic review of imaging-guided breast cancer treatments by Mauri compared technical success, efficacy, and complications.[1] 1,156 patients and 1,168 lesions were included in the analysis. The results showed that the microwave technique had the lowest technical success (93%) amongst the techniques that were analyzed including laser (98%), HIFU (96%), radiofrequency (96%), and cryoablation (75%). Additionally, there were significant differences and heterogeneity in the technical efficacy of the methods used.

A 2010 review of ablation techniques by Zhao for breast cancer found only 0 to 8% of breast tumors were completely ablated with microwave ablation (MWA).[2] The authors noted that studies identified for the review were mostly feasibility and pilot studies conducted in research settings.

NONRANDOMIZED STUDIES

Yang (2020) published a prospective multicenter study of MWA for the treatment of benign breast lesions.[3] A total of 440 patients with clinicopathologically confirmed benign breast lesions were treated with MWA and evaluated for technical success, complications, volume reduction ratio (VRR), palpability, and cosmetic satisfaction. In the 755 treated lesions (mean maximum diameter 1.7 ± 0.6 cm), complete ablation was achieved in 100%. The median follow-up was 13.7 months. The 12-month VRR was 97.9% for all lesions, 98.6% for 1.0- to 2.0-cm lesions, and 96.9% for ≥ 2.0-cm lesions. The percent of palpable lesions went from 85.7% pre-treatment to 55.9% post-treatment. Patients rated the cosmetic and minimally invasive satisfaction rates as good or excellent in 98.4% and 94.5% of cases, respectively.

Yu (2020) reported a small cohort study comparing MWA with nipple-sparing mastectomy for invasive ductal carcinoma of the breast.[4] A total of 21 MWA-treated and 43 nipple sparing mastectomy-treated patients were retrospectively enrolled. The mean age of the MWA-treated patients was 24 years older than that of the nipple sparing mastectomy patients. Median follow-up was 26.7 months (range, 14.6 to 62.5 months). Technical effectiveness was 100%. No significant differences between groups in tumor progression were identified ($p=0.16$).

In 2012, Zhou reported on 41 patients treated with MWA directly followed by mastectomy for single breast tumors with a mean volume of $5.26 \text{ cm} + 3.8$ (range, 0.09 to 14.14 cm).[5]
Complete tumor ablation was found by microscopic evaluation in 37 of the 41 tumors ablated (90%; 95% CI 76.9 to 97.3%). Reversible thermal injuries to the skin and pectoralis major muscle occurred in three patients. Results from this study should be met with caution due to its small sample size and lack of comparison group. The MWA group had significantly lower hospitalization time (p<0.001) and better cosmetic results (p<0.001). No major complications occurred.

LUNG

SYSTEMATIC REVIEWS

Three recent systematic reviews have compared MWA to RFA for lung cancer.

Chan (2021) reported a systematic review and meta-analysis comparing survival outcomes for surgical resection versus CT-guided percutaneous ablation (RFA and MWA) for stage 1 non-small cell lung cancer (NSCLC).[6] A total of eight studies with 792 patients met inclusion criteria. The difference between groups for one- to five-year overall survival (OS) and cancer-specific survival (CSS) and three- and five-year disease-free survival (DFS) were not statistically significant. However, differences between groups in one- and two-year DFS were statistically significant, favoring sublobar resection (OR 2.22, 95% CI 1.14 to 4.34; OR 2.60, 95% CI 1.21 to 5.57 respectively). According to a subgroup analysis, there was no significant difference in OS between lobectomy and MWA, but one- and two-year OS were significantly better in those treated with sublobar resection (wedge resection or segmentectomy) versus RFA (OR 2.85, 95% CI 1.33 to 6.10; OR 4.54, 95% CI 2.51 to 8.21, respectively).

Nelson (2019) included 12 retrospective observational studies of MWA in patients with primary or metastatic lung tumors.[7] The reviewers did not pool results due to clinical and methodological heterogeneity across the studies. The studies varied with regard to patient characteristics (tumor size, histology, number of treated nodules), outcome measures, and technical experience of surgeons performing the procedures. The primary outcome was local recurrence, and survival outcomes were not assessed. Overall, local recurrence rates ranged from 9% to 37% across the studies. Newer reports and those that targeted smaller tumors showed more favorable efficacy rates. Results in patients with multiple tumors were not reported separately. Four studies reported results by tumor size; the local recurrence rate for large tumors (> 3 or 4cm depending on the study) were 50%, 75%, 36%, and 26%. In the same four studies, for small tumors (<3 or 3.5 cm depending on the study), local recurrence rates were 19%, 18%, 18%, and 5%, respectively. The most frequent adverse event with MWA was a pneumothorax requiring a chest tube. The reviewers concluded that MWA may be a useful tool in selected patients who are not ideal surgical candidates.

In a meta-analysis of observational studies, Yuan (2019) found higher overall survival for patients who received RFA compared to those who received MWA.[8] However, these estimates were not directly comparable because they came from different sets of studies, and the reviewers concluded that percutaneous RFA and MWA were both effective with a high safety profile. The studies used different patient eligibility criteria (e.g., tumor size, lesion number, age, follow-up). Subgroup analyses by tumor size or tumor number were not possible from the data reported.

Jiang (2018) conducted a network meta-analysis to determine the effectiveness of different ablation techniques in patients with lung tumors.[9] Tumor size, stage of disease, and primary versus metastatic disease were not accounted for in the analysis. For MWA, weighted average
overall survival rates were 82.5%, 54.6%, 35.7% 29.6%, and 16.6% at one, two, three, four, and five years, respectively. According to the meta-analysis, RFA and MWA were more effective in decreasing the progression rate of lung malignancies than cryoablation (OR 0.04, 95% CI 0.002 to 0.38, p=0.005 and OR 0.02, 95% CI 0.002 to 0.24, p=0.001, respectively). Major complications were not significantly different between RFA, MWA, and cryoablation (p>0.05).

RANDOMIZED CONTROLLED TRIAL

In a 2017 RCT published by Macchi, 52 patients were randomized into a radiofrequency ablation group or a microwave ablation group.\[10\] Within each group, the technical and clinical success were measured along with survival and complication rates. The radiofrequency ablation group saw significant reduction in tumor size between 6 and 12 months and the microwave ablation group saw a significant reduction in tumor size from pre-therapy to 12 months including from 6 to 12 months. There was no significant difference in survival between the groups. The authors reported that the microwave ablation group experienced less pain than the radiofrequency ablation group (p=0.0043).

NONRANDOMIZED STUDIES

Hu (2020) reported a retrospective comparison of wedge resection and microwave ablation as a first-line treatment of stage I NSCLC.\[11\] A total of 223 consecutive patients with T1N0 NSCLC received first-line treatment either using wedge resection (n=155) or MWA (n=68). A propensity matched analysis, which yielded 56 pairs of patients, identified no significant differences in three- or five-year PFS (MWA 54.0% and 36.0%, respectively; wedge resection 66.0% and 56.0%, respectively; p=0.029) or OS (MWA 60.0% and 55.0%; wedge resection 81.0% and 72.0%, respectively; p=0.031). According to a subgroup analysis, local recurrence and PFS for NSCLCs that were contiguous to the pericardium were better in the wedge resection group than in the MWA group (p<0.05).

Das (2020) performed a retrospective analysis to compare the safety and efficacy of cryoablation and MWA for the treatment of NSCLC.\[12\] Patients who were treated with microwave ablation (n=56) or cryoablation (n=45) for stage IIIB or IV NSCLC were included. The primary endpoint was PFS, which was not significantly different between groups (10 months for cryoablation versus 11 months for MWA; p=0.36). The secondary endpoints were OS (27.5 months for cryoablation versus 18 months for MWA; p=0.07) and adverse events (p>0.05). Dividing the group by tumor size showed that for large tumors (>3 cm; p=0.04), but not for small tumors (≤3 cm; p=0.79), the microwave ablation group had significantly longer median PFS.

Aufranc (2019) reported the efficacy and complication rate of cryoablation and MWA for the treatment of primary and secondary lung tumors.\[13\] The authors performed a retrospective analysis of 115 patients with primary (n=41) or secondary (n=119) lung tumors. Mean overall follow-up was 488 days. Ablation volumes, local recurrence, and mean length of hospital stay were not significantly different between groups at one month (24.1±21.7 cm\(^3\) for RFA and 30.2±35.9 cm\(^3\) for MWA; p=0.195; 6/79 in the radiofrequency group and 3/81 in the MWA group; p=0.049; 4.5±3.7 days for RFA and 4.7±4.6 days for MWA; p=0.76). However, the difference in pneumothoraces between groups was statistically significant (32/79 for radiofrequency and 20/81 for MWA; p=0.049).
In 2016, Vogl evaluated local tumor control, time to tumor progression, and survival rates among patients with lung metastatic colorectal cancer who underwent ablation therapy (N=109) performed using laser-induced thermotherapy (LITT), radiofrequency ablation (RFA), or microwave ablation (MWA). Twenty-one patients underwent LITT (31 ablations), 41 patients underwent RFA (75 ablations), and 47 patients underwent MWA (125 ablations). Local tumor control was achieved in 17 of 25 lesions (68.0%) treated with LITT, 45 of 65 lesions (69.2%) treated with RFA, and 91 of 103 lesions (88.3%) treated with MWA. The progression-free survival rate at one, two, three, and four years was 96.8%, 52.7%, 24.0%, and 19.1%, respectively, for patients who underwent LITT; 77.3%, 50.2%, 30.8%, and 16.4%, respectively, for patients who underwent RFA; and 54.6%, 29.1%, 10.0%, and 1.0%, respectively, for patients who underwent MWA, with no statistically significant difference noted among the three ablation methods.

Other evidence regarding MWA for lung tumors is limited to nonrandomized retrospective studies. These studies are all have limitations, including lack of comparison group, small sample size, short-term follow-up. Larger studies with a randomized design are needed to isolate the effect of MWA upon PFS and OS in patients with lung cancer.

PRIMARY RENAL TUMORS

SYSTEMATIC REVIEWS

Uhlig (2019) published a systematic review with meta-analyses to compare partial nephrectomy, radiofrequency ablation, cryoablation and microwave ablation and the effect on oncologic, perioperative and functional outcomes in studies published from 2005 to 2017. Microwave ablation was a treatment in 344 of 24,077 patients and represented in 6 of 47 studies. The review included the single RCT (Guan 2012, described below) which is the only study with results for all three outcomes of interest. No new data was included but the review utilized a network meta-analyses technique. Microwave ablation when compared to partial nephrectomy, the comparator of interest, was reported to have a lower procedural complication rate but higher local recurrence and cancer-specific mortality rates.

In a 2014 systematic review and meta-analysis, Katsanos compared thermal ablation (MWA and RFA) with surgical nephrectomy for small renal tumors (mean size 2.5 cm). Included in the analysis were one randomized study on MWA and five cohort studies on RFA with a total of 587 patients. In the ablation group, the complication rates and renal function decline were significantly lower than in the nephrectomy group (p=0.04 and p=0.03, respectively). The local recurrence rate was 3.6% in both groups (risk ratio=0.92, 95% CI 0.4 to 2.14, p=0.79) and disease-free survival up to five years was not significantly different between groups (hazard ratio=1.04, 95% CI 0.48 to 2.24, p=0.92). The authors indicated additional RCTs were needed to compare MWA to nephrectomy and other ablative techniques.

Martin (2013) reported on a meta-analysis of MWA versus cryoablation for small renal tumors in 2013. Included in the analysis were seven MWA studies (n=164) and 44 cryoablation studies (n=2989). The studies were prospective or retrospective, nonrandomized, noncomparative studies. The mean follow-up duration was shorter for MWA than cryoablation (17.86 months vs 30.22 months, p=0.07). While the mean tumor size was significantly larger in the MWA studies than the cryoablation studies (2.58 cm vs 3.13 cm, respectively, p=0.04), local tumor progression (4.07% vs 2.53%, respectively; p=0.46), and progression to metastatic disease (0.8% vs 0%, respectively; p=0.12) were not significantly different.
RANDOMIZED CONTROLLED TRIALS

In 2012, Guan reported on a prospective randomized study to compare the use of MWA to partial nephrectomy (the gold standard of nephron-sparing surgical resection) for solitary renal tumors less than 4 cm.[34] Forty-eight patients received MWA and 54 had partial nephrectomy. Patients in the MWA group had significantly fewer postoperative complications than the partial nephrectomy group (6 [23.5%] vs. 18 [33.3%]; p=0.0187). MWA patients also had significantly less postoperative renal function declines (p=0.0092) and estimated perioperative blood loss (p=0.0002) than partial nephrectomy patients. At last follow-up, estimated glomerular filtration rate declines in both groups were similar (p=1.0000). Disease-specific deaths did not occur and overall local recurrence-free survival by Kaplan-Meier estimates at three years were 91.3% for MWA and 96.0% for partial nephrectomy (p=0.5414). Studies with longer follow-up are needed in order to assess the benefits of MWA compared to nephrectomy.

NONRANDOMIZED STUDIES

Yu (2022) reported long-term follow-up of 323 consecutive patients with T1N0M0 renal cell carcinoma who underwent MWA.[36] Patients were analyzed by stage. A total of 275 cT1a patients were followed for a median of 66.0 months (interquartile range [IQR] 58.4 to 73.6). In these patients, 10-year local neoplastic processes, cancer-specific survival, disease-free survival, and overall survival rates were 1.9%, 87.4%, 71.8, and 67.5%, respectively. A total of 48 cT1b patients were followed for a median of 30.4 months (IQR, 17.7 to 44.8). In these patients, five-year local tumor progression, cancer-specific survival, disease-free survival, and overall survival rates were 11.3%, 91.4%, 69.1, and 89.2%, respectively. Major complications were 3.5% in cT1a patients and 6.9% in cT1b patients.

Vanden Berg (2021) reported a case series of 101 patients with renal tumors treated with MWA.[37] All ablation procedures were performed by a single board-certified urologist/interventional radiologist. Median tumor size was 2.0 cm (IQR 1.5 to 2.6). All patients achieved technical success. All patients but one were discharged on the day of the procedure. Two Clavien-Dindo type-I complications, one type-II complication, and one type-III complication were reported. At a median radiographic follow-up of 376.5 days, two tumors had recurred.

John (2020) published a prospective case series of 113 patients treated with MWA for renal cell carcinoma.[38] The median tumor diameter was 25 mm (IQR 20 to 32 mm) and median follow-up was 12 months. One patient (0.9%) had local recurrence, which was treated with re-ablation. Two patients developed metastatic progression, one had a lung nodule at follow-up, and one had a possible local recurrence. Associations were identified between post-procedure complications and total ablation time (OR 1.152/min, 95% CI 1.040 to 1.277) and total ablation energy (OR 1.017/kJ, 95% CI 1.001 to 1.033).

An (2020) published a retrospective review of 114 patients with renal cell carcinoma who were treated with MWA.[39] Patients were divided by tumor location, either central (n=44) or peripheral (n=70). No significant differences were found between locations (17.7% vs. 11.7%, p=0.34) for overall adverse event rate or Grade II or higher adverse event rate (7.8% vs. 2.6%, p = 0.17). There was a statistically significant difference in rate of adjunctive maneuvers of hydrodissection and/or pyeloperfusion (53% for central tumors vs. 29% for peripheral tumors, p=0.006).
Acosta Ruiz (2020) reported the results of another retrospective review of MWA for renal tumors.[40] Ninety-three patients with 105 tumors were treated with CT-guided MWA. The median tumor size was 25 mm. The primary efficacy rate was 92.2%. Periprocedural complications occurred in 5.2% of sessions (four Clavien-Dindo I and one Clavien-Dindo IIIa) and one postprocedural Clavien-Dindo II complication was reported.

Guo (2021) reported a retrospective review of 106 patients with 119 T1a renal cell carcinoma tumors treated with MWA.[41] Complete response was achieved in 95.3% of patients (mean tumor diameter, 2.4 cm; range, 1 to 4 cm). Local tumor progression was observed in six patients at a mean of 20 months post-procedure. Local progression-free survival rates were 100%, 92.8%, and 90.6% at one, two, and three years, respectively. OS rates were 99%, 97.7%, and 94.6% at one, two, and three years respectively. Complications were reported in six patients (5.7%) within 30 days of the procedure, but none of these required intervention.

Aarts (2020) conducted another retrospective review of 100 patients with 108 T1 renal cell carcinomas treated with MWA.[42] The median tumor size in this study was 3.2 cm (interquartile range, 2.4 to 4 cm). Primary efficacy was achieved for 81% (88/108) of lesions overall, but primary efficacy rates were lower among patients with T1b tumors (52%) versus T1a tumors (89%; p<0.001). Secondary efficacy was achieved for 97% (101/103). Over a median follow-up time of 19 months, local tumor recurrence was observed for 4 (4%) tumors.

Shapiro (2020) compared outcomes in patients with clinical T1b renal cell carcinoma treated with MWA, partial nephrectomy, or radical nephrectomy.[43] A retrospective analysis was completed of 40 MWA, 74 partial nephrectomy, and 211 radical nephrectomy patients. Median follow-up was 34, 35, and 49 months for MWA, partial nephrectomy, and radical nephrectomy, respectively. The decrease in post-treatment estimated glomerular filtration rate was significantly greater in radical nephrectomy patients (29%, p<0.001) than partial nephrectomy (3.2%) or microwave ablation (4.5%). The local recurrence rates were 5%, 1.4%, and 0.5% in the MWA, partial nephrectomy, and radical nephrectomy treatment groups, respectively. The estimated five-year local recurrence-free survival rates were 94.5%, 97.9%, and 99.2% for the MWA, partial nephrectomy, and radical nephrectomy treatment groups, respectively. Although the estimated five-year local recurrence-free survival rate was significantly lower for the MWA group, after a univariable Cox regression, local recurrence was not associated with microwave ablation treatment.

De Cobelli (2019) performed a retrospective evaluation of the comparative safety and effectiveness of cryoablation and MWA for the treatment of T1a renal tumors.[44] T1a renal cancer patients with either a contraindication to surgery or a refusal of surgery were treated at a single center for with either cryoablation (n=44) or MWA (n=28). Median follow-up was 20 and 22 months, for cryoablation and MWA, respectively. Technical success, defined as the absence of arterial enhancement in the ablation zone at the one-month cross-sectional imaging, was not significantly different between groups (92% vs. 94% for cryoablation and MWA, respectively; p=0.8), nor was the occurrence of complications (cryoablation 5/51, MWA 2/32; p=0.57), or disease recurrence (cryoablation 3/47, MWA 1/30; p=0.06). The median procedure time was significantly lower in the MWA group (110 min. and 40 min. for cryoablation and MWA, respectively; p=0.003).

Zhou (2019) compared the outcomes following three ablation techniques for the treatment of T1a biopsy-proven renal cell carcinoma.[45] A total of 297 patients were treated with radiofrequency ablation (n=244), cryoablation (n=26), and MWA (n=27). They were
retrospectively assessed for adverse events, treatment efficacy, and therapeutic outcomes. Technical success rates were not significantly different between groups (p=0.33). The authors reported that primary efficacy one month following ablation was more likely following RF ablation and MW ablation than cryoablation. At the two-year follow-up, there were no reports of local recurrence, metastatic progression, or renal cell carcinoma-related deaths in any treatment group. Also at two years, there was also no significant change in estimated glomerular filtration rate compared with baseline (p=0.71).

Additional evidence regarding MWA treatment in patients with primary renal tumors primarily consists of several nonrandomized case studies, all of which are limited by lack of comparison and small sample size.[46-53] In addition, one study was also limited by short-term follow-up.[47]

OTHER TUMORS OR CONDITIONS

Nonrandomized studies of MWA for other indications are limited by lack of comparison group. Cui (2019) conducted a non-comparative systematic review and meta-analysis of five retrospective studies and two prospective studies in patients with benign thyroid nodules or papillary thyroid microcarcinoma and found that MWA improved nodule volume and symptom scores in these patients.[54] More recent studies also lack control groups or do not compare to standard of care.[55-58]

Examples of other indications include adrenal carcinoma,[59, 60] oligometastases,[61] bone tumors,[62-65] thyroid carcinoma,[66, 67] pancreatic cancer,[68] sinus mucoceles,[69] and other non-oncologic conditions (e.g., bleeding peptic ulcers, esophageal varices, secondary hypersplenism, myomas).

PRACTICE GUIDELINE SUMMARY

NATIONAL COMPREHENSIVE CANCER NETWORK

National Comprehensive Cancer Network (NCCN) guidelines for non-small cell lung cancer (v1.2022) recommend “image-guided thermal ablation (e.g., cryotherapy, microwave, radiofrequency [as] an option for select patients.”[70] Image-guided thermal ablation therapy is considered an option for the management of NSCLC lesions <3 cm as ablation for NSCLC lesions >3 cm has been associated with higher rates of local recurrence and complications.

AMERICAN COLLEGE OF CHEST PHYSICIANS

The American College of Chest Physicians (ACCP) 2013 evidence-based guidelines on the treatment of non-small cell lung cancer note the role of ablative therapies in the treatment of high-risk patients with stage I non-small cell lung cancer (NSCLC) is evolving. However, the ACCP does not recommend MWA for patients with NSCLC.[71]

SUMMARY

Surgical resection is the treatment of choice for primary non-small cell lung cancer (NSCLC) or metastatic tumors in the lung. For those patients who are unable to tolerate surgery, microwave ablation (MWA) may be a treatment option in certain cases. While available studies are limited by study design, accumulating evidence suggests that MWA may be similar to surgery in survival rates, and rates of procedure-related complications and mortality. Therefore, in patients with NSCLC or metastatic tumors in the lung who are...
ineligible for surgical treatment, MWA may be considered medically necessary when the policy criteria are met.

For patients with tumors that do not meet policy criteria, it appears that microwave ablation (MWA) may improve health outcomes, though more research is needed to know for sure. Therefore, MWA is considered investigational as a treatment of these tumors.

REFERENCES

SUR189 | 12

September 1, 2022

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
patients compared with chemotherapy alone. *Thorac Cancer.* 2019;10(7):1628-35. PMID: 31243894

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>19499</td>
<td>Unlisted procedure, breast</td>
</tr>
<tr>
<td></td>
<td>32998</td>
<td>Ablation therapy for reduction or eradication of 1 or more pulmonary tumor(s) including pleura or chest wall when involved by tumor extension,</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
percutaneous, including imaging guidance when performed, unilateral, radiofrequency

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32999</td>
<td>Unlisted procedure, lungs and pleura</td>
</tr>
<tr>
<td>38589</td>
<td>Unlisted laparoscopy procedure, lymphatic system</td>
</tr>
<tr>
<td>49999</td>
<td>Unlisted procedure, abdomen, peritoneum and omentum</td>
</tr>
<tr>
<td>50592</td>
<td>Ablation, renal tumor(s), unilateral, percutaneous, radiofrequency</td>
</tr>
<tr>
<td>53899</td>
<td>Unlisted procedure, urinary system</td>
</tr>
<tr>
<td>60699</td>
<td>Unlisted procedure, endocrine system</td>
</tr>
<tr>
<td>HCPCS C9751</td>
<td>Bronchoscopy, rigid or flexible, transbronchial ablation of lesion(s) by microwave energy, including fluoroscopic guidance, when performed, with computed tomography acquisition(s) and 3-d rendering, computer-assisted, image-guided navigation, and endobronchial ultrasound (ebus) guided transtracheal and/or transbronchial sampling (eg, aspiration[s]/biopsy[ies]) and all mediastinal and/or hilar lymph node stations or structures and therapeutic intervention(s)</td>
</tr>
</tbody>
</table>

Date of Origin: October 2013
Sacroiliac Joint Fusion

Effective: October 1, 2021

Next Review: June 2022
Last Review: September 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

The sacroiliac (SI) joint is a strong weight bearing joint with a self-locking mechanism that provides stability with movement on the left and right side of the sacrum. Similar to other structures in the spine, it is assumed that the SI joint may be a source of low back pain but there are currently no reference standards for diagnosis. If conservative therapies fail to adequately treat symptoms, SI joint fusion may be used to stabilize the SI joint including open, percutaneous, and minimally invasive techniques.

MEDICAL POLICY CRITERIA

I. Sacroiliac joint fusion performed by an open procedure may be considered medically necessary when one of the following criteria is met:

 A. As an adjunct to sacrectomy or partial sacrectomy related to tumors involving the sacrum; or

 B. As an adjunct to the medical treatment of sacroiliac joint infection (e.g., osteomyelitis, pyogenic sacroiliitis)/sepsis; or

 C. As a treatment for severe traumatic injuries associated with pelvic ring fracture.

II. Sacroiliac joint fusion performed by an open procedure, for any other indication not listed above in Criterion I. is considered not medically necessary.
III. Minimally invasive fusion/stabilization of the sacroiliac joint using an FDA-approved titanium triangular implant may be considered medically necessary when ALL of the following criteria have been met:

A. Clinical documentation that pain limits activities of daily living (ADL). ADLs are defined as feeding, bathing, dressing, grooming, meal preparation, household chores, and occupational risks that are required for daily functioning; and

B. Patients have undergone and failed a minimum 6 months of intensive physician-directed non-operative treatment that must include medication optimization, activity modification, and active therapeutic exercise targeted at the lumbar spine, pelvis, sacroiliac joint, and hip; and

C. There is at least 75% reduction of pain following an image-guided, contrast-enhanced intra-articular sacroiliac joint injection on 2 separate occasions; and

D. A trial of a therapeutic sacroiliac joint injection (i.e., corticosteroid injection) has been performed on at least one occasion (see Policy Guidelines); and

E. A thorough physical examination demonstrates findings consistent with sacroiliac joint disease including a positive response to a cluster of three provocative tests (e.g., thigh thrust test, compression test, Gaenslen’s test, distraction test, Patrick’s sign, posterior provocation test); and

F. Diagnostic imaging studies include ALL of the following:
 1. Imaging of the sacroiliac joint indicates evidence of injury and/or degeneration; and
 2. Imaging of the sacroiliac joint excludes the presence of destructive lesions (e.g., tumor, infection) or inflammatory arthropathy of the sacroiliac joint and rules out concomitant hip pathology; and
 3. Advanced imaging of the lumbar spine (CT or MRI) is performed to rule out neural compression or other degenerative conditions that can be causing low back or buttock pain and excludes the presence of destructive lesions or inflammatory arthropathy of the sacroiliac joint.

IV. Minimally invasive fusion/stabilization of the sacroiliac joint for the treatment of back pain presumed to originate from the sacroiliac joint is considered investigational under all other conditions including but not limited to when Criterion III is not met.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

A successful trial of controlled diagnostic SI joint or lateral branch blocks consists of two separate positive blocks on different days with local anesthetic only (no steroids or other drugs), or a placebo-controlled series of blocks, under fluoroscopic guidance, that has resulted in a reduction in pain for the duration of the local anesthetic used (e.g., three hours longer with bupivacaine than lidocaine). There is no consensus on whether a minimum of 50% or 75% reduction in pain would be required to be considered a successful diagnostic block, although evidence supports a criterion standard of 75% to 100% reduction in pain with dual blocks. No therapeutic intra-articular injections (i.e., steroids, saline, other substances) should be
administered for a period of at least four weeks before the diagnostic block. The diagnostic blocks should not be conducted under intravenous sedation unless specifically indicated (e.g., the patient is unable to cooperate with the procedure).

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Current Symptomology including indication for procedure (diagnostic or treatment of specific condition) and whether procedure will be open or minimally invasive
- Documentation of specific conservative pain management including length of time utilized including rheumatologic evaluation when indicated
- Documentation of diagnostic blocks including agents used, duration of action and if completed under imaging guidance
- If request is for minimally invasive fusion/stabilization with a titanium triangular implant provide the following; documentation of specifically how pain limits ADLs, failure of minimum of six months of specific nonoperative therapy attempted, percentage of pain reduction achieved using the specific image guided injections listed above on two separate occasions, trial of injection has been performed at least once, absence of generalized pain behavior/disorders, documentation of location of pain on spine/joint, documentation per physical exam of location of pain including tenderness, positive response to at least three provocative tests and diagnostic imaging studies/reports completed.
- Documentation of specific device being utilized if applicable

CROSS REFERENCES

1. [Percutaneous Vertebroplasty, Kyphoplasty, Sacroplasty, and Coccygeoplasty](#), Surgery, Policy No. 107
2. [Lumbar Spinal Fusion](#), Surgery Policy No. 187

BACKGROUND

The sacroiliac (SI) joint is a joint between the sacrum and ilium of the pelvis. The SI joint is a strong weight bearing joint with a self-locking mechanism that provides stability with movement on the left and right side of the sacrum. Similar to other structures in the spine, it is assumed that the SI joint may be a source of low back pain.

Currently, there are no reference standards for the diagnosis of SI joint pain. SI joint pain is typically without any consistent, demonstrable radiographic or laboratory features and most commonly exists in the setting of morphologically normal joints. Clinical tests for SI joint pain may include various movement tests, palpation to detect tenderness, and pain descriptions by the patient. Research into sacroiliac joint pain has been inhibited by the lack of any criterion standard to measure its prevalence and against which various clinical examinations can be validated. Further confounding study of the SI joint is that multiple structures, such as posterior facet joints and lumbar discs, may refer pain to the area surrounding the SI joint.

There are many methods for the treatment of chronic SI joint pain including nonsurgical and surgical approaches. Conservative management may include nonsteroidal anti-inflammatory
medications, prescription analgesics, spinal manipulation, physical therapy, a home exercise program, and evaluation and management of cognitive, psychological, or behavioral issues.

If conservative therapies fail to adequately treat symptoms, SI joint fusion may be used to stabilize the SI joint. Surgical approaches include open, percutaneous, and minimally invasive techniques. The open surgery technique involves the iliac crest bone and the sacrum being held together with plates and/or screws until fusion occurs between the two bones. The use of minimally invasive techniques to fuse the SI joint has increased over the last several years. Minimally invasive procedures use specially designed implants for the stabilization of the SI joint.

Some procedures have been referred to as SIJ fusion but may be more appropriately called fixation (this is because there is little to no bridging bone on radiographs). Devices for SIJ fixation/fusion that promote bone ingrowth to fixate the implants include a triangular implant (iFuse Implant System) and cylindrical threaded devices (Rialto, Slmetry, Silex, SambaScrew, SI-LOK). Some devices also have a slot in the middle where autologous or allogeneic bone can be inserted. This added bone is intended to promote fusion of the SIJ.

REGULATORY STATUS

Several percutaneous or minimally invasive fixation/fusion devices have received marketing clearance by the Food and Drug Administration. These include the Rialto™ SI Joint Fusion System (Medtronic), SIJ-Fuse (Spine Frontier), IFUSE® Implant System and iFuse-3D (SI Bone), Slmetry® Sacroiliac Joint Fusion System (Zyga Technologies), Silex™ Sacroiliac Joint Fusion System (XTANT Medical), SambaScrew® and FIREBIRD SI Fusion System (Orthofix), Slimpact Sacroiliac Joint Fixation System (Life Spine), and the SI-LOK® Sacroiliac Joint Fixation System (Globus Medical). FDA Product Code: OUR.

Note: This policy does not address percutaneous sacroplasty which is addressed in the Percutaneous Vertebroplasty and Kyphoplasty policy (SUR107).

EVIDENCE SUMMARY

SI joint fusion performed by open procedure is considered standard of care to stabilize the sacroiliac joint due to trauma, infection, and tumors involving the sacrum. Therefore, the focus of the literature review is on the use of diagnostic blocks for the diagnosis of SI joint pain and the use of percutaneous or minimally invasive fusion techniques.

Due to the volume of published literature regarding minimally invasive sacroiliac joint fusion with varying study design and quality, the following is a summary of key references published to date. It is important to note that many of the systematic reviews include similar studies in addition to those studies being summarized below.

DIAGNOSTIC BLOCKS

The use of diagnostic blocks to evaluate SI joint pain builds on the experience of diagnostic block use in other joints to evaluate pain. Blinded studies with placebo controls (although difficult to conduct when dealing with invasive procedures) are ideally required for scientific validation of sacroiliac joint blocks, particularly when dealing with pain relief well-known to respond to placebo controls. In the typical evaluation of a diagnostic test, the results of SI diagnostic block would then be compared with a criterion standard. However, there is no current criterion standard for SI joint injection. A search for systematic reviews, randomized
controlled trials, and comparative studies on diagnostic blocks was conducted and is summarized below.

Systematic Reviews

In 2013, the American Society of Interventional Pain Physicians published an updated evidence review with guidelines on diagnosis of SIJ pain.[1] Various studies evaluating diagnostic blocks were reviewed in which the criteria for a positive test varied from 50% to 100% relief from either single or dual blocks. The most stringent criterion, 75% to 100% relief with dual blocks, was evaluated in seven studies. The prevalence of a positive test in the seven studies ranged from 10% to 44.4% in patients with suspected sacroiliac disease. The evidence for diagnostic sacroiliac intra-articular injections was considered to be good using 75% to 100% pain relief with single or dual blocks as the criterion standard.

A 2012 systematic review[2] evaluated the accuracy of diagnostic sacroiliac joint interventions. The methodological quality of the studies was evaluated and only the studies meeting at least 50% of the applicable appraisal inclusion criteria were included. A total of 17 studies met inclusion criteria with a range of diagnostic interventions and relief cutoff thresholds. Only one placebo-controlled study was identified with methodological limitations. The review concluded that there is good evidence for the use of controlled diagnostic local anesthetic blocks. Uncontrolled blocks had a false positive rate of approximately 20%. Overall, the systematic review concluded, based on what the authors determined to be good evidence, “there was no significant difference when 70% or greater relief is utilized as the criterion standard with dual blocks.” In addition, the systematic review concluded that “there is no evidence to support the use of ultrasound or landmark-guided injections for sacroiliac joint pain. These injections must be performed under fluoroscopic or radiologic guidance.” Limitations of this systematic review include the lack of high quality evidence, significant variation in interventions, and discrepancies in a gold standard to measure against.

A systematic review was commissioned by the American Pain Society and conducted by the Oregon Evidence-based Practice Center in 2009.[3] The systematic review concluded that no studies were identified that evaluated validity or utility of diagnostic sacroiliac joint block as a diagnostic procedure for low back pain with or without radiculopathy.

Randomized Controlled Trials

No RCTs identified after the above SRs were published.

Section Summary

Although there is no independent reference standard for the diagnosis of SIJ pain, SIJ blocks are considered the reference standard for the condition. The utility of this test ultimately depends on its ability to identify patients who benefit from treatment. Sacroiliac Joint Fusion

Sacroiliac Joint Fusion

Systematic Reviews

Lingutla (2016) published a systematic review with meta-analysis evaluating SI joint fusion for low back pain where it has been determined that the cause of the pain is originating from the sacroiliac joint and not the lumbar spine.[4] Six nonrandomized studies were included with a mean follow-up of 17.6 months. The authors concluded that all outcome measures showed a
statistical improvement for alleviating pelvic girdle pain. However, the review consisted of nonrandomized studies with some methodological limitations. More research is needed for this patient population.

Zaidi (2015) conducted a systematic review of the evidence evaluating SI joint fusion interventions for treating SI joint pain or dysfunction. A comprehensive literature search was conducted and the authors included five case series, eight retrospective studies, and three prospective studies with at least two patients (N=430). The mean duration of follow-up was 60 months with the most common pathology being SI joint degeneration/arthrosis followed by SI joint dysfunction, postpartum instability among other less common pathologies. Study participants reported satisfaction after the procedures which varied widely. The rates of reoperation for open surgery were 5% to 65% (mean 15%) and for minimally invasive 0% to 17% (mean 6%). Major complications ranged from 5% to 20% with one study reporting a 56% adverse event rate. The authors concluded that surgical intervention is beneficial for a subset of patients and that serious consideration of alternatives should be considered prior to surgery.

A 2012 systematic review found that the quality of evidence for surgical treatment (débridement, fusion) compared to injection treatment (corticosteroid, botulinum toxin, prolotherapy) for chronic sacroiliac pain was very low. No studies were identified that directly compared surgery to injection therapy. Seven case series using a range of surgical techniques that evaluated a range of surgical treatments were included and summarized. The literature was considered heterogeneous and insufficient to evaluate the comparative effectiveness of surgical treatments compared to other treatments. Several surgical studies reported complications including but not limited to infections, nonunion, further surgery, and intraoperative fracture. Studies had small sample sizes and provided little information on determining successful fusion.

In 2010, Ashman conducted a systematic review comparing fusion to denervation for chronic SI joint pain. Six case series on fusion were identified that evaluated a single treatment. As a result, no conclusions could be drawn for the comparative efficacy of the treatments.

Randomized Controlled Trials

No RCTs identified after the above SRs were published.

SIJ FUSION/FIXATION WITH A TRIANGULAR IMPLANT SYSTEM

Systematic Reviews

Tran (2019) published a systematic review comparing the effectiveness of minimally invasive joint fusion (e.g. utilizing the iFuse device) compared to screw-type surgeries. A total of twenty studies was pooled to calculate a standardized mean difference across pain, disability, and global/quality-of-life outcomes, including 14 studies evaluation the iFuse system and 7 studies evaluated cylindrical, threaded implants. Studies evaluating cylindrical threaded implants consisted of case series and cohort studies. Patients receiving these implants experienced significantly worse pain outcomes (p=0.03) compared to patients receiving iFuse, with a standardized mean difference of 1.28 and 2.04, respectively. A statistically significant difference in disability scores was reported between screw-type and iFuse implant groups (0.26 vs 1.68), with improved outcomes in the iFuse population. For global/quality-of-life outcomes, a statistically significant difference in scores was reported between screw-type and iFuse implants groups (0.60 vs 0.99 with improved outcomes in the iFuse population.
Heiney (2015) evaluated clinical outcomes and operative measures of minimally invasive sacroiliac joint fusion utilizing a lateral transarticular technique.[8] A total of 12 studies, including those for triangular implants were included. The authors concluded, for this particular technique, patients reported improvements in pain, disability, and quality of life scores.

Randomized Controlled Trials

Whang (2015) reported an industry-sponsored nonblinded RCT of the iFuse Implant System in 148 patients.[9] Twelve-month follow-up to this RCT was reported by Polly et al in 2015.[10] However, by 12 months, almost all patients in the control group had crossed over to SI JOINT fusion. Two-year follow-up of this trial was reported by Polly et al in 2016.[11] This last publication will be discussed in the case series section of this report. Trial inclusion was based on a determination of the SI JOINT as a pain generator from a combination of a history of SI JOINT-localized pain, positive provocative testing on at least three of five established physical tests, and at least a 50% decrease in SI JOINT pain after image-guided local anesthetic injection into the SI JOINT. The duration of pain before enrollment averaged 6.4 years (range, 0.47–40.7 years). A large proportion of subjects (37%) had previously undergone lumbar fusion, steroid SI JOINT infections (86%), and RFA (16%).

Patients were assigned 2:1 to minimally invasive SI joint fusion (n=102) or to nonsurgical management (n=46). Nonsurgical management included a stepwise progression of nonsurgical treatments, depending on individual patient choice. During follow-up, control patients received physical therapy (97.8%), intra-articular steroid injections (73.9%), and RFA of sacral nerve roots (45.7%). The primary outcome measure was six month success rate, defined as the proportion of treated subjects with a 20-mm improvement in SI JOINT pain in the absence of severe device-related or neurologic adverse events or surgical revision. Patients in the control arm could crossover to surgery after six months. Baseline scores indicated that the patients were severely disabled, with VAS pain scores averaging 82.3 out of 100 and ODI scores averaging 61.9 out of 100 (0=no disability, 100=maximum disability).

At six months, success rates were 23.9% in the control group versus 81.4% in the surgical group (posterior probability of superiority >0.999). A clinically important (≥15-point) improvement in ODI score was found in 27.3% of controls compared with 75.0% of fusion patients. Measures of QOL (36-Item Short-Form Health Survey, EuroQol-5D) also improved to a greater extent in the surgery group. Of the 44 nonsurgical management patients still participating at six months, 35 (79.5%) crossed over to fusion. Compared to baseline, opioid use at six months decreased from 67.6% to 58% in the surgery group, and increased from 63% to 70.5% in the control group (p=0.082). At 12 months, opioid use was similar between groups (55% vs 52%, p=0.61). Although these results generally favored fusion, the trial is limited due to the high number of patients that crossed over from the control group to the fusion group. This limits the comparative long-term conclusions that can be drawn.

Sturesson (2016) reported another industry-sponsored nonblinded RCT of the iFuse Implant System in 103 patients.[12] Selection criteria were similar to those of the Whang trial, including at least 50% pain reduction on SI JOINT block. Mean pain duration was 4.5 years. Thirty-three percent of patients had undergone prior lumbar fusion. Nonsurgical management included physical therapy and exercises at least twice per week; interventional procedures (eg, steroid injections, RFA) were not allowed. The primary outcome was change in VAS pain score at six months.
Of 109 randomized subjects, six withdrew before treatment. All patients assigned to iFuse underwent the procedure, and follow-up at six months was in 49 of 51 patients in the control group and in all 52 patients in the iFuse group. At six months, VAS pain scores improved by 43.3 points in the iFuse group and by 5.7 points in the control group (p<0.001). ODI scores improved by 25.5 points in the iFuse group and by 5.8 points in the control group (p<0.001, between groups). QOL outcomes showed a greater improvement in the iFuse group than in the control group. Changes in pain medication use are not reported. Although these results favored fusion, with magnitudes of effect in a range similar to the Whang RCT, this trial was also not blinded and lacked a sham control. Outcomes were only assessed to six months. Six-month results for the Whang and Sturesson trials are shown in Table 1.

Table 1. Summary of 6-Month iFuse Results From Whang et al[9] and Sturesson et al[12]

<table>
<thead>
<tr>
<th>Results</th>
<th>VAS Score</th>
<th>Success End Point</th>
<th>ODI Score</th>
<th>SF 36 PCS Score</th>
<th>EQ 5D TTO Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ctl</td>
<td>iFuse</td>
<td>Ctl</td>
<td>iFuse</td>
<td>Ctl</td>
</tr>
<tr>
<td>Whang et al (2015)</td>
<td>Baseline</td>
<td>82.2</td>
<td>82.3</td>
<td>61.1</td>
<td>62.2</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>70.4</td>
<td>29.8</td>
<td>23.9%</td>
<td>81.4%</td>
</tr>
<tr>
<td></td>
<td>Change</td>
<td>-12.1</td>
<td>-52.6a</td>
<td>-4.9</td>
<td>-30.3a</td>
</tr>
<tr>
<td>Sturesson et al (2016)</td>
<td>Baseline</td>
<td>73.0</td>
<td>77.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>67.8</td>
<td>34.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change</td>
<td>-5.7</td>
<td>-43.3</td>
<td>-5.8</td>
<td>-25.5</td>
</tr>
</tbody>
</table>

The success end point was defined as a reduction in pain VAS score of ≥20, absence of device-related events, absence of neurologic worsening, and absence of surgical intervention.

Ctl: control; EQ-5D TTO: EuroQoL Time Tradeoff Index; ODI: Oswestry Disability Index; SF-36 PCS: 36-Item Short-Form Health Survey Physical Component Summary; VAS: visual analog scale.

a p<0.001.

Nonrandomized Studies

The Long Term Outcomes from INSITE and SIFI (LOIS) trial was a prospective single-arm study that enrolled patients who had participated in two of the studies described above for evaluation at three, four, and five years.[13] The primary success outcome, a reduction in VAS of at least 20 points in the absence of a serious device-related adverse event, neurologic worsening, or surgical revision, was obtained in 81.7% of patients at five years. The improvements in other clinical outcomes were maintained out to 5 years. Opioid use decreased over time, although the contribution of the opioid use agreement cannot be determined. Fifteen percent of patients were no working due to back pain. Radioluencies suggesting implant failure were observed in 5% of cases and were associated with incorrect placement. Bridging bone was observed in 45% of sides at 12 months, 71% at 24 months, and 88% at 60 months.

The Study of Bone Growth in the Sacroiliac Joint after Minimally Invasive Surgery with Titanium Implants (SALLY) is a 5 year multicenter study that will assess non-inferiority of outcomes with a 3-D printed triangular implant as compared to the traditionally manufactured titanium coated implant.[14] Twelve month follow-up has been published for 46 of the 51 patients enrolled. The 6-month change in ODI met the non-inferiority margin, and secondary outcomes of pain, disability, and QOL were similar to those obtained in the INSITE, iMIA, and SIFI trials. Independent radiographic analysis showed bridging bone in 70% and 77% of sides imaged at 6 and 12 months, respectively, compared to 45% bridging bone in prior studies with the solid titanium coated implants. No breakage, migration, or subsidence was detected.
However, there was no evidence that the increase in bridging bone led to an improvement in pain or functional outcomes compared to the milled implant at 12 months.

Two retrospective nonrandomized comparative studies were published in 2017. Vanaclocha (2017) found greater pain relief with SIJ fusion than with conservative management or SIJ denervation. [15] Spain and Holt (2017) reported a retrospective review of surgical revision rates following SIJ fixation with either surgical screws or the iFuse triangular implant. [16] Revision rates were lower with the iFuse device than observed with surgical screws.

Twelve-month results from the iMIA trial were reported by Dengler (2017). [17] Twenty-one patients in the conservative management group had little or no improvement in symptoms and crossed over to SIJ fusion after the 6-month visit. Fourteen (56%) of the 25 patients who remained in the conservative management group had at least a 20-point improvement in VAS back pain score (22.4% of patients assigned to conservative management). At 12 months, low back pain had improved by 42 points (SD=27.0) on a 100-point VAS in the SIJ fusion group compared with 14 (SD=33.4) points in the conservative management group (p<0.001). The authors noted that there were methodological limitations including lack of blinding and subjective assessments of outcomes.

At 24 months back pain had improved by 45 points compared to 11 points in the control group, with 79% (37 of 47) of SIJ fusion patients achieving at least a 20 point improvement compared to 24% (11 of 46) of controls. [18] At 24 months there was an improvement of 26 points in ODI compared to 8 points in controls (p<0.001). Improvement of at least 20 points was observed in 64% of SIJ fusion group compared to 24% of the conservative management group.

Table 2. Extended Follow-Up From the INSITE and iMIA Trials

<table>
<thead>
<tr>
<th>Outcome Measures</th>
<th>Baseline</th>
<th>6 Months (SD)</th>
<th>12 Months (SD)</th>
<th>24 Months (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacroiliac joint fusion pain score</td>
<td>82.3</td>
<td>29.8</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>Percent ≥20-point improvement pain</td>
<td></td>
<td></td>
<td></td>
<td>83.1%</td>
</tr>
<tr>
<td>Sacroiliac joint fusion ODI score</td>
<td>57.2</td>
<td>31.9</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td>% ≥15-point improvement ODI</td>
<td></td>
<td></td>
<td></td>
<td>68.2%</td>
</tr>
<tr>
<td>iMIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low back pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative management</td>
<td>73.0</td>
<td>(13.8)</td>
<td>67.8 (20.3)</td>
<td>58.9 (28.2)</td>
</tr>
<tr>
<td>Sacroiliac joint fusion</td>
<td>77.7</td>
<td>(11.3)</td>
<td>34.4 (23.9)</td>
<td>35.2 (25.5)</td>
</tr>
<tr>
<td>Leg pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative management</td>
<td>47.1</td>
<td>(31.1)</td>
<td>46.5 (31.4)</td>
<td>41.7 (32.4)</td>
</tr>
<tr>
<td>Sacroiliac joint fusion</td>
<td>52.7</td>
<td>(31.5)</td>
<td>22.6 (25.1)</td>
<td>24.0 (27.8)</td>
</tr>
<tr>
<td>ODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative management</td>
<td>55.6</td>
<td>(13.7)</td>
<td>50.2 (17.2)</td>
<td>46.9 (20.8)</td>
</tr>
<tr>
<td>Sacroiliac joint fusion</td>
<td>57.5</td>
<td>(14.4)</td>
<td>32.0 (18.4)</td>
<td>32.1 (19.9)</td>
</tr>
</tbody>
</table>

Adapted from Dengler et al (2017). [17]
ODI: Oswestry Disability Index.

Case Series With Good Reported Follow-Up Rates

Case series with good follow-up rates are more likely to provide valid estimates of outcomes. Principal results of the studies at 2- to 3-year follow-up are shown in Table 3.

Polly (2016) reported two-year outcomes from the RCT of SI JOINT fusion. [11] When reported, without an untreated control group, the study was a case series. Of 102 subjects originally assigned to SI JOINT fusion and treated, 89 (87%) were evaluated at two years. Although the
clinical trial used a different composite end point, in this report, clinical outcomes were based on the amount of improvement in SI JOINT pain and in ODI scores. Improvement was defined as a change of 20 points in SI JOINT pain score and 15 points in ODI score. Substantial improvement was defined as a change of in 25 points in SI JOINT pain score or a score of 35 or less and an improvement of 18.8 points in ODI score. At 24 months, 83.1% and 82% had improvement and substantial improvement in SI JOINT pain score, and 68.2% and 65.9% had improvement and substantial improvement in ODI. By 24 months, the proportion taking opioids was reduced from 68.6% at baseline to 48.3%.

Results from a case series of 172 patients undergoing SI JOINT fusion reported to two years were published by Duhon (2016). Results from a case series of 172 patients undergoing SI JOINT fusion reported to two years were published by Duhon (2016).[20, 21] Patients were formally enrolled in a single-arm trial (NCT01640353) with planned follow-up for 24 months. Success was defined as a reduction of VAS pain score of 20 mm (out of 100 mm), absence of device-related adverse events, absence of neurologic worsening, and absence of surgical reintervention. Enrolled patients had a mean VAS pain score of 79.8, a mean ODI score of 55.2, and had a mean pain duration of 5.1 years. At six months, 136 (80.5%) of 169 patients met the success end point, which met the prespecified Bayesian probability of success rate. Mean VAS pain scores were 30.0 at six months and 30.4 at 12 months. Mean ODI scores were 32.5 at six months and 31.4 at 12 months. At two years, 149 (87%) of 172 patients were available for follow-up. VAS pain score at two years was 26.0 and ODI score was 30.9. Thus, 1-year outcomes were maintained at two years. Other outcomes (eg, QOL scores) showed similar maintenance or slight improvement compared to 1-year outcomes. Use of opioid analgesics decreased from 76.2% at baseline to 55% at two years. Over the 2-year follow-up, 8 (4.7%) patients required revision surgery

Rudolph and Capobianco (2014) described 5-year follow-up for 17 of 21 consecutive patients treated at their institution between 2007 and 2009.[22] Of the four patients lost to follow-up, two had died and one had become quadriplegic due to severe neck trauma. For the remaining patients, mean VAS score (range, 0-10) improved from 8.3 before surgery to 2.4 at five years; 88.2% of patients had substantial clinical benefit, which was defined as a 2.5-point decrease in VAS score or a raw score less than 3.5. Mean ODI score at five years was 21.5. Imaging by radiograph and computed tomography showed intra-articular bridging in 87% of patients with no evidence of implant loosening or migration.

Rudolf (2012) retrospectively analyzed his first 50 consecutive patients treated with the iFuse Implant System.[23] There were 10 perioperative complications, including implant penetration into the sacral neural foramen (two patients) and compression of the L5 nerve (1 patient); these three patients required surgical retraction of the implant. At three years postsurgery, 1 patient required additional implants due to worsening symptoms. At a minimum of 24 months of follow-up (mean, 40 months), the treating surgeon was able to contact 45 patients. The mean pain score was two (1 to 10 scale), and 82% of patients had attained the minimal clinically important difference in pain score (defined as ≥ 2 of 10).

Case Series With Unknown Follow-Up Rates

The following case series did not report follow-up rates or study methodologies did not permit calculation of the complete number of patients treated.

Smith (2013) retrospectively compared open with minimally invasive SI JOINT fusion. Because all patients received fusion, this study should be interpreted as a case series, with attention paid to the minimally invasive fusion group.[24] Only patients with medical records documenting
12- or 24-month pain scales were included, resulting in 114 patients selected for the minimally invasive group. Losses to follow-up could not be determined. At 12 months, VAS pain scores decreased to a mean of 2.3 from a baseline of 8.1. At 24 months, mean VAS pain score was 1.7, but data for only 38 patients were analyzed. These improvements in VAS pain score were greater than those for open fusion, but conclusions of comparative efficacy should not be made given this type of study. Implant repositioning was performed in 3.5% of patients in the minimally invasive group.

A large (N=144) industry-sponsored, multicenter retrospective series was reported by Sachs et al in 2014. Consecutive patients from 6 sites were included if preoperative and 12-month follow-up data were available. No information was provided on the total number of patients treated during the same time interval. Mean baseline pain score was 8.6. At a mean 16-month follow-up, VAS score was 2.7 (/10), an improvement of 6.1. Ten percent of patients reported an improvement of 1 point or less. Substantial clinical benefit, defined as a decrease in pain score by more than 2.5 points or a score of 3.5 or less, was reported in 91.9% of patients.

Sachs (2016) reported outcomes of 107 patients with a minimum follow-up of 3 years. The number of potentially eligible patients was not reported, so the follow-up rate is unknown. Pain scores improved from a mean of 7.5 at baseline to 2.5 at a mean follow-up time of 3.7 years. ODI score at follow-up was 28.2, indicating moderate residual disability. Overall satisfaction rate was 87.9% (67.3% very satisfied, 20.6% somewhat satisfied). Revision surgery was reported in five (4.7%) patients. Without knowing the number of eligible patients, the validity of this study cannot be determined.

Table 3. Two- to 3-Year Outcomes of the iFuse Implant in Cohorts and Case Series

<table>
<thead>
<tr>
<th>Studies and Outcomes</th>
<th>Mean Baseline Value</th>
<th>Mean 2- to 3-Year Value</th>
<th>Difference or % Achieving Outcome</th>
<th>Follow-Up Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudolf (2012)²³</td>
<td>7.59</td>
<td>2.0</td>
<td>5.59</td>
<td>90% (45/50)</td>
</tr>
<tr>
<td>>2-point change in pain score</td>
<td>-</td>
<td>-</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>Duhon et al (2016)²⁰</td>
<td>79.8</td>
<td>26.0</td>
<td>53.3</td>
<td>86.6% (149/172)</td>
</tr>
<tr>
<td>Oswestry Disability Index score</td>
<td>55.2</td>
<td>30.9</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>SF-36 score</td>
<td>31.7</td>
<td>40.7</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>EQ-5D TTO score</td>
<td>0.43</td>
<td>0.71</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Sachs et al (2016)²⁶</td>
<td>7.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oswestry Disability Index score</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All differences between baseline and 2- to 3-year values were statistically significant.

Database Analysis

Schoell (2016) analyzed postoperative complications tracked in an administrative database of minimally invasive SIJ fusions to determine complications coded in postoperative claims. Using the Humana insurance database, patients with complications were identified using ICD-9 codes corresponding to a surgical complication within 90 days or 6 months if the codes were used for the first time. Of 469 patients, the overall incidence of complications was 13.2% at 90 days and 16.4% at 6 months. For specific complications, the infection rate was 3.6% at 90 days and the rate of complications classified as nervous system complications was 4.3%. Authors noted that the infection rate observed was consistent with the infection rates reported...
by Polly et al (2015), 20 but much higher than those reported for other types of minimally invasive spine procedures. The incidence of complications in this study may differ from those reported by registries. However, determining the true incidence of adverse events after procedures from either registries or insurance claims data can be difficult due to uncertainty about the completeness of reporting in registries and the accuracy of coded claims in claims databases.

Cher (2015) reported rates of implant revision using the Humana insurance database of procedures.[27] Between April 2009 and July 2014, 11,416 cases with the iFuse system took place. After minor adjustments of numbers to account for non-recommended uses and inability to match revision cases, the cumulative revision rate at 4 years was 3.54%. Overall, 24% of revision surgeries occurred in the first month and 63% occurred within the first 12 months. One-year revision rates fell over time (9.7% to 1.4% from 2009 to 2014).

Adverse Events

From 9/1/2016 to 12/8/2017 a total of 47 MAUDE database injury reports were identified (product code OUR). Many reports were for revisions needed and/or user error/wrong placement e.g. too deep, wrong size device, with a few noting infection or hematoma.

From January 2010 through August 2016, a total of 438 MAUDE database injury reports were identified (product code OUR): 355 mentioned revision, 188 malposition, 32 radicular pain, 24 impingement or impingement, and 14 infection.

Summary

For individuals who SIJ pain who receive SIJ fusion/fixation with a triangular implant, the evidence includes two non-blinded RCTs of minimally invasive fusion and 2 case series with more than 85% follow-up at 2 to 3 years. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. Both RCTs reported superior short-term results for fusion, however, a preferable design for assessing pain outcomes would be independent, blinded assessment of outcomes or, when feasible, a sham-controlled trial. Longer term follow-up from these RCTs indicated that the results obtained at six months persist to two years. Two additional cohort studies or case series, with sample sizes ranging from 45 to 149 patients and low dropout rates (<15%), have also shown reductions in pain and disability at two years. One small case series showed outcomes that persisted to five years. The cohort studies and case series are consistent with the durability of treatment benefit. Analysis of an insurance database reported an overall incidence of complications to be 16.4% at six months and cumulative revision rate at four years of 3.54%. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

SIJ FUSION/FIXATION WITH A CYLINDRICAL THREADED IMPLANT

Systematic Reviews

No systematic reviews identified for SIJ Fusion/Fixation with a Cylindrical Threaded Implant that are not already addressed.

Randomized Controlled Trials
Rappoport (2017) reported on an industry-sponsored prospective study of SIJ fusion with a cylindrical threaded implant (SI-LOK). The study included 32 patients with a diagnosis of SIJ dysfunction who had failed nonoperative treatment, including medication, physical therapy, and therapeutic injections. A diagnostic injection was performed to confirm the source of pain to the SIJ. The procedure included drilling to prepare for screw insertion and implantation of three screws, at least one of which was slotted. The slotted screws were packed with autogenous bone graft from the drill reamings. Pain and disability scores were reduced following device implantation, and revisions within the first 12 months of the study were low (n=2). Follow-up will continue through two years.

Table 4. Pain and Disability Scores After Implantation With a Cylindrical Threaded Implant

<table>
<thead>
<tr>
<th>Outcome Measures</th>
<th>Baseline</th>
<th>3 Months (SD)</th>
<th>6 Months (SD)</th>
<th>12 Months (SD)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low back pain</td>
<td>55.8 (26.7)</td>
<td>28.5 (21.6)</td>
<td>31.6 (26.9)</td>
<td>32.7 (27.4)</td>
<td><0.01</td>
</tr>
<tr>
<td>Left leg pain</td>
<td>40.6 (29.5)</td>
<td>19.5 (22.9)</td>
<td>16.4 (25.6)</td>
<td>12.5 (23.3)</td>
<td><0.01</td>
</tr>
<tr>
<td>Right leg pain</td>
<td>40.0 (34.1)</td>
<td>18.1 (26.3)</td>
<td>20.6 (25.4)</td>
<td>14.4 (21.1)</td>
<td><0.05</td>
</tr>
<tr>
<td>Oswestry Disability</td>
<td>55.6 (16.1)</td>
<td>33.3 (16.8)</td>
<td>33.0 (16.8)</td>
<td>34.6 (19.4)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Adapted from Rappoport et al (2017). [28]

Summary

There is limited evidence on fusion of the SIJ with devices other than the triangular implant. One-year results from a prospective cohort of 32 patients who received a cylindrical slotted implant showed reductions in pain and disability similar to results obtained for the triangular implant. However, there is uncertainty in the health benefit of SIJ fusion/fixation with this implant design. Therefore, controlled studies with a larger number of patients and longer follow-up are needed to evaluate this device.

PRACTICE GUIDELINE SUMMARY

NORTH AMERICAN SPINE SOCIETY

The North American Spine Society (NASS) published coverage recommendations for percutaneous sacroiliac joint fusion in 2015. NASS indicated that there was relatively moderate evidence. In the absence of high-level data, policies reflect the multidisciplinary experience and expertise of the committee members in order to present reasonable standard practice indications in the United States. NASS recommended coverage when all of the following criteria are met:

1. “[Patients] have undergone and failed a minimum 6 months of intensive nonoperative treatment that must include medication optimization, activity modification, bracing and active therapeutic exercise targeted at the lumbar spine, pelvis, SI JOINT and hip including a home exercise program.
2. Patient’s report of typically unilateral pain that is caudal to the lumbar spine (L5 vertebra), localized over the posterior SI JOINT, and consistent with SI JOINT pain.
3. A thorough physical examination demonstrating localized tenderness with palpation over the sacral sulcus (Fortin’s point, ie, at the insertion of the long dorsal ligament inferior to the posterior superior iliac spine or PSIS) in the absence of tenderness of similar severity elsewhere (eg, greater trochanter, lumbar spine, coccyx) and that other obvious sources for their pain do not exist.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
4. Positive response to a cluster of 3 provocative tests (eg, thigh thrust test, compression test, Gaenslen’s test, distraction test, Patrick’s sign, posterior provocation test). Note that the thrust test is not recommended in pregnant patients or those with connective tissue disorders.

5. Absence of generalized pain behavior (eg, somatoform disorder) or generalized pain disorders (eg, fibromyalgia).

6. Diagnostic imaging studies that include ALL of the following:
 a. Imaging (plain radiographs and a CT [computed tomography] or MRI [magnetic resonance imaging]) of the SI joint that excludes the presence of destructive lesions (eg, tumor, infection) or inflammatory arthropathy that would not be properly addressed by percutaneous SI JOINT fusion.
 b. Imaging of the pelvis (AP [anteroposterior] plain radiograph) to rule out concomitant hip pathology.
 c. Imaging of the lumbar spine (CT or MRI) to rule out neural compression or other degenerative condition that can be causing low back or buttock pain.
 d. Imaging of the SI joint that indicates evidence of injury and/or degeneration.

7. At least 75% reduction of pain for the expected duration of the anesthetic used following an image-guided, contrast-enhanced intra-articular SI JOINT injection on 2 separate occasions.

8. A trial of at least one therapeutic intra-articular SI JOINT injection (ie, corticosteroid injection).

INTERNATIONAL SOCIETY FOR THE ADVANCEMENT OF SPINE SURGERY

The International Society for the Advancement of Spine Surgery (ISASS) published a policy statement on minimally invasive sacroiliac joint fusion. These recommendations were updated in 2016.[30] ISASS lists criteria for determining a patient’s eligibility regarding minimally invasive SI joint fusion. However, the statement has several limitations including but not limited to the literature review methods are not transparent, there is no formal assessment of the quality of the evidence, and there is not a clear link between the recommendations and supporting evidence. ISASS recommendations state that patients who have all of the following criteria may be eligible for minimally invasive SI JOINT fusion:

- “Significant SI joint pain … or significantly limitations in activities of daily living because of pain from the SI joint(s).
- “SI joint pain confirmed with … at least three positive physical provocation examination maneuvers that stress the SI joint.
- “Confirmation of the SI joint as a pain generator with ≥ 75% acute decrease in pain immediately following fluoroscopically guided diagnostic intra-articular SI joint block using local anesthetic.
- “Failure to respond to at least six months of non-surgical treatment consisting of non-steroidal anti-inflammatory drugs and/or … one or more of the following: … physical therapy…. Failure to respond means continued pain that interferes with activities of daily living and/or results in functional disability;
- “Additional or alternative diagnoses that could be responsible for the patient’s ongoing pain or disability have been considered, investigated and ruled out.”

AMERICAN SOCIETY OF INTERVENTIONAL PAIN PHYSICIANS (ASIPP)
The ASIPP guidelines published in 2013 have a recommendation for diagnostic sacroiliac joint injections which were based on a systematic review of the evidence.[1] The guideline indicates that sacroiliac joint blocks appear to be the evaluation of choice to provide appropriate diagnosis, due to the inability to make the diagnosis of sacroiliac joint-mediated pain with noninvasive tests. The ASIPP guidelines conclude and recommend the following for diagnostic sacroiliac joint blocks:

- The evidence for diagnostic intraarticular sacroiliac joint injections is good with 75% to 100% pain relief as the criterion standard with controlled local anesthetic or placebo blocks, and fair due to the limitation of the number of studies with 50% to 74% relief with a dual block.
- Controlled sacroiliac joint blocks with placebo or controlled comparative local anesthetic blocks are recommended when indications are satisfied with suspicion of sacroiliac joint pain.

AMERICAN SOCIETY OF ANESTHESIOLOGISTS TASK FORCE ON CHRONIC PAIN MANAGEMENT AND THE AMERICAN SOCIETY OF REGIONAL ANESTHESIA AND PAIN MEDICINE PRACTICE

In 2010, the American Society of Anesthesiologists Task Force on Chronic Pain Management and the American Society of Regional Anesthesia and Pain Medicine Practice updated their guidelines for chronic pain management.[31] The guidelines recommend that diagnostic sacroiliac joint injections or lateral branch blocks may be considered for the evaluation of patients with suspected sacroiliac joint pain.

AMERICAN PAIN SOCIETY (APS)

The 2009 practice guidelines from the APS were based on a systematic review that was commissioned by the APS and conducted at the Oregon Evidence-based Practice Center.[3, 32] The APS guideline states that there is insufficient evidence to evaluate the validity or utility of diagnostic sacroiliac joint block as a diagnostic procedure for low back pain with or without radiculopathy.

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE (NICE)

NICE guidance was published in April 2017 on minimally invasive SIJ fusion surgery for chronic sacroiliac pain.[33] The recommendations included:

1.1 “Current evidence on the safety and efficacy of minimally invasive sacroiliac (SI) joint fusion surgery for chronic SI pain is adequate to support the use of this procedure…..

1.2 Patients having this procedure should have a confirmed diagnosis of unilateral or bilateral SI joint dysfunction due to degenerative sacroiliitis or SI joint disruption.

1.3 This technically challenging procedure should only be done by surgeons who regularly use image-guided surgery for implant placement. The surgeons should also have had specific training and expertise in minimally invasive SI joint fusion surgery for chronic SI pain.
SUMMARY

Sacroiliac joint fusion or fixation performed by open procedure is considered standard of care for traumatic injuries, tumors involving the sacrum, and SI joint infection/sepsis as outlined in the Medical Policy Criteria and therefore may be considered medically necessary. Sacroiliac joint fusion performed by an open procedure for any other indication is considered not medically necessary.

There is enough research to show that minimally invasive fusion/stabilization of the sacroiliac joint using a titanium triangular implant improves health outcomes. Additionally, clinical guidelines based on research recommend the use of minimally invasive fusion/stabilization of the sacroiliac joint using a titanium triangular implant. Therefore, minimally invasive fusion/stabilization of the sacroiliac joint using a titanium triangular implant may be considered medically necessary when policy criteria are met.

There is not enough research to show that minimally invasive fusion/stabilization of the sacroiliac joint using any other device or when policy criteria are not met improves health outcomes. Therefore, minimally invasive fusion/stabilization of the sacroiliac joint using any other device or when policy criteria are not met is considered investigational.

REFERENCES

27. DJ Cher, WC Reckling, RA Capobianco. Implant survivorship analysis after minimally invasive sacroiliac joint fusion using the iFuse Implant System((R)). *Medical devices (Auckland, NZ)*. 2015;8:485-92. PMID: 26648762

34. BlueCross BlueShield Association Medical Policy Reference Manual "Diagnosis and Treatment of Sacroiliac Joint Pain." Policy No. 6.01.23

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>22899</td>
<td>Unlisted procedure, spine</td>
</tr>
<tr>
<td></td>
<td>27096</td>
<td>Injection procedure for sacroiliac joint, anesthetic/steroid, with image guidance (fluoroscopy or CT) including arthrography when performed</td>
</tr>
<tr>
<td>Codes</td>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>27279</td>
<td>Arthrodesis, sacroiliac joint, percutaneous or minimally invasive (indirect visualization), with image guidance, includes obtaining bone graft when performed, and placement of transfixing device</td>
</tr>
<tr>
<td></td>
<td>27280</td>
<td>Arthrodesis, open, sacroiliac joint, including obtaining bone graft, including instrumentation, when performed</td>
</tr>
<tr>
<td></td>
<td>27299</td>
<td>Unlisted procedure, pelvis or hip joint</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Date of Origin: December 2014
Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Effective: June 1, 2022

Next Review: November 2022
Last Review: May 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Left atrial appendage (LAA) closure devices have been developed as a nonpharmacologic alternative to anticoagulation for stroke prevention in atrial fibrillation.

MEDICAL POLICY CRITERIA

I. The use of the WATCHMAN or Amplatzer Amulet device for percutaneous left atrial appendage closure may be considered medically necessary for the prevention of stroke in patients with atrial fibrillation when the following criteria are met:
 A. There is an increased risk of stroke and systemic embolism based on CHADS2 or CHA2DS2-VASc score and systemic anticoagulation therapy is recommended; and
 B. Clinical documentation that the patient is suitable for short-term anticoagulation but unable to take long-term oral anticoagulation.

II. The use of any other device for left atrial appendage closure or when Criterion I. is not met is considered investigational.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.
The balance of risks and benefits associated with implantation of the Watchman device for stroke prevention, as an alternative to systemic anticoagulation with warfarin, must be made on an individual basis.

Bleeding is the primary risk associated with systemic anticoagulation. A number of risk scores have been developed to estimate the risk of significant bleeding in patients treated with systemic anticoagulation. An example is the HAS-BLED score, which is validated to assess the annual risk of significant bleeding in patients with atrial fibrillation treated with warfarin (Pisters et al, 2010). Scores range from 0 to 9, based on a number of clinical characteristics (see Table PG1).

Risk of major bleeding in patients with scores of 3, 4, and 5 has been reported at 3.74 per 100 patient-years, 8.70 per 100 patient-years, and 12.5 per 100 patient-years, respectively. Scores of 3 or greater are considered to be associated with high risk of bleeding, potentially signaling the need for closer monitoring of patients for adverse risks, closer monitoring of international normalized ratio, or differential dose selections of oral anticoagulants or aspirin (January et al, 2014).

Table PG1. Clinical Components of the HAS-BLED Bleeding Risk Score

<table>
<thead>
<tr>
<th>Letter</th>
<th>Clinical Characteristics</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Hypertension</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Abnormal renal and liver function (1 point each)</td>
<td>1 or 2</td>
</tr>
<tr>
<td>S</td>
<td>Stroke</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>Bleeding</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>Labile international normalized ratios</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Elderly (>65 y)</td>
<td>1</td>
</tr>
</tbody>
</table>

REQUIRED DOCUMENTATION:

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could our impact review and decision outcome:

- History and Physical/Chart Notes
- Documentation of FDA approved device to be utilized
- Documentation that supports an increased risk of stroke and systemic embolism based on CHADS2 or CHA2DS2-VASc score and systemic anticoagulation therapy is recommended
- Documentation long-term risks of systemic anticoagulation outweigh the risks of the device implantation

CROSS REFERENCES

None

BACKGROUND

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Stroke is the most serious complication of atrial fibrillation (AF). The estimated incidence of stroke in untreated patients with AF is 5% per year. Stroke associated with AF is primarily embolic in nature, tends to be more severe than the typical ischemic stroke, and causes higher rates of mortality and disability. As a result, stroke prevention is one of the main goals of AF treatment.

Stroke in AF occurs primarily as a result of thromboembolism from the left atrium. The lack of atrial contractions in AF leads to blood stasis in the left atrium, and this low flow state increases the risk for thrombosis. The area of the left atrium with the lowest blood flow in AF, and therefore the highest risk of thrombosis, is the left atrial appendage (LAA). The LAA is the region responsible for an estimated 90% of left atrial thrombi.

The main treatment for stroke prevention in AF is anticoagulation, which has proven efficacy. The risk for stroke among patients with AF is stratified on the basis of several factors. A commonly used score, the CHADS2 score, assigns 1 point each for the presence of heart failure, hypertension, age 75 years or older, diabetes, or prior stroke or transient ischemic attack. The CHADS2-VASc score includes sex, more age categories, and the presence of vascular disease, in addition to the risk factors used in the CHADS2 score. Warfarin is the predominant agent in clinical use. A number of newer anticoagulant medications, including dabigatran, rivaroxaban, and apixaban, have recently received U.S. Food and Drug Administration (FDA) approval for stroke prevention in nonvalvular AF and have demonstrated noninferiority to warfarin in clinical trials. While anticoagulation is effective for stroke prevention, there is an increased risk of bleeding. Also, warfarin requires frequent monitoring and adjustments, as well as lifestyle changes. Other anticoagulants e.g. apixaban and dabigatran do not require monitoring. However, unlike warfarin, the antithrombotic effects of these anticoagulants are not always reversible with hemostatic drugs. Guidelines from the American College of Chest Physicians recommend the use of oral anticoagulation for patients with AF who are at high risk of stroke (ie, CHADS2 score ≥2), with more individualized choice of antithrombotic therapy in patients with lower stroke risk.[1]

Bleeding is the primary risk associated with systemic anticoagulation. A number of risk scores have been developed to estimate the risk of significant bleeding in patients treated with systemic anticoagulation. An example is the HAS-BLED score, which is validated to assess the annual risk of significant bleeding in patients with AF treated with warfarin.[2] The score ranges from 0 to 9, based on a number of clinical characteristics, including the presence of hypertension, renal and liver function, history of stroke, bleeding, labile international normalized ratios (INRs), age, and drug/alcohol use. Scores of 3 or greater are considered to be associated with high risk of bleeding, potentially signaling the need for closer monitoring of the patient for adverse risks, closer monitoring of INRs, or differential dose selections of oral anticoagulants or aspirin.[3]

Surgical removal, or exclusion, of the LAA is often performed in patients with AF who are undergoing open heart surgery for other reasons. Percutaneous LAA closure devices have been developed as a nonpharmacologic alternative to anticoagulation for stroke prevention in AF. The devices may prevent stroke by occluding the LAA, thus preventing thrombus formation.

Several versions of LAA occlusion devices have been developed. The WATCHMAN™ left atrial appendage system (Boston Scientific, Maple Grove, MN) is a self-expanding nickel titanium device. It has a polyester covering and fixation barbs for attachment to the
endocardium. Implantation is performed percutaneously through a catheter delivery system, using venous access and transseptal puncture to enter the left atrium. Following implantation, patients are anticoagulated with warfarin or alternative agents for approximately 1 to 2 months. After this period, patients are maintained on antiplatelet agents (ie, aspirin and/or clopidogrel) indefinitely. The Lariat® Loop Applicator is a suture delivery device that is intended to close a variety of surgical wounds in addition to left atrial appendage closure. The Cardioblate® closure device developed by Medtronic is currently being tested in clinical studies. The Amplatzer® cardiac plug (St. Jude Medical, Minneapolis, MN), is FDA-approved for closure of atrial septal defects but not LAA closure device. A second-generation device, the Amplatzer Amulet, has been developed. The Percutaneous LAA Transcatheter Occlusion device (eV3, Plymouth, MN) has also been evaluated in research studies but has not received FDA approval.

REGULATORY STATUS

In 2009, the WATCHMAN™ Left Atrial Appendage Closure Technology (Boston Scientific, Marlborough, MA) was originally considered by the FDA for approval based on the results of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients with Atrial Fibrillation (PROTECT-AF) randomized controlled trial (RCT). The device underwent three panel reviews before it was approved by FDA through the premarket approval process in March 2015. This device is indicated to reduce the risk of thromboembolism from the left atrial appendage (LAA) in patients with nonvalvular atrial fibrillation who:

- Are at increased risk for stroke and systemic embolism based on CHADS2 or CHA2DS2-VASc scores and are recommended for anticoagulation therapy;
- Are deemed by their physicians to be suitable for warfarin; and

Have an appropriate rationale to seek a nonpharmacologic alternative to warfarin, taking into account the safety and effectiveness of the device compared to warfarin. The Amplatzer™ Amulet™ Left Atrial Appendage Occluder (Abbott) received FDA approval in 2021 through the premarket approval process based on results from the Amplatzer Amulet Left Atrial Appendage Occluder Randomized Controlled Trial (Amulet IDE Trial).[4]

The Atriclip™ LAA Exclusion System was cleared for marketing by the FDA through the 510(k) process. The FDA indicates the device is indicated for the occlusion of the heart’s left atrial appendage, under direct visualization, in conjunction with other open cardiac surgical procedures. Direct visualization, in this context requires that the surgeon is able to see the heart directly, without assistance from a camera, endoscope, etc., or any other viewing technology. This includes procedures performed by sternotomy (full or partial as well as thoracotomy (single or multiple).[5]

At least one other device has been studied for LAA occlusion, but are not approved in the US for percutaneous closure of the LAA. In 2006, the Lariat® Loop Applicator device (SentreHEART, Redwood City, CA), a suture delivery system, was cleared for marketing by the FDA through the 510(k) process. The intended use is to facilitate suture placement and knot tying in surgical applications where soft tissues are being approximated or ligated with a pretied polyester suture.

EVIDENCE SUMMARY

The standard treatment for stroke prevention in atrial fibrillation is anticoagulation, which has...
proven effectiveness. In order to determine the safety and effectiveness of left atrial appendage (LAA) closure devices for the prevention of stroke in atrial fibrillation, large, well-designed randomized controlled trials (RCTs) that compare LAA to no therapy (patients with a prohibitive risk for oral anticoagulation), oral anticoagulation, or open surgical repair are needed. For chronic conditions such as atrial fibrillation, RCTs with long-term follow-up are necessary in order to determine the durability of any beneficial treatment effects.

The evidence on the efficacy of LAA closure devices consists of numerous nonrandomized studies of various occlusion devices, and two published RCTs of the WATCHMAN™ device that compared LAA closure with warfarin anticoagulation. The evidence for each device is summarized separately since the devices are not similar in design and may have unique considerations.

WATCHMAN™ DEVICE

The review of the evidence related to the efficacy of the WATCHMAN™ device is based, in part, on a Blue Cross Blue Shield Association (BCBSA) TEC Assessment developed in June 2014, which evaluated use of the WATCHMAN™ device for patients who were eligible and ineligible for anticoagulation therapy and determined that it does not meet Technology Evaluation Criteria. In addition, the PROTECT-AF and the PREVAIL RCTs evaluated the WATCHMAN™ device. The PROTECT-AF study by Holmes reported outcomes for 18 months of follow-up. Noninferiority criteria were met and then the results of the final analysis were published by Reddy at a mean follow-up of 2.3 years. The FDA reviewed the trial data in 2009 but the data was at a slightly earlier time point than the Holmes analyses. The FDA revealed several concerns during their review that were not reported by the peer reviewed published evidence. As a result, the FDA in coordination with the trial sponsors, developed the PREVAIL trial which had different entry criteria. Study participants from the PROTECT-AF trial were included in the analysis of the PREVAIL trial if they met inclusion criteria. The quality of the two RCTs were assessed as fair by the BCBSA TEC report indicating important methodological limitations in both studies. BCBSA TEC assessment reports the following regarding the quality of the PROTECT-AF and PREVAIL trials:

“Subject characteristics were balanced between groups. Losses to follow-up in the PROTECT-AF trial were not reported in peer-reviewed publications, and, according to FDA documents, appear to be unbalanced between treatment groups. Losses to follow-up are not clearly reported in FDA documents on the PREVAIL trial, but also appear to be unbalanced between treatment groups. Patients receiving the WATCHMAN™ device underwent more intensive surveillance for thrombosis after device implantation, and continued anticoagulation if concerns about thrombosis arose. Although this was part of the treatment protocol, it makes determinations of efficacy less certain, because there could be a benefit to imaging surveillance alone.”

SYSTEMATIC REVIEWS AND TECHNOLOGY ASSESSMENTS

Blue Cross Blue Shield Association (BCBSA) TEC Assessment developed in June 2014 evaluated the use of the WATCHMAN™ device for patients who were eligible and ineligible for anticoagulation therapy and determined that the WATCHMAN™ device did not meet Technology Evaluation Criteria. Although the WATCHMAN™ device and other LAA closure devices would ideally represent an alternative to oral anticoagulation for the prevention of stroke in patients with AF, during the postimplantation period, the device may be associated with increased thrombogenicity and, therefore, anticoagulation is used during the
periprocedural period. Most studies evaluating the WATCHMAN™ device have included patients who are eligible for anticoagulation. There are two main RCTs for the WATCHMAN™ device and the quality of the two RCTs were assessed as fair by the BCBSA TEC report indicating important methodological limitations in both studies. The TEC assessment made the following conclusions about the use of LAA closure in patients without contraindications to anticoagulation:

“We identified two randomized controlled trials (RCTs) and one case series evaluating the WATCHMAN™ device. The RCTs were noninferiority trials and compared LAAC with anticoagulation. The first trial showed a lower rate of a composite outcome (stroke, death, and embolism) in patients receiving LAAC and met noninferiority criteria compared with anticoagulation, but FDA review noted problems with patient selection, potential confounding with other treatments, and losses to follow-up. The second trial, which incorporated the first trial’s results as a discounted informative prior in a Bayesian analysis, showed similar rates of the same composite outcome but did not meet noninferiority criteria. The second trial met its second principal outcome noninferiority criteria in one of two analyses and a performance goal for short-term complication rate. When assessing the results of both trials, the relative performance of LAAC and anticoagulation is uncertain.”[6]

In addition, the BCBSA TEC concluded that the evidence is insufficient to make conclusions about improvement in net health outcomes compared to established alternatives.

There are several meta-analyses but the most rigorous is a patient level meta-analysis by Holmes. Holmes (2015) reported results of a patient-level meta-analysis that included data from the industry-sponsored PROTECT AF and PREVAIL trials.[10] The PROTECT AF and PREVAIL registries were designed to include patients with similar baseline characteristics as their respective RCTs. The meta-analysis included a total of 2,406 patients, 1,877 treated with the WATCHMAN™ device and 382 treated with warfarin alone. Mean patient follow-up durations were 0.58 years and 3.7 years, respectively, for the PREVAIL continued access registry and the PROTECT AF continued access registry. In a meta-analysis of 1,114 patients treated in the RCTs, compared with warfarin, LAA closure met the study’s noninferiority criteria for the primary composite efficacy end point of all-cause stroke, systemic embolization, and cardiovascular death (hazard ratio [HR], 0.79, 95% confidence interval [CI], 0.52 to 1.2; p=0.22). All-cause stroke rates did not differ significantly between groups (1.75 per 100 patient-years for LAA closure vs 1.87 per 100 patient-years for warfarin; HR=1.02; 95% CI, 0.62 to 1.7; p=0.94). However, LAA closure–treated patients had higher rates of ischemic stroke (1.6 events/100 patient-years vs 0.9 events/100 patient-years; HR=1.95, p=0.05) when procedure-related strokes were included, but had lower rates of hemorrhagic stroke (0.15 events/100 patient-years vs 0.96 events/100 patient-years; HR=0.22; 95% CI, 0.08 to 0.61; p=0.004).

A second patient-level meta-analysis of the two RCTs evaluated bleeding outcomes.[11] There were a total of 54 episodes of major bleeding, with the most common types being gastrointestinal (GI) bleed (31/54 [57%]) and hemorrhagic stroke (9/54 [17%]). On combined analysis, the rate of major bleeding episodes over the entire study period did not differ between groups. There were 3.5 events per 100 patient-years in the WATCHMAN™ group compared with 3.6 events per 100 patient-years in the anticoagulation group, for a rate ratio (RR) of 0.96 (95% CI, 0.66 to 1.40; p=0.84). However, there was a reduction in bleeding risk for the WATCHMAN™ group past the initial periprocedural period. For bleeding events
occurring more than seven days postprocedure, the event rates were 1.8 per 100 patient-years in the WATCHMAN™ group compared with 3.6 per 100 patient-years in the anticoagulation group (RR=0.49; 95% CI, 0.32 to 0.75; p=0.01). For bleeding events occurring more than six months post procedure (the time at which antiplatelet therapy is discontinued for patients receiving the WATCHMAN™ device), the event rates were 1.0 per 100 patient-years in the WATCHMAN™ group compared with 3.5 per 100 patient-years in the anticoagulation group (RR=0.28; 95% CI, 0.16 to 0.49; p<0.001).

Randomized Controlled Trials

The first RCT published was the PROTECT AF study,[7] which was a randomized, unblinded trial that evaluated the noninferiority of an LAA closure device compared with warfarin for stroke prevention in AF. The trial randomized 707 patients from 59 centers in the United States and Europe to the WATCHMAN™ device or warfarin treatment in a 2:1 ratio. Mean follow-up was 18±10 months. The primary efficacy outcome was a composite end point of stroke (ischemic or hemorrhagic), cardiovascular or unexplained death, or systemic embolism. There was also a primary safety outcome, a composite end point of excessive bleeding (intracranial or gastrointestinal [GI] bleeding) and procedure-related complications (pericardial effusion, device embolization, and procedure-related stroke). There were noted limitations to this study including inclusion of patients with low stroke risk (CHADS2 scores of 1), high rates of adjunctive antiplatelet therapy use in both groups, and generally poor compliance with warfarin therapy in the control group.

The primary efficacy outcome occurred at a rate of 3.0 per 100 patient years in the LAA closure group compared with 4.9 per 100 patient years in the warfarin group (rate ratio [RR], 0.62; 95% credible interval [CrI], 0.35 to 1.25). Based on these outcomes, the probability of noninferiority was greater than 99.9%. For the individual components of the primary outcome, cardiovascular/unexplained death and hemorrhagic stroke were higher in the warfarin group. In contrast, ischemic stroke was higher in the LAA closure group at 2.2 per 100 patient years compared with 1.6 per 100 patient years in the warfarin group (RR=1.34; 95% CrI, 0.60 to 4.29).

The primary safety outcome occurred more commonly in the LAA closure group, at a rate of 7.4 per 100 patient years compared with 4.4 per 100 patient years in the warfarin group (RR=1.69; 95% CrI, 1.01 to 3.19). The excess in adverse event rates for the LAA closure group was primarily the result of early adverse events associated with placement of the device. The most frequent type of complication related to LAA closure device placement was pericardial effusion requiring intervention, which occurred in 4.8% of patients (22/463).

Longer term follow-up from the PROTECT AF study was reported by Reddy (2013).[12] At a mean follow-up of 2.3 years, the results were similar to the initial report. The relative risk for the composite primary outcome in the WATCHMAN™ group compared with anticoagulation was 0.71, and this met noninferiority criteria with a confidence of greater than 99%. Complications were more common in the WATCHMAN™ group, with an estimated rate of 5.6%/year in the WATCHMAN™ group compared with 3.6%/year in the warfarin group. Outcomes through four years of follow-up were reported by Reddy et al in 2014.[13] Mean follow-up was 3.9 years in the LAA closure group and 3.7 years in the warfarin group. In the LAA closure group, warfarin was discontinued in 345 of 370 patients (93.2%) by the 12 month follow-up evaluation. During the follow-up period, the relative risk for the composite primary outcome in the WATCHMAN™ group compared with anticoagulation was 0.60 (8.4% in the
device group vs 13.9% in the anticoagulation group; 95% CrI, 0.41 to 1.05), which met the noninferiority criteria with a confidence of greater than 99.9%. Fewer hemorrhagic strokes occurred in the WATCHMAN™ group (0.6% vs 4.0%; RR=0.15; 95% CrI, 0.03 to 0.49), and fewer cardiovascular events occurred in the WATCHMAN™ group (3.7% vs 0.95%; RR=0.40; 95% CrI, 0.23 to 0.82). Rates of ischemic stroke did not differ significantly between groups, but WATCHMAN™ group patients had lower all-cause mortality than anticoagulation group patients (12.3% vs 18.0%; HR=0.66; 95% CI, 0.45 to 0.98; p=0.04).

Alli (2013) reported quality-of-life parameters, as measured by change in scores on the Short-Form 12-Item Health Survey from baseline to 12-month follow-up, for a subset of 547 subjects in the PROTECT AF study.[14] For the subset of PROTECT AF subjects included in the present analysis, at baseline, control group subjects had a higher mean CHADS2 score (2.4 vs 2.2; p=0.052) and were more likely to have a history of coronary artery disease (49.5% vs 39.6%; p=0.028). For subjects in the WATCHMAN™ group, the total physical score improved in 34.9% and was unchanged in 29.9%; for those in the warfarin group, the total physical score improved in 24.7% and was unchanged in 31.7% (p=0.01).

A second RCT, the PREVAIL trial, was conducted after the 2009 FDA decision on the WATCHMAN™ device to address some of the limitations of the PROTECT AF study, including its inclusion of patients with low stroke risk (CHADS2 scores of 1) and generally poor compliance with warfarin therapy in the control group. Results from the PREVAIL trial were initially presented in FDA documentation, and published in peer-reviewed form by Holmes et al in 2014.[10] In the PREVAIL trial, 461 subjects enrolled at 41 sites were randomized in a 2:1 fashion to either the WATCHMAN™™ device or control, which consisted of either initiation or continuation of warfarin therapy with a target international normalized ratio (INR) of 2.0 to 3.0. Subjects had nonvalvular AF and required treatment for prevention of thromboembolism based on a CHADS2 score of two or higher (or ≥1 with other indications for warfarin therapy based on American College of Cardiology/American Heart Association/European Society of Cardiology guidelines) and were eligible for warfarin therapy. In the device group, warfarin and low-dose aspirin were continued until 45 days postprocedure; if a follow-up echocardiogram at 45 days showed occlusion of the LAA, warfarin therapy could be discontinued. Subjects who discontinued warfarin were treated with aspirin and clopidogrel for six months post device implantation and with 325 mg aspirin indefinitely after that.

Three noninferiority primary efficacy end points were specified: (1) occurrence of ischemic or hemorrhagic stroke, cardiovascular or unexplained death, and systemic embolism (18-month rates); (2) occurrence of late ischemic stroke and systemic embolization (beyond seven days postrandomization, 18-month rates); and (3) occurrence of all-cause death, ischemic stroke, systemic embolism, or device- or procedure-related events requiring open cardiac surgery or major endovascular intervention (eg, pseudoaneurysm repair, arteriovenous fistula repair, or other major endovascular repair) occurring within seven days of the procedure or by hospital discharge, whichever was later. The 18-month event rates were determined using Bayesian statistical methods to integrate data from the PROTECT-AF study. All patients had a minimum follow-up of six months. For randomized subjects, mean follow-up was 11.8 months and median follow-up was 12.0 months (range, 0.03-25.9 months).

The first primary end point, the 18-month modeled RR between the device and control groups was 1.07 (95% CrI, 0.57 to 1.89). Because the upper bound of the 95% CrI was above the preset noninferiority margin of 1.75, the noninferiority criteria were not met. For the second primary end point of late ischemic stroke and systemic embolization, the 18-month RR
between the device and control groups was 1.6 (95% CrI, 0.5 to 4.2), with an upper bound of the 95% CrI above the preset noninferiority margin of 2.0. The rate difference between the device and control groups was 0.005 (95% CrI, -0.019 to 0.027). The upper bound of the 95% CrI was lower than the noninferiority margin of 0.0275, so the noninferiority criterion was met for the rate difference. For the third primary end point, major safety issues, the noninferiority criterion was met.

Reddy (2017) published a study on the five-year outcomes after left atrial appendage closure, for patients who participated in the PREVAIL and/or PROTECT AF trials. When evaluating the five-year findings the authors stated that if procedure related strokes are excluded, ischemic stroke and systemic embolism differences did not vary significantly (HR: 1.40; 95% CI: 0.76 to 2.59; p = 0.28). But, hemorrhagic stroke was significantly reduced with left atrial appendage closure (HR: 0.20; 95% CI: 0.07 to 0.56; p = 0.0022). The authors go on to state patients enrolled in the studies had to be able to take oral anticoagulants; thus, the results do not tell you anything about patients unable to take oral anticoagulants. Since the PREVAIL and/or PROTECT AF trials, novel oral anticoagulants have become routinely prescribed and have not been compared to left atrial appendage closure. They stated additional studies are needed to compare left atrial appendage closure to other oral anticoagulants and to determine outcomes for patients unable to take oral anticoagulants. There are studies underway. It is important to note that there is potential conflict of interest with several authors.

Nonrandomized Studies

Saw (2017) evaluated safety and effectiveness of the WATCHMAN™ for 106 patients who cannot take anticoagulants and who had nonvalvular atrial fibrillation. 97.2% of the patients had successful LAA closure, with one device embolization, one implant being placed too deep, and one cardiac perforation requiring repair prior to device implantation. The major combined safety event rate was 1.9% (one death and one device embolization). Follow-up occurred 210 ± 182 days, noting two transient ischemic events. The authors stated that their early experience is that the WATCHMAN™ is safe and effective for patients who cannot be on anticoagulation therapy, but that there were study limitations including a small sample size, varied antithrombotic therapy and device surveillance, and both the device and events were not adjudicated. Additional studies must evaluate how the Watchman™ device impacts healthcare outcomes.

Main (2016) evaluated follow-up transesophageal (TEE) studies for how often device related thrombus (DRT) occurred in patients in the PROTECT-AF trial. In all, 93 follow-up TEEs in 35 patients (33 at 45-day follow-up, 33 at six-month follow-up, and 27 at one-year follow-up) were assessed. The assessment process included a three-phase adjudication (an interactive training program, an interpretation process, development of DRT criteria, and a final determination of DRTs related to the Watchman™ device). This assessment found device related DRTs in 5.7% of the patients, with DRTs not as common at 45 days, when patients continued on Warfarin. The authors noted study limitations, including but not limited to the fact that event adjudication studies tend to underestimate events that occur, the TEE studies varied in clinical quality, and anticoagulant routine data was not completely documented. In addition, there is potential conflict of interest identified in the article.

A number of small published case series are primarily intended to establish safety and feasibility of the device. A larger case series of 143 patients from Europe was published in 2011. The case series reported successful implantation in 96% (137/143) of patients and
serious complications in 7.0% of patients (10/143). Complications included stroke (n=3), device embolization (n=2), and pericardial effusion (n=5). Another larger case series was reported by Reddy et al.[21], primarily focusing on the adverse event rate from a registry of 460 patients who received the WATCHMAN™ device. Serious pericardial effusion occurred in 2.2% of patients, and there were no deaths or periprocedural strokes reported. Matsuo et al reported results from a case series of 179 patients who underwent LAA closure at a single center, most (n=172) of whom received a WATCHMAN™ device.[23] Device deployment was successful in 98.9% of patients. The overall complication rate was 11.2%; major complications occurred in 3.3% (tamponade in two cases; possible transient ischemic attack [TIA] in one case; device dislocation in three cases). At 45-day follow-up, 99.4% of patients (164/166) had closure of the LAA.

Reddy (2016) evaluated adverse events for the WATCHMAN™ since it was FDA approved.[24] Adverse events were identified by procedural data collected by the manufacturer clinical specialist present during surgery. Implantation was deemed successful in 95% of consecutive cases (3,653 out of 3,822 total). The complications included 39 pericardial tamponades (1.02%; 24 treated percutaneously, 12 surgically and 3 fatal), three procedure-related strokes (0.078%), nine device embolizations (0.24%; 6 requiring surgical removal), and three procedure-related deaths (0.078%).

Bonnet published safety and efficacy data for the WATCHMAN™ device from a small single center registry study.[25] There were 23 total patients (mean CHA2DS2-VASc score: 5). The procedural success rate was 95.7% (95% confidence interval: 77.3-100.0) and the reported efficacy was 90.9% (95% confidence interval: 71.0-98.7). No adverse events were reported during or after hospitalization.

Figini (2016) published retrospective results from a single center in Italy between 2009 and 2015.[26] The study included 165 patients in which 99 received the Amplatzer Cardiac Plug (ACP) and 66 the WATCHMAN™ system. The mean follow-up was 15 months. A total of five patients died and one patient had an ischemic attach. There were no episodes of definitive stroke recorded or reported. However, there were twenty-six leaks ≥1 mm detected (23%) and were not found to correlate with clinical events. The authors noted that further investigation is warranted for the small peri-device flow.

There is uncertainty about the role of the WATCHMAN™ device in patients with AF who have absolute contraindications to oral anticoagulants. Reddy et al.[8] conducted a multicenter, prospective, nonrandomized trial to evaluate the safety and efficacy of LAA closure with the WATCHMAN™ device in patients with nonvalvular AF with a CHADS2 score 1 or higher who were considered ineligible for warfarin. Postimplantation, patients received 6 months of clopidogrel or ticlopidine and lifelong aspirin therapy. Thirteen patients (8.7%) had a procedure- or device-related serious adverse event, most commonly pericardial effusion (three patients). Over a mean 14.4 months of follow-up, all-cause stroke or systemic embolism occurred in four patients.

Chun (2013) compared the WATCHMAN™ device with the Amplatzer cardiac plug among patients with nonvalvular AF in a prospective cohort study, who were at high risk for stroke and had a contraindication to or were not willing to accept oral anticoagulants.[27] Eighty patients were assigned to LAA occlusion with the WATCHMAN™ or the Amplatzer device. After device implantation, either preexisting oral anticoagulation therapy or dual platelet inhibition with aspirin and clopidogrel was continued for six weeks. A follow-up transesophageal
echocardiogram was performed at six weeks postprocedure; if a device-related thrombus had formed, patients received intensive antithrombotic therapy for six weeks. Aspirin was continued indefinitely for all patients. The primary end point of successful device implantation occurred in 98% of patients. There were no statistically significant differences in procedure time, fluoroscopy time, or major safety events between the two groups. At a median 364 days of follow-up, there were no cases of stroke/TIA or other bleeding complications.

The EWOLUTION WATCHMAN™ registry is intended to evaluate procedural success, long-term outcomes, and adverse events in real-world settings. This registry compiles data from patients receiving the WATCHMAN™ device at 47 centers in 13 countries. A publication from the EWOLUTION registry in 2016 reported on 30-day outcomes of device implantation in 1,021 patients.[28] The overall population had a risk of bleeding that was substantially higher than that for patients in the RCTs. Over 62% of patients included in the registry were deemed ineligible for anticoagulation by their physicians. Approximately one-third of patients had a history of major bleeding, and 40% had HAS-BLED scores of 3 or greater, indicating moderate-to-high risk of bleeding. Procedural success was achieved in 98.5% of patients, and 99.3% of implants demonstrated no blood flow or minimal residual blood flow postprocedure. Serious adverse events due to the device or procedure occurred at an overall rate of 2.8% (95% CI, 1.9% to 4.0%) at 7 days and 3.6% (95% CI, 2.5% to 4.9%) at 30 days. The most common serious adverse event was major bleeding.

Network Analyses

Sahay (2017) performed a network meta-analysis to evaluate the safety and effectiveness of LAAC versus other strategies to prevent stroke in AF patients.[29] Nineteen RCTs with 87,831 patients were evaluated. The authors stated that although LAAC was found to be better than anticoagulant therapy and similar to novel anticoagulants, the results should be carefully analyzed.

Bajaj (2016) conducted a network meta-analysis of published RCTs evaluating multiple novel oral anticoagulants and left atrial appendage closure devices (WATCHMAN™) which have been tested against dose-adjusted vitamin K antagonists for stroke prophylaxis in non-valvular atrial fibrillation.[30] At the time of the analysis, there were no direct comparisons of these strategies from RCTs. Six RCTs were included in the analysis (N=59,627). Safety and efficacy outcomes were evaluated for six treatment strategies. The analysis showed that all prophylaxis strategies had similar rates of ischemic stroke. The authors also reported that in a cluster analyses, assessing safety and efficacy, apixaban, edoxaban and dabigatran ranked best followed by vitamin K antagonists and rivaroxaban, whereas the WATCHMAN™ left atrial appendage closure device ranked last. All of these strategies had different safety outcomes. The authors concluded that more RCTs are needed that directly compare treatment strategies.

Tereshchenko (2016) published a network meta-analysis that included 21 RCTs (96,017 nonvalvular AF patients; median age, 72 years; 65% males; median follow-up, 1.7 years) in which the safety and efficacy of novel oral anticoagulants (NOACs) (apixaban, dabigatran, edoxaban, and rivaroxaban); vitamin K antagonists (VKA); aspirin; and the WATCHMAN™ device were evaluated.[31] The primary efficacy outcome was the combination of stroke and systemic embolism and the primary safety outcome was the combination of major extracranial bleeding and intracranial hemorrhage. The authors concluded that “in comparison to placebo/control, use of aspirin (odds ratio [OR], 0.75 [95% CI, 0.60-0.95]), VKA (0.38 [0.29-0.49]), apixaban (0.31 [0.22-0.45]), dabigatran (0.29 [0.20-0.43]), edoxaban (0.38 [0.26-0.54]),...
rivaroxaban (0.27 [0.18-0.42]), and the WATCHMAN™ device (0.36 [0.16-0.80]) significantly reduced the risk of any stroke or systemic embolism in nonvalvular AF patients, as well as all-cause mortality (aspirin: OR, 0.82 [0.68-0.99]; VKA: 0.69 [0.57-0.85]; apixaban: 0.62 [0.50-0.78]; dabigatran: 0.62 [0.50-0.78]; edoxaban: 0.62 [0.50-0.77]; rivaroxaban: 0.58 [0.44-0.77]; and the WATCHMAN™ device: 0.47 [0.25-0.88]).”

Section Summary

The evidence for the use of the WATCHMAN™ device for stroke prevention in patients with nonvalvular atrial fibrillation who are candidates for oral anticoagulation mainly includes two noninferiority RCTs (PROTECT-AF and PREVAIL) and patient-level meta-analysis of these trials. Both RCTs compare the WATCHMAN™ device to anticoagulation and report on composite outcomes. The first RCT reported noninferiority between the two groups for a composite outcome of stroke, cardiovascular/unexplained death, or systemic embolism up to four years of follow-up. However, there are documented issues with patient selection criteria (i.e. population low risk for stroke), losses to follow-up, and inconsistency between the two groups in the use of other treatments that may have impacted the findings. The second RCT did not demonstrate noninferiority for the same composite outcome as the first trial (stroke, cardiovascular/unexplained death, or systemic embolism). However, the trial reported noninferiority of the WATCHMAN™ device to warfarin for late ischemic stroke and systemic embolization. The meta-analysis of the two trials reported a periprocedural risk of ischemic stroke with the WATCHMAN™ device and a lower risk of hemorrhagic stroke over the long term.

The published RCTs and meta-analysis report mixed results for the primary composite outcome and risk of safety events. In addition, the two RCTs have methodological limitations that may impact not only the RCT but also the meta-analysis findings which includes unblinding, differing stroke risk among study participants, loss of patients to follow-up, and poor compliance to Warfarin in the comparison groups. The current evidence base does not consistently demonstrate a net improvement in health outcomes (balance of benefit and harms) compared with established treatments for preventing stroke in patients with AF who are eligible to receive systemic anticoagulation.

The evidence for patients where the use of oral anticoagulants is not feasible consists of small nonrandomized studies with methodological limitations. These studies report on the placement of the device but many of them do not report on the comparative efficacy and safety of LAA closure in preventing strokes in this population. More high quality, comparative evidence is needed.

AMPLATZER AMULET DEVICE

Randomized Controlled Trials

Two randomized noninferiority trials (SWISS-APERO and Amulet IDE, described below) have been reported comparing the Amplatzer Amulet and Watchman devices, but neither included an anticoagulant group. A third trial (PRAGUE-17) compared either the Amulet or Watchman device with anticoagulants, but did not report subgroup analysis according to the device.

SWISS-APERO Trial

The Comparison of Amulet Versus Watchman/FLX Device in Patients Undergoing Left Atrial Appendage Closure (SWISS-APERO) trial conducted by Galea (2022) compared the Amulet
and Watchman devices in 221 participants with non-valvular AF. The enrolled participants were at high risk for stroke (mean CHA2DS2-VASc score 4.3; 39% had a history of prior stroke) and bleeding (mean HAS-BLED score 3.1; 88% had a history of bleeding requiring medical evaluation). Participants were primarily male (70%) and mean age was 77 years. Outcome assessment focused on successful closure, based on a composite outcome of either treatment group crossover during the LAAC procedure or residual LAA patency at 45 days post-intervention, based on CT angiography. The study found no difference in treatment between groups in the composite outcome (RR, 0.97; 95% CI 0.80 to 1.16). Major procedure-related complications were more common with the Amulet versus the Watchman device (9.0% vs. 2.7%; p=.047) There were six deaths during the trial, including two in the Amulet group (1.8%) and four in the Watchman group (3.6%; p=.409). Limitations of the study include the lack of an anticoagulant control group and the short duration of follow-up, although planned trial follow-up is ongoing. In addition, the actual Watchman device used was changed during the course of the trial due to a new device (Watchman FLX) version becoming available.

Amulet IDE Trial

Lakkireddy (2021) reported the results of the Amplatzer Amulet Left Atrial Appendage Occluder IDE Trial (Amulet IDE) comparing the Amulet and Watchman devices. The study enrolled 1,878 patients with non-valvular AF at high-risk for stroke (mean CHA2DS2-VASc score 4.5 and 4.7) and bleeding (mean HAS-BLED score 3.2 and 3.3). The mean age of enrolled patients was 75 years and 59% were male; race and ethnicity were not reported. Twenty-eight percent of enrolled participants had a history of major bleeding and 19 percent had a history of stroke. The primary efficacy endpoint was a composite that included ischemic stroke or systemic embolism, while the safety analysis included a primary composite outcome of all-cause mortality, major bleeding or procedure-related complications. Duration of follow-up was 18 months for efficacy outcomes and 12 months for safety outcomes. After 18 months, there was no difference in the composite efficacy outcome between the Amulet and Watchman devices (HR, 0.00; 95% CI, -1.55 to 1.55). Results were consistent in showing no difference between groups when considering ischemic stroke and systemic embolism as individual outcomes. There was also no difference between Amulet and Watchman groups for a secondary composite outcome that included any stroke, systemic embolism or sudden cardiac death (HR, -2.12; 95% CI, -4.45 to 0.21), nor were there differences between groups when these outcomes were considered individually. In terms of safety, there was no difference between the Amulet and Watchman groups for the composite safety outcome at 12 months (HR, -0.14; 95% CI, -3.42 to 3.13). When outcomes were considered separately, there was also no difference between the Amulet and Watchman groups for all-cause mortality or major bleeding. Procedure-related complications were more likely to occur with the Amulet versus the Watchman devices (HR, 1.86; 95% CI, 1.11 to 3.12). Follow-up is planned to continue through 2024.

PRAGUE-17 Trial

The PRAGUE-17 trial found that the use of either the Watchman device or the Amplatzer Amulet was noninferior to direct oral anticoagulants for the primary composite endpoint that included ischemic or hemorrhagic stroke, TIA, systemic embolism, clinically significant bleeding, significant peri-procedural or device-related complications, or cardiovascular mortality in high-risk patients with AF.

Section Summary: Amplatzer Amulet
Two RCTs compared the Amulet and Watchman devices, one of which was a short-term trial that assessed periprocedural outcomes at 45 days. The second trial comparing the Amulet and Watchman devices found the Amulet device to be noninferior to the Watchman device after 18-months follow-up for a composite efficacy outcome that included ischemic stroke or systemic embolism and for a composite safety outcome that included all-cause mortality, major bleeding or procedure-related complications. The primary mechanism of action endpoint of device closure at 45 days was observed in 98.9% of Amulet subjects and 96.8% of Watchman subjects. The 97.5% lower confidence bound was 0.41%, which was greater than the predefined non-inferiority margin of -3% (p<0.0001). Therefore, device closure with the Amulet device was non-inferior to the Watchman device.

One additional RCT evaluated the use of either the Amplatzer Amulet or Watchman device versus anticoagulants; subgroup analyses according to the device were not performed. After up to 4 years of follow-up, the study found LAA closure with either the Watchman or Amulet was noninferior to anticoagulants for a composite outcome that included stroke, TIA, systemic embolism, clinically significant bleeding, significant periprocedural or device-related complications, or cardiovascular mortality. The summary of the clinical evidence provides a reasonable assurance that the Amulet device is effective for reducing the risk of thrombus embolization from the LAA in select patients with non-valvular atrial fibrillation.

LARIAT® DEVICE

The available evidence on the efficacy of the Lariat device for LAA closure consists of a number of small case series.

Litwinowicz (2018) published a non-randomized, non-comparative single-center study of 139 patients undergoing LAAC with the LARIAT® device.[35] The study’s primary outcomes were risk of thromboembolism, severe bleeding, and mortality with an average follow-up time of 4.2 years. The results of the study indicated that the rate of thromboembolisms is 0.6% and the severe bleeding rate was 0.8%. The reported mortality rate was 1.6%. The authors concluded that LAAC using this device is a safe and effective treatment for stroke prevention and bleed risk reduction in this population. The authors also noted the significant limitations with this study including the lack of control group, variability in post-procedure anticoagulation, and relying on calculated stroke or bleeding risks for analyses.

Gianni (2016) published a retrospective multicenter study of 98 patients who underwent LAA ligation with the LARIAT® device.[36] How many times and what the clinical implications of a leak were assessed. A transesophageal echocardiography assessed leaks during the procedure, at six and 12 months and after thromboembolic events. Leaks were detected in 5%, 15%, and 20% respectfully in patients at the three evaluation periods. The authors stated that because incomplete occlusion can occur, appropriate long-term surveillance should be performed, along with the addition of anticoagulant therapy or percutaneous transcatheter closure as needed.

A SR of published studies on the Lariat device was published in 2016.[37] No RCTs were identified. Five case series were selected, with a total of 309 patients (range, 4-154 patients) treated. The combined estimate of procedural success was 90.3%. One (0.3%) death was reported and seven (2.3%) patients required urgent cardiac surgery. The reviewers also searched the MAUDE database for adverse events and found 35 unique reports. Among the 35 reported complications, there were five deaths and 23 cases of emergency cardiac surgery.
Individual case series continue to be published, including a large case series of 712 consecutive patients from 18 U.S. hospitals. This series reported a procedural success rate of 95% and complete closure in 98%. There was one death and emergent cardiac surgery was required in 1.4%.

A large case series was reported by Price (2014) in a retrospective multicenter study of early outcomes after use of the Lariat device. This study included 154 patients with a median CHADS2 score of 3. Device success, defined as suture deployment and a residual shunt less than 5 mm, was achieved in 94% of patients. Procedural success, defined as device success and no major complication (death, MI, stroke, major bleeding, or emergency surgery) at hospital discharge, was achieved in 86% of patients. Fifteen patients (10%) had at least one major periprocedural complication, and 10% had significant pericardial effusion. Of the 134 patients (87%) who had out-of-hospital outcome data available, the composite out-of-hospital outcome of death, MI, or stroke occurred in four patients (2.9%).

Gianni (2016) published a retrospective, multicenter study including 98 consecutive patients which evaluated the incidence and clinical implications of leaks (acute incomplete occlusion, early and late reopening) following LAA ligation with the LARIAT device. Leaks were detected in 5 (5%), 14 (15%), and 19 (20%) patients at the three time points. A total of five patients developed neurological events (four strokes and one transient ischemic attack). Three occurred late and were associated with small leaks (< 5mm). The authors concluded that “incomplete occlusion of the LAA after LARIAT ligation is relatively common and may be associated with thromboembolic events.

Bartus (2013) reported results of a case series that enrolled 89 patients with AF and either a contraindication to warfarin or previous warfarin failure. A total of 85 of 89 (96%) had successful left atrial ligation, and 81 of 89 (91%) had complete closure immediately. There were three access-related complications, two cases of severe pericarditis postoperatively, one late pericardial effusion, and two cases of unexplained sudden death. There were two late strokes, which the authors did not attribute to an embolic source. At 1-year follow-up, complete closure was documented by echocardiography in 98% of available patients (n=65). In a smaller, earlier series from the same research group, 13 patients were treated with the Lariat device, 11 of whom were treated as part of percutaneous radiofrequency ablation for AF. One of the 11 procedures was terminated due to unsuccessful placement, and the other 10 procedures were successful, with complete closure verified on echocardiography. There was one procedural complication in which the snare could not be removed and were retrieved by thoracoscopic method.

Stone (2013) reported outcomes for 27 patients with AF, a high stroke risk (CHADS2 score ≥2), and contraindications or intolerance to anticoagulation who underwent percutaneous LAA ligation with the LARIAT device. Acute procedural success was 92.6%; periprocedural complications included 3 cases of pericarditis and 1 periprocedural stroke associated with no long-term disability. A follow-up transesophageal echo was performed in 22 patients at an average of 45 days postprocedure, which demonstrated successful LAA exclusion in all 22. Follow-up was for an average of four months, during which time one stroke and no deaths occurred.

Massumi (2013) reported on 21 patients with AF and contraindications to anticoagulation. A total of 20 of 21 patients had successful atrial closure, which was documented by echocardiography to be intact at a mean follow-up of 96 days. No patients had a stroke during
a mean follow-up of approximately one year. Complications were reported in 5 of 21 patients. One patient had right ventricular perforation and tamponade requiring surgical intervention. One patient developed pleuropericarditis that required multiple drainage procedures. Three additional patients developed pericarditis within 30 days of the procedure.

Section Summary

The current studies on the Lariat device are limited to small nonrandomized studies. While these studies report high procedural success, interpretation is limited due to methodological limitations such as small sample size, lack of randomized treatment allocation, and lack of a control group for comparison. Larger-scaled trials are needed to confirm the efficacy and safety of the Lariat device.

AMPLATZER® CARDIAC PLUG DEVICE

Cruz-Gonzales (2020), in their retrospective registry study, aimed to evaluate the safety and efficacy of LAA occlusion for patients with nonvalvular AF with prior stroke or TIA despite anticoagulant therapy (resistant stroke [RS]). They assessed data from the Amplatzer Cardiac Plug multicenter registry on 1047 consecutive patients with nonvalvular AF undergoing LAA occlusion. There were no significant differences in baseline characteristics between the 2 groups. The RS group had a significantly higher mean CHA2-DS2-VASc score (5.5±1.5 in the RS group vs. 4.6±1.6 in the non-stroke group) and HAS-BLED score (3.9±1.3 vs. 3.1±1.2). There were no significant differences between groups in procedural success or periprocedural major safety events. At one-year follow-up, the observed annual rate of stroke of TIA was 2.6% in the RS group and 1.2% for the non-stroke group.

Additional available evidence on use of the Amplatzer device for left atrial occlusion consists of a number of case series, most of which included less than 40 patients. Another case series, Nietlispach., attempted LAA occlusion in 152 patients from a single institution. Amplatzer Cardiac Plugs were used in 120 patients and nondedicated devices were used in 32 patients. Short-term complications occurred in 9.8% of patients (15/152). Longer-term adverse outcomes occurred in 7% of patients including two strokes, one peripheral embolization, and four episodes of major bleeding. Device embolization occurred in 4.6% (7/152) of patients.

Berti (2016) evaluated consecutive, high-risk patients (n=110) with non-valvular atrial fibrillation and contraindications to oral anticoagulants. There was a mean follow-up of 30±12 months. Procedures were performed using the Amplatzer Cardiac Plug or Amulet. Berti reports procedural success (technical success without major procedure-related complications) was achieved in 96.4%. The rate of major procedural complications was 3.6% (three cases of pericardial tamponade requiring drainage and one case of major bleeding). The annual rate of ischemic stroke and other thromboembolic events were 2.2% and 0%, respectively. The annual rate for major bleeding was 1.1%.

Additional case series of patients treated with the Amplatzer device were published including patients from different countries. Many of the case series reported high procedural success, as well as various complications such as vascular complications, air embolism, esophageal injury, cardiac tamponade, and device embolization.

Several studies have reported the use of the Amplatzer device in patients with a contraindication to oral anticoagulation therapy. The largest study reported outcomes, up to four years postprocedure, for 134 patients with nonvalvular AF and a long-term
contraindication to oral anticoagulation treated with the Amplatzer device.[55] Patients had a median CHA2DS2-VASc score of 4 and were generally considered at high risk for bleeding complications. Postprocedural antithrombotic therapy was tailored to the patient’s individual risk profile, but the authors described that, generally, short-term dual antiplatelet therapy (1-2 months) and subsequent indefinite single antiplatelet therapy were prescribed after successful device implantation. Procedural success occurred in 93.3%, and three major procedure-related complications (two cases of cardiac tamponade, one case of pericardial effusion requiring drainage or surgery) occurred. Over a mean follow-up of 680 days, observed annual rates of ischemic strokes and any thromboembolic events were 0.8% and 2.5%, respectively.

Meerkin (2013) reported outcomes for 100 patients with AF, a CHADS2 score of 2 or higher, and a contraindication to oral warfarin who were treated with the Amplatzer device at a single institution.[56] All patients were treated with heparin during the procedure; they were maintained on clopidogrel for one month postprocedure and daily aspirin indefinitely. Successful deployment occurred in all patients. There were two significant periprocedural complications, including one pericardial effusion with tamponade and one case of acute respiratory distress with pulmonary edema.

Wiebe (2014) reported results of a retrospective cohort of 60 patients with nonvalvular AF who had a CHADe2-VASc score of at least 1 and contraindications to warfarin anticoagulation who underwent percutaneous LAA closure with the Amplatzer device.[48] Contraindications to warfarin included contraindications as defined in the warfarin product label, a history of severe bleeding while receiving anticoagulant therapy, as well as a history of bleeding tendencies in the absence of anticoagulation or blood dyscrasia, along with patients who were unable to maintain a stable INR and those with a known hypersensitivity to warfarin or a high-risk of falling who were also included. Patients received heparin during the closure procedure; they were maintained on clopidogrel for 3 months postprocedure and daily aspirin indefinitely. Device implantation was successful in 95% of patients. Over a median follow-up of 1.8 years, no patients experienced a stroke. The rate of major bleeding complications was 1.9%/year of follow-up.

Urena (2013) reported results from a similar cohort of 52 patients with nonvalvular AF who had a CHADS2-VASc score of at least 2 and contraindication to oral anticoagulation therapy who underwent percutaneous LAA closure with the Amplatzer device.[49] Device implantation was successful in all but one patient. There were no periprocedural strokes or death. Over the follow-up period (mean, 20 months), rates of death, stroke, and systemic embolism were 5.8% (3/52), 1.9% (1/52), and 0%, respectively.

Figini (2016) published retrospective results from a single center in Italy between 2009 and 2015.[26] The study included 165 patients in which 99 received the Amplatzer Cardiac Plug (ACP) and 66 the WATCHMAN™ system. The mean follow-up was 15 months. A total of five patients died and one patient had an ischemic attach. There were no episodes of definitive stroke recorded or reported. However, there were twenty-six leaks ≥1 mm detected (23%) and were not found to correlate with clinical events. The authors noted that further investigation is warranted for the small peri-device flow.

Other smaller case series of patients with contraindication to oral anticoagulation include studies by Danna,[45] which included 37 patients and reported a 1-year stroke rate of 2.94%, and Horstmann,[57] which included 20 patients and reported no episodes of strokes over a mean follow-up of 13.6 months.
Gloekler (2015)[58] compared outcomes for nonvalvular AF patients treated with the first-generation Amplatzer cardiac plug (n=50) and those treated with the second-generation Amulet device (n=50) in a retrospective analysis of prospectively collected data. There were no significant differences between devices in terms of safety outcomes.

Section Summary

All of the nonrandomized studies report high procedural success, but also report various complications such as vascular complications, air embolism, esophageal injury, cardiac tamponade, and device embolization. Well designed, large RCTs are needed to confirm the efficacy and safety of this device.

PLAATO DEVICE

Bayard (2010) reported on 180 patients with nonrheumatic atrial fibrillation and a contraindication to warfarin and who were treated with the PLAATO (Percutaneous Left Atrial Appendage Transcatheter Occlusion) device.[59] Placement was successful in 90% of patients. Two patients died within 24 hours of the procedure (1.1%), and six patients had cardiac tamponade (3.3%), with two required surgical drainage. During a follow-up of 129 patient-years, three strokes were reported for a rate of 2.3% per year. Other case reports and small case series report complications, including multiple reports of thrombus formation at the site of device placement.[59, 60]

Section Summary

The nonrandomized studies report high procedural success, but also report various complications. Well designed, large RCTs are needed to confirm the efficacy and safety of this device.

ATRICLIP DEVICE

Ad (2015) reported on 24 patients that received the Atriclip PRO. Ninety five percent of patients had nonparoxysmal AF.[61] The clip did not deploy in one patient but the procedural success was 95%. Another study reported on 30 procedures for the Atriclip.[62] The device was successfully placed in 28 of the 30 patients and the study didn’t report any adverse events at follow-up. A multicenter study reported on a total of 71 patients receiving the Atriclip device.[63] Safety of the device was assessed at 30 days and there was a three month follow-up for efficacy. One patient was not able to receive the Atriclip device but procedural success was confirmed in 67 of 70 patients. Significant adverse events were reported in 34 of 70 patients. There was no adverse events from the device itself and no perioperative mortality. At the three month follow-up, one patient passed away and 60 of 61 patients still had successful occlusion.

Section Summary

Nonrandomized studies report high procedural success, but also report various complications. Well designed, large RCTs are needed to confirm the efficacy and safety of this device.

EVALUATIONS OF MULTIPLE DEVICES

Hanif (2017) published a SR of RCTs to compare the risk of stroke in patients with left atrial appendage occlusion (LAAO) versus anticoagulant, antiplatelet, or placebo therapy.[64] The impact on operative time, major bleeding, and mortality were assessed. Although LAAO was
found to be better than anticoagulant therapy for stroke and mortality, the authors stated the evidence had methodological limitations.

Health Quality Ontario (2017) performed a SR evaluating both clinical and cost effectiveness of left atrial appendage closure devices versus novel anticoagulants e.g. dabigatran or versus Warfarin.[65] Five studies compared novel anticoagulants to Warfarin and two compared left atrial appendage closure to Warfarin. The authors concluded that moderate quality evidence indicates left atrial appendage closure is as effective as novel oral anticoagulants for patients with nonvalvular AF, but is cost effective only for patients who cannot take anticoagulants.

Lempereur (2017) published a SR evaluating device associated thrombosis (DAT) for the Watchman™, Amplatzer™ Cardiac Plug (ACP), and Amulet devices from 2008-2015.[66] Thirty studies were included. The mean frequency of DAT after LAAO was 3.9% for all devices (82/2118). The reported frequency of DAT six weeks after implant was similar for WM and ACP/Amulet (2.0 versus 2.6%, respectively, P = 0.60). The reported frequency of events did not appear to change over time. The conclusion was that DAT was an infrequent complication of LAAO as it occurs mostly in the early post procedure, and there is a low rate of neurological complications. But, the authors stated their review had limitations including lack of a standard definition for DAT amongst studies and that the review was based only on published data. Therefore unpublished, underreported and/or underdiagnosed DATs would impact the review outcomes. Additional larger multicenter studies are needed to determine risks, complications, and treatment efficacy of LAAO.

Wei (2016) published a SR evaluating two RCTs (PROTECT AF and PREVAIL) and 36 observational studies on the safety and effectiveness of left atrial appendage occlusion (LAAO) devices.[67] The systems mainly involved in the studies included PLAATO, the Amplatzer® Cardiac Plug device, and WATCHMAN™. Other devices such as nondedicated Amplatzer® occluders, and WaveCrest® were also reviewed. Procedure failure was 0.02 (95% CI: 0.02-0.03), with no heterogeneity amongst studies. All-cause mortality was 0.03 (95% CI: 0.02-0.03) and cardiac/neurological mortality was 0 (95% CI: 0.00-0.01), with low pooled results and no heterogeneity amongst studies. The frequency of stroke/transient ischemic attack was 0.01 (95% CI: 0.01-0.01), with no heterogeneity amongst studies. The frequency of thrombus on devices was 0.01 (95% CI: 0.01-0.02), with no heterogeneity amongst studies. Major hemorrhagic event complications were 0.01 (95% CI: 0.00-0.01), with no heterogeneity amongst studies. Of the devices, most did not differ in the frequency of events except all-cause mortality and cardiac/neurological mortality was higher for the PLAATO group and thrombus occurred more often in the ACP group and less often in the PLATTO group. The authors stated LAAO is safe and effective and there is a low rate of failure, for patients not able to be on long-term anticoagulant therapy. However, the authors stated their study had limitations, including but not limited to the definition of safety and effectiveness varied amongst studies, there were only two RCTs, two large studies did not report cardiac or neurological death frequencies, and the data on specific devices was not always easy to assess.

Li (2016) published a SR to report how effective and safe LAAO devices were for greater than one year, when compared to novel oral anticoagulants (NOACs).[68] They evaluated six RCTs and 27 observational studies. The authors stated the RCTs showed that LAAO was not better than NOACs for stroke prevention (odds ratio 0.86), but did show LAAO patients had less hemorrhagic events at follow-up. An analysis of the observational studies showed that LAAO patients had a lower rate of both thromboembolic events (1.8 per 100 patient-years versus 2.4 events per 100 patient-years) and major bleeding (2.2 events per 100 patient-years versus 2.5
events per 100 patient-years). During longer follow-up periods patients with LAAO had less thromboembolic events (2.1, 1.8, and 1.0 events per 100 person-years for 1, 1-2, and > 2 years respectively). The authors stated the SR had limitations, including but not limited to different follow-up durations between LAAO and NOAC groups and number of patients who received LAAO was less than those receiving NOACs. They stated additional studies with consistent homogeneity could assess healthcare outcomes and assist in confirming this study’s findings.

Xu conducted a comprehensive literature search for studies evaluating patients after receiving an occlusion device.[24] Studies were included if they had at least 10 patients followed for at least six months. Twenty five total studies were included with only two RCTs and the rest were cohort studies (N= 2,779). Xu performed a meta-analysis of stroke events and adverse events after patients received an occlusion device. Xu reported that the adjusted incidence rate of stroke was 1.2/100 person-years (PY) (95% confidence interval [CI], 0.9-1.6/100 PY) and the ischemic and hemorrhagic stroke rates were 1.1/100 PY (95% CI, 0.8-1.4/100 PY) and 0.2/100 PY (95% CI, 0.1-0.3/100 PY), respectively. Additionally, the combined efficacy outcomes (stroke or transient ischemic attacks [TIAs], systemic embolism, or cardiovascular death) was 2.7/100 PY (95% CI, 1.9-3.4/100 PY). The most common adverse events were major bleeding and pericardial effusions at a rate of 2.6% (95% CI, 1.5%-3.6%) and 2.5% (95% CI, 1.8%-3.2%), respectively.

Sahay conducted a SR of the evidence with a network meta-analysis of all RCTs (N=19) with a total of 87,831 patients.[69] The network analysis evaluated the safety and efficacy of left atrial appendage closure compared to other strategies for stroke prevention in atrial fibrillation.[69] The network meta-analysis includes direct and indirect comparisons for these various treatment strategies. The analysis compared treatment strategies to warfarin as a common comparator group. The authors reported that “…using warfarin as the common comparator revealed efficacy benefit favoring LAAC as compared with placebo (mortality: HR 0.38, 95% CI 0.22 to 0.67, p<0.001; stroke/SE: HR 0.24, 95% CI 0.11 to 0.52, p<0.001) and APT (mortality: HR 0.58, 95% CI 0.37 to 0.91, p=0.0018; stroke/SE: HR 0.44, 95% CI 0.23 to 0.86, p=0.017) and similar to NOAC (mortality: HR 0.76,= 95% CI 0.50 to 1.16, p=0.211; stroke/SE: HR 1.01, 95% CI 0.53 to 1.92, p=0.969).” The rates for major bleeding were comparable. The authors further note that caution should be taken in interpreting these results as more studies are needed to further substantiate the findings especially in light of the wide confidence intervals.

Betts (2016) evaluated the feasibility and long term efficacy of LAAO using a retrospective multicenter registry (July 2009-November 2014).[70] The devices included the WATCHMAN™ (63%), Amplatzer™ Cardiac Plug (34.7%), Lariat (1.7%) and Coherex WaveCrest (0.6%). A total of 371 patients were included and the overall procedure success was 92.5% with major adverse events in 3.5% of patients. The authors reported “an annual 90.1% relative risk reduction (RRR) for ischemic stroke, an 87.2% thromboembolic events RRR, and a 92.9% major bleeding RRR were observed, if compared with the predicted annual risks based on CHADS2, CHA2DS2-Vasc, and HAS-BLED scores, respectively, over a follow-up period of 24.7 ± 16.07 months. In addition, the authors reported higher success rates and a reduction in acute major complications in the second half of recruitment.

PRACTICE GUIDELINE SUMMARY

AMERICAN COLLEGE OF CARDIOLOGY, HEART RHYTHM SOCIETY, AND SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY AND INTERVENTIONS

September 1, 2022

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
In 2015, the American College of Cardiology (ACC), Heart Rhythm Society (HRS), and Society for Cardiovascular Angiography and Interventions published an overview of the integration of percutaneous LAA closure devices into the clinical practice of patients with AF.[71] The overview was organized around questions related to the sites of care delivery for LAA closure devices, training for proceduralists, necessary follow-up data collection, identification of appropriate patient cohorts, and reimbursement. The statement provides general guidelines for facility and operator requirements, including the presence of a multidisciplinary heart team, for centers performing percutaneous LAA closures. The statement does not provide specific recommendations about the indications and patient populations appropriate for percutaneous LAA closure.

AMERICAN COLLEGE OF CARDIOLOGY, THE AMERICAN HEART ASSOCIATION, AND HEART RHYTHM SOCIETY[3, 72]

The 2019 ACC/AHA/HRS focused update of the 2014 guidelines on the management of patients with AF recommends surgical occlusion of the LAA with the WATCHMAN device as an alternative to long-term anticoagulation therapy (Class IIB, Level of Evidence: B-NR).

AMERICAN COLLEGE OF CHEST PHYSICIANS (ACCP)

2018 American College of Chest Physicians guidelines (updated from 2012) recommend that CHA2DS2VASc be used to evaluate stroke risk, and patients initially identified as having a low stroke risk should not be given antithrombotic therapy. In addition, they recommend bleeding risk assessments be given to every patient at every patient contact and that “potentially modifiable bleeding risk factors” should be the initial focus.

SUMMARY

There is enough research to show that the WATCHMAN or Amplatzer Amulet device for left atrial appendage closure results in improved health outcomes for the prevention of stroke in patients with atrial fibrillation. Clinical guidelines based on evidence recommend the use of the WATCHMAN device for left atrial appendage closure in certain patients. Therefore, the use of the WATCHMAN or Amplatzer Amulet device for left atrial appendage closure may be considered medically necessary for the prevention of stroke in patients with atrial fibrillation who are at an increased risk of stroke.

There is not enough research to show that left atrial appendage closure devices improve health outcomes when policy criteria are not met. No evidence-based practice guidelines recommend the use of devices other than the WATCHMAN or Amplatzer Amulet device. Therefore, the use of left atrial appendage closure devices is investigational when policy criteria are not met including the use of devices other than the WATCHMAN or Amplatzer Amulet device.

REFERENCES

15. VY Reddy, SK Doshi, S Kar, et al. 5-Year Outcomes After Left Atrial Appendage Closure: From the PREVAIL and PROTECT AF Trials. *Journal of the American College of Cardiology.* 2017;70(24):2964-75. PMID: 29103847

43. A Massumi, MG Chelu, A Nazeri, et al. Initial experience with a novel percutaneous left atrial appendage exclusion device in patients with atrial fibrillation, increased stroke risk,

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>33340</td>
<td>Percutaneous transcatheter closure of the left atrial appendage with endocardial implant, including fluoroscopy, transseptal puncture, catheter placement(s), left atrial angiography, left atrial appendage angiography, when performed, and radiological supervision and interpretation</td>
</tr>
<tr>
<td></td>
<td>33267</td>
<td>Open exclusion of left atrial appendage any method</td>
</tr>
<tr>
<td></td>
<td>33268</td>
<td>Open exclusion of left atrial appendage performed at the time of other sternotomy or thoracotomy procedure</td>
</tr>
<tr>
<td></td>
<td>33269</td>
<td>Thoracoscopic exclusion of left atrial appendage</td>
</tr>
<tr>
<td></td>
<td>93799</td>
<td>Unlisted cardiovascular service or procedure</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: December 2011
IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Transcatheter aortic valve implantation (also known as transcatheter aortic valve replacement) is an alternative to open valve replacement surgery for patients with aortic stenosis and to nonsurgical therapy for patients with a prohibitive risk for surgery.

MEDICAL POLICY CRITERIA

I. For patients with native valve aortic stenosis, transcatheter aortic valve implantation with an U.S. Food and Drug Administration (FDA)-approved transcatheter heart valve system may be considered medically necessary when all of the following criteria (A. – D.) are met:

 A. New York Heart Association heart failure class II, III, or IV symptoms; and
 B. Left ventricular ejection fraction greater than 20%; and
 C. Aortic valve is not unicuspid or bicuspid; and
 D. Severe aortic stenosis, defined as any one or more of the following:
 1. An aortic valve area of less than or equal to 1 cm², or
 2. An aortic valve area index of less than or equal to 0.6 cm²/m², or
3. A mean aortic valve gradient greater than or equal to 40 mmHg, or
4. A peak aortic-jet velocity greater than or equal to 4.0 m/s.

II. For patients with a bioprosthetic aortic valve, transcatheter aortic valve replacement (i.e., valve-in-valve) with an FDA-approved transcatheter heart valve system (e.g., Edwards SAPIEN™ or Medtronic CoreValve System™) may be considered medically necessary when all of the following criteria (A. – D.) are met:

 A. Failure of a surgical bioprosthetic aortic valve (stenosed or insufficient); and
 B. New York Heart Association heart failure class II, III, or IV symptoms; and
 C. Left ventricular ejection fraction greater than 20%; and
 D. There is clinical documentation that the patient is either of the following:
 1. Not a candidate for open surgery, or
 2. At high risk for open surgery, defined as either of the following, as documented by the ordering provider:
 a. Society of Thoracic Surgeons predicted operative risk score of 8% or higher (see Policy Guidelines), or
 b. An expected mortality risk of 15% or higher for open surgery

III. Transcatheter aortic valve implantation or replacement is considered investigational for all other indications and for non-FDA-approved devices.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

For the use of the SAPIEN or CoreValve devices, severe aortic stenosis is defined by the presence of one or more of the following criteria:

- An aortic valve area of less than or equal to 1 cm²
- An aortic valve area index of less than or equal to 0.6 cm²/m²
- A mean aortic valve gradient greater than or equal to 40 mmHg
- A peak aortic-jet velocity greater than or equal to 4.0 m/s.

The Society of Thoracic Surgeons risk calculator can be found at http://riskcalc.sts.org/stswebriskcalc/calculate.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Documentation of symptoms, associated diagnoses and treatments
- The name of the valve system to be implanted

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
• Documentation of aortic valve stenosis (e.g., valve area, mean aortic valve gradient)
• In the case of valve-in-valve implantation, documentation that supports determination that patient is not a candidate or is high-risk for open surgery

CROSS REFERENCES

None

BACKGROUND

AORTIC STENOSIS

Aortic stenosis is defined as narrowing of the aortic valve opening, resulting in obstruction of blood flow from the left ventricle into the ascending aorta. Progressive calcification of the aortic valve is the most common etiology in North America and Europe, while rheumatic fever is the most common etiology in developing countries.[1] Congenital abnormalities of the aortic valve, most commonly a bicuspid or unicuspid valve, increase the risk of aortic stenosis, but aortic stenosis can also occur in a normal aortic valve. Risk factors for calcification of a congenitally normal valve mirror those for atherosclerotic vascular disease, and include advanced age, male gender, smoking, hypertension, and hyperlipidemia.[1] Thus, the pathogenesis of calcific aortic stenosis is thought to be similar to that of atherosclerosis, i.e., deposition of atherogenic lipids and infiltration of inflammatory cells, followed by progressive calcification.

The natural history of aortic stenosis involves a long asymptomatic period, with slowly progressive narrowing of the valve until the stenosis reaches the severe stage. At this stage, symptoms of dyspnea, chest pain, and/or dizziness/syncope often occur, and the disorder progresses rapidly.

Aortic stenosis does not cause substantial morbidity or mortality when the disease is mild or moderate in severity. By the time it becomes severe, there is an untreated mortality rate of approximately 50% within two years.[2] Open surgical replacement of the diseased valve with a bioprosthetic or mechanical valve is an effective treatment for reversing aortic stenosis, and artificial valves have demonstrated good durability for up to 20 years.[2] However, these benefits are accompanied by perioperative mortality of approximately 3% to 4% and substantial morbidity,[2] both of which increase with advancing age.

Many patients with severe, symptomatic aortic stenosis are poor operative candidates. Approximately 30% of patients presenting with severe aortic stenosis do not undergo open surgery due to factors such as advanced age, advanced left ventricular dysfunction, or multiple medical comorbidities.[3] For patients who are not surgical candidates, medical therapy can partially alleviate the symptoms of aortic stenosis but does not affect the underlying disease progression. Percutaneous balloon valvuloplasty can be performed, but this procedure has less than optimal outcomes.[4] Balloon valvuloplasty can improve symptoms and increase flow across the stenotic valve but is associated with high rates of complications such as stroke, myocardial infarction, and aortic regurgitation. Also, restenosis can occur rapidly, and there is no improvement in mortality.

Transcatheter Aortic Valve Implantation
Transcatheter aortic valve implantation (TAVI), also known as transcatheter aortic valve replacement (TAVR), has been developed in response to this unmet need and was originally intended as an alternative for patients for whom surgery was not an option due to prohibitive surgical risk or for patients at high-risk for open surgery. The procedure is performed percutaneously, most often through the transfemoral artery approach. It can also be done through the subclavian artery approach and transapically using mediastinoscopy. Balloon valvuloplasty is first performed to open the stenotic area. This is followed by passage of a bioprosthetic artificial valve across the native aortic valve. The valve is initially compressed to allow passage across the native valve and is then expanded and secured to the underlying aortic valve annulus. The procedure is performed on the beating heart without cardiopulmonary bypass.

REGULATORY STATUS

Multiple manufacturers have transcatheter aortic valve devices with FDA approval:

- Edwards SAPIEN Transcatheter Heart Valve System™ (Edwards Lifesciences)
 - Edwards SAPIEN™ Transcatheter Heart Valve, Model 9000TFX
 - Edwards SAPIEN XT Transcatheter Heart Valve (model 9300TFX) and accessories
 - SAPIEN 3 Ultra THV System, a design iteration
 Note: In August 2019, FDA issued a recall for the Edwards SAPIEN 3 Ultra Transcatheter Heart Valve System (Recall event ID: 83293) due to "reports of burst balloons which have resulted in significant difficulty retrieving the device into the sheath and withdrawing the system from the patient during procedures".

- Medtronic CoreValve System™ (Medtronic CoreValve)
 - Medtronic CoreValve Evolut R System™ (design iteration for valve and accessories)
 - Medtronic CoreValve Evolut PRO System™ (design iteration for valve and accessories, includes porcine pericardial tissue wrap)
 - Medtronic CoreValve Evolut PRO+ System™ (design iteration)

- LOTUS Edge™ Valve System (Boston Scientific)
 Note: In January 2021, Boston Scientific Corporation announced a global, voluntary recall of all unused inventory of the LOTUS Edge™ Valve System due to complexities associated with the product delivery system.[5] There are no safety concerns for patents who have the LOTUS Edge™ Valve System currently implanted. Boston Scientific has chosen to retire the entire LOTUS product platform immediately rather than develop and reintroduce an enhanced delivery system. All related commercial, clinical, research and development, and manufacturing activities will cease.

- Portico™ with FlexNav™ (Abbott Medical)

Other transcatheter aortic valve systems are under development. The following repositionable valves are under investigation:

- JenaValve™ (JenaValve Technology); designed for transapical placement

EVIDENCE SUMMARY
TAVI OUTCOMES IN PATIENTS AT PROHIBITIVE RISK FOR OPEN SURGERY

Systematic Reviews

Systematic reviews assessing whether TAVI improves outcomes for patients who are not suitable candidates for open surgery consist of summaries of case series. A systematic review sponsored by the Agency for Healthcare Research and Quality (2010, archived) evaluated 84 publications (total n=2,375 patients). Implantation was successful in 94% of patients overall, with higher success rates reported in more recent publications. The aggregate 30-day survival was 89% across all studies. Adverse event rates were reported in the larger case series, with an estimated 30-day rate of major cardiovascular adverse event and stroke of 8%.

A systematic review by Figulla (2011) included studies that enrolled symptomatic patients with severe aortic stenosis who had a mean age of 75 years or older, reported on 10 or more patients, and had a follow-up duration of 12 months or more. Twelve studies met these criteria and were compared with a group of 11 studies that treated severe aortic stenosis with nonsurgical therapy. The procedural success in these studies ranged from 86% to 100%, and the 30-day mortality ranged from 5.3% to 23%. The combined mean survival rate at one year was 75.9% (95% confidence interval [CI] 73.3% to 78.4%). This one-year survival rate compared favorably with medical therapy, which was estimated to be 62.4% (95% CI 59.3% to 65.5%).

Randomized Controlled Trials

SAPIEN and SAPIEN XT

The Placement of AoRTic TraNscathetER Valve Trial Edwards SAPIEN Transcatheter Heart Valve (PARTNER) randomized controlled trial (RCT) was a pivotal multicenter trial of TAVI performed in the United States, Canada, and Germany, using the SAPIEN™ system. Leon (2010) reported on trial results for patients with severe aortic stenosis who were not candidates for open surgery, referred to as the PARTNER B trial. To be classified as unsuitable for open surgery, patients had to have a predicted probability of 50% or higher for death or a serious irreversible condition at 30 days postsurgery. This probability was determined by two surgeon investigators using clinical judgment and the Society of Thoracic Surgery (STS) Risk Score. The executive committee of the PARTNER trial reviewed all patient selection decisions and approved the classification of patients as unsuitable for surgery. A total of 3,105 patients were screened for aortic valve surgery, and 12% of them were included in the cohort of patients deemed unsuitable for surgery.

In the trial, 358 patients were randomized to TAVI or usual care. TAVI was performed by the transfemoral approach under general anesthesia. Standard therapy was determined by treating clinicians. In most cases (83.8%), standard treatment included balloon valvuloplasty of the aortic valve. A small number of patients (6.7%) underwent open surgical valve replacement, despite the high risk, and another 2.2% of patients underwent TAVI at a center outside the United States not participating in the trial. The primary outcome was death from any cause during the trial (median follow-up 1.6 years). A coprimary endpoint was the composite of time to death from any cause or time to repeat hospitalization related to aortic stenosis or TAVI. Secondary endpoints were cardiovascular mortality, New York Heart Association (NYHA) functional class, the rates of hospitalizations due to aortic stenosis or TAVI, the six-minute walk test (6MWT), valve performance as measured by echocardiography,
and procedural complications (e.g., myocardial infarction [MI], stroke, acute kidney injury [AKI], vascular complications, bleeding).

The mean age of enrolled patients was 83.2 years. Some baseline imbalances in the patient population indicated that the standard therapy group might have had a higher severity of illness. Standardized scores of surgical risks were higher in the standard therapy group. The logistic EuroSCORE was significantly higher in the standard therapy group than in the TAVI group (30.4 vs. 26.4, p=0.04), and the STS score was numerically higher but was not statistically significant (12.1 vs. 11.2, respectively, p=0.14). Significantly more patients in the standard therapy group had chronic obstructive pulmonary disease (52.5% vs. 41.3%, p=0.04) and atrial fibrillation (48.8% vs. 32.9%, p=0.04), and there was a nonsignificant trend for more patients in the standard therapy group having a lower ejection fraction (51.1% vs. 53.9%) and frailty, as determined by prespecified criteria (28.0% vs. 18.1%), all respectively.

Death from any cause at one year after enrollment was lower for the TAVI group (30.7% vs. 49.7%, p<0.001). This represents a 19% absolute risk reduction, a 38.2% relative risk (RR) reduction, and a number needed to treat of 5.3 to prevent one death over a one-year follow-up. Most secondary outcomes also favored the TAVI group. Cardiovascular death was lower in the TAVI group (19.6% vs. 44.1%, p<0.001). The composite of all-cause mortality and repeat hospitalizations was reached by 42.5% of the patients in the TAVI group compared with 70.4% in the standard therapy group. Symptoms and functional status were also superior in the TAVI group. The percentage of patients in NYHA class I or II at one year was higher for the TAVI group (74.8% vs. 42.0%, p<0.001), and there was a significant improvement in the 6MWT for the TAVI group but not for the standard therapy group (between-group comparisons not reported). Subgroup analysis did not report any significant differences in outcomes according to clinical and demographic factors.

Complication rates were higher for the TAVI group. Stroke or transient ischemic attack (TIA) at one year was more than twice as frequent for the TAVI group (10.6% vs. 4.5%, p=0.04). Major bleeding and vascular complications occurred in a substantial percentage of patients undergoing TAVI (22.3% vs. 11.2%, p=0.007) and were significantly higher than in the standard therapy group (32.4% vs. 7.3%, p<0.001).

Quality of life (QoL) outcomes from this trial were reported by Reynolds (2011), and were evaluated using the Kansas City Cardiomyopathy Questionnaire (KCCQ) summary score, the 12-Item Short-Form Health Survey (SF-12), and the EuroQoL (EQ-5D).[9] The number of participants who completed the QoL measures was not clearly reported; estimates from graphical representation show that between 149 and 170 patients in the TAVI group and 138 and 157 patients in the medical therapy group completed baseline QoL measures. At follow-up time points of 30 days, six months, and 12 months, change in the QoL scores was greater for the TAVI group. At 30 days, the mean difference in the KCCQ score was 13.3 points (95% CI 7.6 to 19.0, p<0.001). This mean difference increased at later time points to 20.8 points (95% CI 14.7 to 27.0, p<0.001) at six months and to 26.0 points (95% CI 18.7 to 33.3, p<0.001) at 12 months. Changes in the SF-12 and EQ-5D measures showed similar patterns.

Two-year outcomes from the PARTNER trial were reported by Makkar (2012).[10] Mortality at two years was 43.3% in the TAVI group compared with 68.0% in the medical therapy group (hazard ratio [HR] 0.58, 95% CI 0.36 to 0.92, p=0.02). Cardiovascular mortality was also lower with TAVI (31.0%) than with medical therapy (62.4%, p<0.001). The rate of hospitalization over the two-year period was lower with TAVI (35.0%) than with medical therapy (72.5%, p<0.001).
Svensson (2014) reported detailed mortality outcomes for both arms of the PARTNER trial: the PARTNER B RCT (previously described), which compared surgical repair with TAVI in prohibitive surgical risk patients, and the PARTNER A RCT, which compared surgical repair with TAVI in high surgical risk patients (described next). For the 358 patients considered inoperable and enrolled in the PARTNER B trial, 237 patients had died at last follow-up. Those randomized to standard therapy exhibited an early peak in mortality that was higher than those randomized to TAVI, and that persisted beyond six months. Compared with standard therapy, the estimated net lifetime benefit added by transfemoral TAVI was 0.50 years (90% CI 0.30 to 0.67).

Kapadia (2014) reported on three-year outcomes for 358 prohibitive-risk patients randomized to standard therapy or TAVI in the PARTNER trial, along with all outcomes (early and long-term) for randomized inoperable PARTNER patients, including 91 subjects in the randomized PARTNER continued-access study. Analysis of the pooled randomized patients was anticipated in the study protocol. At the three-year follow-up for the pivotal trial subjects, all-cause mortality was 54.1% in the TAVI group and 80.9% in the standard therapy group (HR 0.53, 95% CI 0.41 to 0.68, p<0.001). The incidence of stroke was higher in the TAVI group (15.7%) than in the standard therapy group at three years (5.5%, HR 3.81, 95% CI 1.26 to 6.26, p=0.012). However, at three years, the incidence of the composite of death or stroke was significantly lower in the TAVI group (57.4% vs. 80.9%, HR 0.60, 95% CI 0.46 to 0.77, p<0.001). Survivors at three years who had undergone TAVI were more likely to have NYHA class I or II symptoms than those who had received standard therapy. In the pooled sample, at the two- and three-year follow-ups, mortality was lower for patients who had undergone TAVI than in those who had standard therapy (at two years: 44.8% vs. 64.3%, at three years: 54.9% vs. 78.0%, all p<0.001).

Webb (2015) reported on a multicenter RCT comparing a newer-generation SAPIEN XT system with the original SAPIEN system in 560 patients with severe, symptomatic aortic stenosis considered at prohibitive risk for open surgery. The trial used a noninferiority design; for its primary endpoint, a composite of all-cause mortality, major stroke, and rehospitalization at one year in the intention-to-treat population, the RR between the SAPIEN and SAPIEN XT groups was 0.99 (p<0.002), which met the criteria for noninferiority.

Kapadia (2019) reported an analysis of stroke risk and its association with QoL after surgical aortic valve replacement (SAVR) versus TAVR from a propensity-matched study of 1,204 pairs of patients in the PARTNER trials. The analysis focused only on as-treated SAVR and transfemoral TAVR. The incidence of stroke by 30 days was 5.1% in SAVR versus 3.7% in TAVR; incidence of 30-day major stroke was 3.9% versus 2.2% (p=0.018). In both groups, risk of stroke peaked in the first post-procedure day but then remained low out to 48 months. Major stroke was associated with a decline in QoL as measured by the KCCQ at one year.

Nonrandomized Studies

Many case series of TAVI have been published in the last 10 years, most of which have included patients that were not candidates for open surgery. However, the selection process for TAVI has largely been subjective, with the expert opinion of the surgeons and/or cardiologists as the main factor determining suitability for open surgery. As a result, there may be overlap in these series with patients who are surgical candidates, but the distinction cannot be gleaned easily from the reported studies.
Some of the larger and/or prospective case series are discussed next, including the series reporting on the pivotal trials leading to devices’ approvals.

CoreValve Extreme Risk Study

Popma (2014) published results of the CoreValve Extreme Risk Study pivotal trial, which was designed to evaluate the CoreValve self-expanding valve among patients with severe aortic stenosis who were considered to be at extreme risk (NYHA class ≥II) for SAVR.[15] A patient was judged to be at extreme risk if two cardiac surgeons and one interventional cardiologist at the clinical site estimated a 50% or greater risk for mortality or irreversible morbidity at 30 days with surgical repair. The study’s primary endpoint was the 12-month rate of all-cause mortality or major stroke in the “attempted implant” population. This population included all patients who underwent a documented valve implant via an iliofemoral approach. The study defined an objective performance goal of 43% for all-cause mortality or major stroke at 12 months postprocedure. This goal was based on two sources: (1) a weighted meta-analysis of seven balloon aortic valvuloplasty studies, which yielded a rate of 12-month all-cause mortality or major stroke of 42.7% (95% CI 34.0% to 51.4%); and (2) an adjusted estimate based on the lower 95% confidence bound of 43% in the standard therapy arm of inoperable patients in the PARTNER trial.

There were 489 patients included in the attempted implant analysis population of 506 patients recruited (11 of whom exited the study before treatment, six of whom did not complete the procedure with iliofemoral access). The Kaplan-Meier estimate of the primary endpoint (all-cause mortality or major stroke) was 26.0% (upper bound of 95% CI 29.9%), which was lower than the prespecified performance goal of 43% (p<0.001). The rate of all-cause mortality at one year following enrollment was 24.3%, while the rate of major stroke at 12 months was 4.3%. These rates are comparable or better than those seen in the TAVI arm of the PARTNER pivotal trial, although patients in the PARTNER pivotal trial had a higher baseline STS score (12.1% in the PARTNER trial vs. 10.3% in the CoreValve Extreme Risk trial).

Two-year results from the CoreValve study were reported by Yakubov (2015).[16] The Kaplan-Meier estimate of all-cause mortality or major stroke was 38.0% (upper bound of 95% CI 42.6%). The incremental rates between years one and two were 12.3% for all-cause mortality, 7.9% for cardiovascular mortality, and 0.8% for stroke. Baron (2017) reported on three-year results of the QoL data.[17] The QoL improvements following TAVR were largely sustained through three years with clinically meaningful (≥10 points) improvements in the KCCQ overall summary score at three years observed in greater than 83.0%. At five years of follow-up, the Kaplan-Meier rate of death or major stroke was 72.6%, and the KCCQ remained improved compared with pre-TAVI scores.[18]

Osnabrugge (2015) reported on health status outcomes for the 471 patients who underwent TAVI via the transfemoral approach.[19] On average, general and disease-specific QoL scores both showed substantial improvements after TAVI. However, 39% of patients had a poor outcome at six months (22% death, 16% very poor QOL, 1.4% QoL declined).

Reardon (2014) reported on outcomes for the group of patients enrolled in the CoreValve study who received the device through an approach other than the iliofemoral.[20] Inclusion criteria and procedures were the same as for the primary CoreValve Extreme Risk Trial. One hundred fifty patients with prohibitive iliofemoral anatomy were included and received the CoreValve device through an open surgical approach via the subclavian artery (n=70) or a direct aortic approach via a median hemisternotomy or right thoracotomy (n=80). Included
patients were elderly (mean age 81.3 years) and significantly symptomatic, with 92% of subjects having NYHA class III or IV heart disease. At 30 days postprocedure, 23 (15.3%) patients met the primary endpoint of all-cause mortality or major stroke; of the 23 patients, 17 (11.3%) died, and 11 (7.5%) experienced a major stroke. At 12 months postprocedure, 59 (39.4%) patients met the primary endpoint; of those, 54 (36%) died, and 13 (9.1%) experienced a major stroke. The 30-day mortality of 11.3% was higher than that reported in the studies of TAVI using a transfemoral or an iliofemoral approach (PARTNER B RCT and the CoreValve Extreme Risk Pivotal Trial) but similar to the 30-day mortality reported by the patients treated with a transapical approach (PARTNER A trial).

Post-approval Registries

Mack (2013) reported on outcomes after TAVI from 224 hospitals participating in the Edwards SAPIEN device post-FDA approval registry.[21] From November 2011 to May 2013, the registry included 7,710 patients who underwent TAVI placement, of whom 1,559 (20%) patients were considered inoperable and 6,151 (80%) were considered high-risk but operable. Of those considered inoperable, 1,139 underwent device placement via transfemoral access, while 420 underwent device placement via nontransfemoral access. In-hospital mortality was 5.4% and 7.1% for the inoperable patients who underwent TAVI via transfemoral and nontransfemoral access, respectively. Thirty-day clinical outcomes were reported for 694 inoperable patients; of those, 30-day mortality was 6.7% and 12.6% for patients who underwent TAVI via transfemoral and nontransfemoral access, respectively.

Additional Case Series

The prospective nonrandomized Treatment of Aortic Stenosis With a Self-Expanding Transcatheter Valve: the International Multi-Centre ADVANCE study had central adjudication of endpoints and adverse events to evaluate the CoreValve implants in individuals with severe symptomatic aortic stenosis who were considered inoperable or at higher risk for SAVR.[22] The study enrolled 1,015 patients, of whom 996 were implanted, most (88.4%) by the iliofemoral approach, with 9.5% and 2.1% by the subclavian and direct aortic approaches, respectively. For the study’s primary endpoint of major adverse cardiac and cerebrovascular events (MACCE; a composite of all-cause mortality, MI, stroke, or reintervention), rates were 8.0% (95% CI 6.3% to 9.7%) at 30 days and 21.2% (95% CI 18.4% to 24.1%) at 12 months. The all-cause mortality rate was 4.5% (95% CI 3.2% to 5.8%) at 30 days and 17.9% (95% CI 15.2% to 20.5%) at 12 months. Overall, strokes occurred in 3.0% (95% CI 2.0% to 4.1%) at 30 days and in 4.5% (95% CI 2.9% to 6.1%) at 12 months. A new permanent pacemaker was implanted in 26.3% (95% CI 23.5% to 29.1%) and in 29.2% (95% CI 25.6% to 32.7%) of patients at 30-day and 12-month follow-ups, respectively. Patients were grouped into three categories of surgical risk based on logistic EuroSCORE values (≤10%, >10% to ≤20%, and >20%). Thirty-day survival did not differ significantly across risk groups, but 12-month rates of MACCE, all-cause mortality, cardiovascular mortality, and death from any cause or major stroke were higher for higher surgical risk patients.

The two largest series included in the Agency for Healthcare Research and Quality review[6] (described previously) reported on 646 patients treated with the CoreValve[23] and 339 patients treated with the SAPIEN valve.[24] The CoreValve study by Piazza (2008) was notable in that it used more objective patient selection criteria than is common in this literature.[23] Their criteria for eligibility included: (1) logistic EuroSCORE of 15% or higher, (2) age of 75 or older, or (3) age of 65 or older with liver cirrhosis, pulmonary insufficiency, pulmonary hypertension,
previous cardiac surgery, porcelain aorta, recurrent pulmonary emboli, right ventricular insufficiency, previous chest burns, or radiation precluding open surgery, or body mass index of 18 kg/m² or less. Procedural success was 97%, and 30-day survival was 92%. The 30-day combined rate of death, MI, or stroke was 9.3%. The Canadian study by Rodes-Cabau (2010) used the SAPIEN valve.[24] This study had subjective inclusion criteria, relying on the judgment of the participating surgeons to determine eligibility for TAVI. The procedural success rate was 93.3%, and the 30-day mortality was 10.4%. The authors also reported a mortality rate of 22.1% at a median follow-up of eight months.

Additional series have described experiences with TAVI in European centers. Zahn (2011), in a large case series from Germany, reported on 697 patients treated with the CoreValve system.[25] Procedural success was 98.4%, and 30-day mortality was 12.4%. Another large case series from Italy included 663 patients treated with the CoreValve device.[26] Procedural success was 98%, and mortality at one year was 15%.

Section Summary: TAVI Outcomes in Patients at Prohibitive Risk for Open Surgery

Numerous case series have demonstrated the feasibility and short-term efficacy for TAVI in patients who are not surgical candidates. In the PARTNER B trial, there was a large decrease in all-cause mortality and cardiovascular mortality at one year for TAVI compared with standard therapy. Subsequent publications from this same trial reported that the mortality benefit was maintained at two years and that QoL was improved for the TAVI group. Baseline between-group differences were present, indicating that the TAVI group may have been healthier. While these differences are unlikely to account for the degree of mortality benefit reported, they may have resulted in an overestimation of the mortality benefit. The CoreValve Extreme Risk Study pivotal trial also demonstrated mortality rates much lower than the prespecified performance goal and comparable or better than those seen in the TAVI arm of the PARTNER pivotal trial.

The benefit in mortality was accompanied by an increased stroke risk as well as substantial increases in vascular complications and major bleeding. There is also uncertainty concerning the generalizability of these results because patient selection was primarily determined by the cardiovascular surgeons and/or cardiologists. It is not known whether this type of decision making is reliable across the range of practicing clinicians.

TAVI OUTCOMES IN PATIENTS AT HIGH-RISK FOR OPEN SURGERY

Systematic Reviews

A meta-analysis of four RCTs was published by Panoulas (2018) to determine whether sex differences had any impact on mortality rates for TAVI and SAVR.[27] The four RCTs comprised of 3,758 patients (2,052 men, 1,706 women); all patients had severe aortic stenosis. The study revealed that among women undergoing TAVI, a significantly lower mortality rate was found than in women undergoing SAVR at the one-year mark; in fact, women undergoing TAVI were found to have a 31% lower mortality rate than women undergoing SAVR, again at the one-year mark (odds ratio [OR] 0.68, 95% CI 0.50 to 0.94). There was no statistical difference in mortality in men undergoing TAVR versus men undergoing SAVR. An updated meta-analysis by Dagan (2021) identified eight RCTs including 8,040 patients (41.4% female).[28] Similar results were found to the 2018 analysis with lower one-year mortality and improved safety with TAVI compared with SAVR in women.
Villablanca (2016) reported on a meta-analysis and meta-regression of long-term outcomes (more than one year) of TAVI compared with SAVR for severe aortic stenosis. Trial methods were described in the meta-analysis protocol, which was registered with PROSPERO. The review was limited to studies comparing TAVI with surgical repair, with subgroup analyses for high- and intermediate-risk patients. Overall, four RCTs (n=3,806 patients) and 46 observational studies (n=40,441 patients) were included, with a median follow-up of 21.4 months. Two of the RCTs were conducted in high-risk patients and are described in detail below (PARTNER 1 and CoreValve High Risk Trial). Results from the subgroup analyses focused on high-risk patients are shown in Table 1.

Table 1. TAVI Versus Surgical Repair in High-Risk Patients

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>TAVI(^a)</th>
<th>Surgical Repair(^a)</th>
<th>RR for TAVI vs. Surgical Repair (95% CI)</th>
<th>(I^2), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day postprocedure mortality</td>
<td>508/8,552 (5.9%)</td>
<td>804/29,323 (2.7%)</td>
<td>1.02 (0.76 to 1.36)</td>
<td>72.3</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>3,625/8,803 (41.1%)</td>
<td>5,438/29,450 (18.6%)</td>
<td>1.16 (0.87 to 1.53)</td>
<td>96.6</td>
</tr>
<tr>
<td>Stroke incidence</td>
<td>191/4,293 (4.4%)</td>
<td>213/4,348 (4.9%)</td>
<td>0.79 (0.66 to 0.95)</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial infarction incidence</td>
<td>57/2,820 (2.0%)</td>
<td>59/2,746 (2.1%)</td>
<td>0.91 (0.64 to 1.29)</td>
<td>21.5</td>
</tr>
<tr>
<td>Vascular complication incidence</td>
<td>203/2,489 (8.2%)</td>
<td>35/2,682 (1.3%)</td>
<td>5.5 (2.42 to 12.4)</td>
<td>67.5</td>
</tr>
<tr>
<td>Residual regurgitation incidence</td>
<td>268/2,831 (9.5%)</td>
<td>36/2,823 (1.3%)</td>
<td>6.3 (4.55 to 8.71)</td>
<td>0</td>
</tr>
<tr>
<td>Requirement for permanent pacemaker incidence</td>
<td>527/3,449 (15.3%)</td>
<td>236/3,653 (6.4%)</td>
<td>1.68 (0.94 to 3.00)</td>
<td>83.2</td>
</tr>
<tr>
<td>New-onset AF incidence</td>
<td>165/1,192 (13.8%)</td>
<td>376/1,281 (29.4%)</td>
<td>0.38 (0.26 to 0.55)</td>
<td>64.6</td>
</tr>
<tr>
<td>Major bleeding incidence</td>
<td>321/2,074 (15.4%)</td>
<td>416/2,298 (18.1%)</td>
<td>0.73 (0.65 to 0.83)</td>
<td>24.2</td>
</tr>
<tr>
<td>Acute kidney injury incidence</td>
<td>294/3,446 (8.5%)</td>
<td>396/3,528 (11.2%)</td>
<td>0.73 (0.53 to 1.01)</td>
<td>68.4</td>
</tr>
</tbody>
</table>

Adapted from Villablanca (2016). AF: atrial fibrillation; CI: confidence interval; RR: relative risk; TAVI: transcatheter aortic valve implantation. Values are n/N (%).

Earlier systematic reviews focused largely on nonrandomized comparative studies because only one RCT had been published at the time of the reviews (the PARTNER trial). Panchal (2013) reported on results from a meta-analysis of 17 studies that included 4,659 patients: 2,267 treated with TAVI and 2,392 treated with open surgery. Patients in the TAVI group were more severely ill, as evidenced by a EuroSCORE for predicted 30-day mortality, which was higher by a mean of 3.7 points compared with patients undergoing open surgery. On combined analysis, there were no differences between groups for 30-day mortality, mortality at longest follow-up, cardiovascular mortality, MI, stroke, or TIA. Patients in the open surgery group had a higher incidence of major bleeding complications (RR 1.42, 95% CI 1.20 to 1.67, p<0.001). In a similar meta-analysis (2013) that included 17 studies reporting on 4,873 patients, there were no differences between TAVI and open surgery in early mortality (OR 0.92, 95% CI 0.70 to 1.2) or mid-term mortality, defined as between three months and three years (HR 0.99, 95% CI 0.83 to 1.2).

Randomized Controlled Trials
SAPIEN PARTNER A Trial

Smith (2011) published results from the cohort of patients in the PARTNER trial of the SAPIEN valve who were at high-risk for open surgery, but still suitable candidates. The inclusion and exclusion criteria were generally the same as those for the prior cohort, except that these patients were classified as high-risk for surgery rather than unsuitable for surgery. For high-risk, patients had to have a predicted perioperative mortality of 15% or higher, as determined by a cardiac surgeon and cardiologist using clinical judgment. An STS Risk Score of 10 or higher was included as a guide for high-risk, but an STS Risk Score threshold was not a required criterion for enrollment. The executive committee of the PARTNER trial reviewed all patient selection decisions and approved the classification of patients as high-risk for surgery. A total of 3,105 patients were screened for aortic valve surgery, and 22.5% of them were included in the cohort of patients deemed high-risk for surgery.

There were 699 patients randomized to TAVI or surgical aortic valve repair. The primary hypothesis was that TAVI was noninferior to open AVR, using a one-sided noninferiority boundary of 7.5% absolute difference in mortality at one year. Patients were first evaluated to determine if they were eligible for TAVI via the transfemoral approach. Four hundred ninety-two patients were eligible for transfemoral TAVI; the remaining 207 were categorized as the transapical placement cohort. Within each cohort (transfemoral and transapical), patients were randomized to surgical aortic valve repair (n=351) or TAVI (n=348).

The primary outcome was death from any cause at one-year follow-up. A second powered endpoint was noninferiority at one year for patients undergoing TAVI by the transfemoral approach. Secondary endpoints were cardiovascular mortality, NYHA functional class, rehospitalizations, 6MWT, valve performance as measured by echocardiography, and procedural complications (MI, stroke, AKI, vascular complications, bleeding). Mean age of enrolled patients was 83.6 years in the TAVI group and 84.5 years in the open AVR group. Other baseline demographic and clinical characteristics were generally well-balanced, except for a trend toward an increased percentage of patients in the TAVI group with a creatinine level greater than 2.0 mg/dL (11.1% vs. 7.0%, p=0.06).

Death from any cause at one year following enrollment was 24.2% for the TAVI group and 26.8% for the open AVR group (between-group difference, p=0.44). The upper limit of the 95% CI for the between-group difference was a 3.0% excess mortality in the TAVI group, which was well within the noninferiority boundary of 7.5%. Thus, the criterion of noninferiority was met (p=0.001). For the subgroup of patients who underwent TAVI by the transfemoral approach, results were similar, with 22.2% mortality in the TAVI group and 26.4% mortality in the open AVR group (p=0.002 for noninferiority). The secondary outcomes of cardiovascular mortality (14.3% vs. 13.0%, p=0.63) and rehospitalizations (18.2% vs. 15.5%, p=0.38) did not differ significantly between the TAVI and the open AVR groups, respectively. The percentage of patients in NYHA class I or II at one year was similar between groups at one year, as was an improvement on the 6MWT. On subgroup analysis, there was a significant effect for sex, with women deriving greater benefit than men (p=0.045), and a significant effect for prior coronary artery bypass graft, with patients who had not had prior coronary artery bypass graft deriving greater benefit in the TAVI group.

Certain complication rates showed significant differences between groups. Stroke or TIA at one year was higher for the TAVI group (8.3% vs. 4.3%, respectively, p=0.04). Vascular complications occurred in 18.0% of patients undergoing TAVI compared with 4.8% in the open
AVR group (p=0.01), and major vascular complications were also higher in the TAVI group (11.3% vs. 3.5%, p=0.01). On the other hand, major bleeding was more common in the open group (25.7%) compared with the TAVI group (14.7%, p=0.01).

Five-year results from the PARTNER trial were reported by Mack (2015). At five-year follow-up, in the intention-to-treat population, the risk of death from any cause did not differ significantly between patients treated with TAVI (67.8%) and those treated with surgical repair (62.4%, HR 1.04, 95% CI 0.86 to 1.24, p=0.76). As reported in the original PARTNER trial findings, moderate or severe aortic regurgitation — primarily paravalvular regurgitation — was more common among TAVI-treated patients. Among TAVI-treated patients, the presence of aortic regurgitation was associated with increased five-year mortality risk (72.4% for moderate or severe aortic regurgitation vs. 56.6% for mild aortic regurgitation or less, p=0.003).

Reynolds (2012) published QOL results from the PARTNER A trial. QOL outcomes were evaluated using the KCCQ summary score, the SF-12, and the EQ-5D. Of 699 patients in the trial, 628 completed baseline QOL measures. Patients in both the TAVI group and the SAVR group demonstrated significant improvements in all QOL measures over the 12 months following treatment. The TAVI group had superior improvement at one month on the KCCQ (mean difference 9.9, 95% CI 4.9 to 14.9, p<0.001), but this difference was no longer present at 6 or 12 months. A similar pattern of results was reported for the SF-12 and EQ-5D measures.

Genereux (2014) published a follow-up study from the PARTNER A trial reporting on bleeding complications. Using an as-treated approach, this analysis included 313 patients treated with surgical repair, 240 patients treated with transfemoral TAVI, and 104 patients treated with transapical TAVI. Seventy-one (22.7%) patients treated with surgery had major bleeding complications within 30 days of the procedure, compared with 27 (11.3%) of those treated with transfemoral TAVI and 9 (8.8%) of those treated with transapical TAVI (p<0.001).

U.S. CoreValve High-Risk Study

Adams (2014) published results of the U.S. CoreValve High Risk Study. This RCT compared SAVR with TAVI using the CoreValve device in patients who had severe aortic stenosis and were considered at increased risk of death during surgery. The study randomized 795 patients in a 1:1 ratio to TAVI or open AVR. Patients were considered to be at “increased surgical risk” if two cardiac surgeons and one interventional cardiologist estimated that the risk of death within 30 days of surgery was 15% or more and that the risk of death or irreversible complications within 30 days after surgery was less than 50%. The primary analysis was based on the as-treated population, which included all patients who underwent attempted implantation. For the study’s primary outcome, the rate of death from any cause at one year was lower in the TAVI group (14.2%) than in the surgical group (19.1%, absolute risk reduction, 4.9%, upper boundary of 95% CI -0.4%, which was less than the predefined noninferiority margin of 7.5%-point difference between groups, noninferiority, p<0.001, superiority, p=0.04). Major vascular complications and permanent pacemaker implantations were significantly more frequent in the TAVI group than in the surgical group: at 30 days, major vascular complications occurred in 5.9% of the TAVI group compared with 1.7% of the surgical group (p=0.003), while permanent pacemaker implantation was required in 19.8% of the TAVI group compared with 7.1% of the surgical group (p<0.001). In contrast to the PARTNER trial, the TAVI group did not have a higher rate of any stroke at one year postprocedure (8.8%) than the surgical group (12.6%, p=0.10).
Two-year follow-up results from the U.S. CoreValve High Risk Study were published by Reardon (2015). At that point, the mortality benefits seen with TAVI were maintained.

A three-year follow-up analysis was reported by Deeb (2016), which found sustained improvements in the TAVI-treated group for all-cause mortality, stroke, and MACCE compared with the surgical group. At three years, 37.3% (n=142) of TAVI-treated patients experienced all-cause mortality or stroke, which was significantly less than the 46.7% (n=160) of surgical patients for the same outcome (p=0.006). In the TAVI group, MACCE was observed in 40.2% (n=153) of patients; in the surgical group, MACCE occurred in 47.9% (n=164) of patients (p=0.025). Other outcomes that were improved in the TAVI group compared with surgery were life-threatening or disabling bleeding, AKI, aortic valve area, and mean aortic valve gradient. More TAVI-treated patients required implantation of a pacemaker (28.0%) than did surgical patients (14.5%, p<0.001); also, more patients in the TAVI group (6.8%) had moderate atrial regurgitation than in the surgery group (0.0%) at three years. The authors noted the improvement in mean aortic valve gradient for both cohorts (TAVR 7.62 mmHg vs. SAVR 11.40 mmHg, p<0.001).

Additional analyses of the U.S. CoreValve High Risk Study have focused on the impact of patient and prosthesis mismatch and health status.

Conte (2017) analyzed both periprocedural and early complications (0-3 days and 4-30 days postoperative, respectively) in patients from the U.S. CoreValve High Risk Study. There were no statistically significant differences in all-cause mortality, stroke, MI, or major infection in either the periprocedural period (0-3 days) or between 4 and 30 days postprocedure. Major vascular complication rate within three days was significantly higher with TAVR (6.4% vs. 1.4%, p=0.003). Life-threatening or disabling bleeding (12.0% vs. 34.0%, p<0.001), encephalopathy (7.2% vs. 12.3%, p=0.02), atrial fibrillation (8.4% vs. 18.7%, p<0.001), and AKI (6.1% vs. 15.0%, p<0.001) were significantly higher with SAVR.

Gleason (2019) reported five-year follow-up of the CoreValve High Risk Trial and estimated similar five-year survival (55.3% for TAVR vs. 55.4% for SAVR) and stroke rates (12.3% for TAVR versus 13.2% for SAVR) in high-risk patients. Valve reintervention were uncommon; freedom from valve reintervention was 97.0% for TAVR and 98.9% for SAVR.

REPRISE III

The Repositionable Percutaneous Replacement of Stenotic Aortic Valve Through Implantation of Lotus Valve System—Randomized Clinical Evaluation (REPRISE III) trial was an RCT comparing two different TAVR platforms: the mechanically expanded Lotus valve (which was discontinued in January 2021) and self-expanding CoreValve. Thirty-day and one-year results were reported in the Summary of Safety and Effectiveness compiled by the FDA and two-year results were published by Reardon (2019). The trial enrolled 912 patients (n=607 in Lotus, n=305 in CoreValve) with high/extreme risk and severe, symptomatic aortic stenosis between September 2014, and December 2015 at 55 centers in North America, Europe, and Australia. An early-generation CoreValve device was used. Follow-up is scheduled to continue for up to five years. Patients were required to have an STS-prom risk score of ≥8% or another indicator of high or extreme risk. The mean age was 83 years and the mean STS-PROM score was 6.8%. The primary safety outcome was a composite of all-cause mortality, stroke, life-threatening and major bleeding events, stage 2 or 3 AKI, or major vascular complications at 30 days. The primary effectiveness outcome was a composite of all-cause mortality, disabling stroke, or moderate or greater paravalvular aortic regurgitation at one year. At 30 days, the
incidence of the primary safety outcome was 20% versus 17% for Lotus versus CoreValve (risk difference [RD] 3.1%, 95% CI -2.3 to 8.5) and met the criteria for noninferiority. All of the individual components of the 30-day primary safety outcome were similar between the two groups. The incidence of the primary effectiveness outcome was 16% versus 26% in Lotus versus CoreValve (RD -10.2%, 95% CI -16.3 to 4.0) and met the criteria for noninferiority. At two years, all-cause death was 21% vs. 22.5% with Lotus versus CoreValve (HR 0.94, 95% CI 0.69 to 1.26) and all-cause mortality or disabling stroke was 23% vs. 27% with Lotus versus CoreValve (HR 0.81, 95% CI 0.61 to 1.07). Placement of a new permanent pacemaker was more common in the Lotus group (42% vs. 26%, HR 1.9, 95% CI 1.4 to 2.5). Valve thrombosis was also more common in the Lotus group (3% vs. 0%). Repeated procedures were more common in the CoreValve group (0.6% vs. 2.9%, HR 0.19, 95% CI 0.05 to 0.70), as was valve migration (0.0% vs. 0.7%) and embolization (0.0% vs. 2.0%).

PORTICO IDE

The Portico Re-sheathable Transcatheter Aortic Valve System US Investigational Device Exemption (PORTICO IDE) trial enrolled patients with severe aortic stenosis at high or extreme surgical risk.[45] Patients were randomized to a Portico valve (n=381) or another FDA-approved valve (n=369). The primary efficacy endpoint was a composite of all-cause mortality and stroke at one year, and the primary safety endpoint was a composite of all-cause mortality, disabling stroke, life-threatening bleeding, AKI, or major vascular complications. Overall, the mean age was 83 years with females comprising 52.7% of patients. Additional demographic characteristics were not reported. The primary efficacy endpoint at one year was similar between groups (14.8% in the Portico group vs. 13.4% with other valves, absolute difference 1.5%, 95% CI -3.6 to 6.5). For the composite safety endpoint at 30 days, the event rate was higher with the Portico valve (13.8% vs 9.6%, absolute difference 4.2%, 95% CI -0.4 to 8.8). At two years, the rates of death or disabling stroke were similar between groups.

Nonrandomized Studies

Since the publication of the pivotal RCTs and systematic reviews described previously, a number of nonrandomized studies have compared surgical with TAVR.[46-48] Given the availability of RCT evidence, these studies provide limited additional information on the efficacy of TAVI.

Section Summary: TAVI Outcomes in Patients at High-Risk for Open Surgery

The most direct evidence related to the use of TAVI compared to SAVR for aortic stenosis in patients who are at high but not prohibitive risk of surgery comes from two industry-sponsored RCTs. The PARTNER RCT in high-risk patients who were eligible for SAVR reported no differences between TAVI and open AVR in terms of mortality at one year and most major secondary outcomes. The noninferiority boundaries for this trial included an upper limit of 7.5% absolute increase in mortality. The reported mortality for the TAVI group was lower than that for the open group, although not significantly better. QoL was also similar at one year between the TAVI and AVR groups. Stroke and TIA were significantly more common for the TAVI group, occurring at a rate of almost two times that reported for open surgery. Other secondary outcomes were similar between groups, except for higher rates of vascular complications in the TAVI group and higher rates of major bleeding in the open surgery group. As in the first PARTNER cohort, there is concern about the generalizability of results because the patient selection process relied largely on the judgment of surgeons and cardiologists participating in the trial. The U.S. CoreValve High Risk Study reported that TAVI was noninferior to open
surgical repair. Although unlike the PARTNER A trial, stroke rates were not higher in patients who underwent TAVI, a requirement for permanent pacemaker was more common in the TAVI group. Follow-up analyses of the U.S. CoreValve High Risk Study showed sustained improvements in the TAVI group for the outcome of all-cause mortality and a number of secondary outcomes. The incidence of pacemaker implantation continued to be higher in TAVI-treated patients.

The Portico valve was compared with other FDA-approved valves. Although more safety events were noted at 30 days, the valves had comparable outcomes at two years.

TAVI OUTCOMES IN PATIENTS AT INTERMEDIATE RISK OR LOW RISK FOR OPEN SURGERY

Systematic Reviews

Several systematic reviews and meta-analyses were published in 2017 through 2020,\[49-62\] including many overlapping RCTs and observational studies.

In a Cochrane review, Kolkailah (2019) evaluated the literature on TAVI versus SAVR for severe aortic stenosis in patients with low surgical risk.\[63\] The review included four studies (n=2,818) and one ongoing study. Results revealed that there is probably little or no difference between TAVI and SAVR with regard to the following short-term outcomes: all-cause mortality (RR 0.69, 95% CI 0.33 to 1.44), stroke (RR 0.73, 95% CI 0.42 to 1.25), myocardial infarction (RR 0.82, 95% CI 0.42 to 1.58), and cardiac death (RR 0.71, 95% CI 0.32 to 1.56). TAVI may potentially reduce the risk of short-term hospitalization as well (RR 0.6, 95% CI 0.39 to 1.06) and result in an increased risk of permanent pacemaker implantation (RR 3.65, 95% CI 1.50 to 8.87). TAVI reduces the risk of atrial fibrillation (RR 0.21, 95% CI 0.15 to 0.3), AKI (RR 0.3, 95% CI 0.16 to 0.58), and bleeding (RR 0.31, 95% CI 0.16 to 0.62) compared to SAVR.

Garg (2017) published a systematic review and meta-analyses that included RCTs and prospective observational studies comparing TAVI with SAVR published between January 2000 and March 2017 including low-to-intermediate surgical risk patients with severe aortic stenosis.\[51\] Five RCTs (n=4,425 patients) were included and are discussed in the following section. The meta-analytic results pooling the RCTs are shown in Table 2.

Table 2. TAVI Versus Surgical Repair in Low- or Intermediate-Risk Patients

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>TAVI</th>
<th>Surgical Repair</th>
<th>RR for TAVI vs. Surgical Repair (95% CI)</th>
<th>p</th>
<th>I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day mortality</td>
<td>3.1</td>
<td>3.0</td>
<td>1.04 (0.73 to 1.47)</td>
<td>0.84</td>
<td>0</td>
</tr>
<tr>
<td>Stroke incidence</td>
<td>7.3</td>
<td>8.1</td>
<td>0.91 (0.74 to 1.11)</td>
<td>0.35</td>
<td>0</td>
</tr>
<tr>
<td>Acute kidney injury incidence</td>
<td>1.8</td>
<td>4.7</td>
<td>0.38 (0.26 to 0.54)</td>
<td><0.001</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial infarction incidence</td>
<td>3.1</td>
<td>3.1</td>
<td>1.00 (0.71 to 1.41)</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>Major vascular complication incidence</td>
<td>7.3</td>
<td>3.2</td>
<td>3.09 (1.51 to 6.35)</td>
<td>0.002</td>
<td>66</td>
</tr>
<tr>
<td>Requirement for permanent pacemaker incidence</td>
<td>20.0</td>
<td>7.9</td>
<td>3.10 (1.44 to 6.66)</td>
<td>0.004</td>
<td>92</td>
</tr>
</tbody>
</table>

Adapted from Garg (2017).\[51\]

Values are percent unless other noted.

CI: confidence interval; RR: relative risk; TAVI: transcatheter aortic valve implantation.

Zhou (2016) reported on a meta-analysis comparing TAVI with surgical repair in patients at low or intermediate risk of open surgery.\[64\] Seven studies were included: three RCTs (Nordic...
Aortic Intervention Trial [NOTION; 2015],[65] Transapical Transcatheter Aortic Valve Implantation vs. Surgical Aortic Valve Replacement in Operable Elderly Patients with Aortic Stenosis [STACCATO; 2012],[66] Leon [2016][67]) and four observational studies (total n=6,214 patients, 3,172 [51.0%] treated with TAVI). The main meta-analytic results are summarized in Table 3. Importantly, this review included a meta-analytic result for mortality at one year.

Table 3. TAVI Versus Surgical Repair in Low- or Intermediate-Risk Patients

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>TAVI</th>
<th>Surgical Repair</th>
<th>RR for TAVI vs. Surgical Repair (95% CI)</th>
<th>p</th>
<th>I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term postprocedure mortality</td>
<td>2.59</td>
<td>3.94</td>
<td>0.63 (0.37 to 1.08)</td>
<td>0.09</td>
<td>56</td>
</tr>
<tr>
<td>Short-term cardiovascular mortality</td>
<td>1.96</td>
<td>3.15</td>
<td>0.51 (0.23 to 1.15)</td>
<td>0.11</td>
<td>68</td>
</tr>
<tr>
<td>Acute kidney injury incidence</td>
<td>1.92</td>
<td>4.8</td>
<td>0.34 (0.17 to 0.67)</td>
<td>0.002</td>
<td>61</td>
</tr>
<tr>
<td>Stroke incidence</td>
<td>3.57</td>
<td>4.90</td>
<td>0.72 (0.56 to 0.92)</td>
<td>0.01</td>
<td>42</td>
</tr>
<tr>
<td>Myocardial infarction incidence</td>
<td>0.7</td>
<td>1.7</td>
<td>0.51 (0.23 to 0.69)</td>
<td><0.001</td>
<td>10</td>
</tr>
<tr>
<td>Major vascular complication incidence</td>
<td>7.2</td>
<td>3.6</td>
<td>3.54 (1.42 to 8.81)</td>
<td>0.006</td>
<td>86</td>
</tr>
<tr>
<td>Requirement for permanent pacemaker incidence</td>
<td>11.9</td>
<td>6.1</td>
<td>2.79 (1.49 to 5.23)</td>
<td>0.001</td>
<td>88</td>
</tr>
<tr>
<td>All-cause mortality (one year)</td>
<td>10.1</td>
<td>12.2</td>
<td>0.82 (0.58 to 1.16)</td>
<td>0.26</td>
<td>67</td>
</tr>
</tbody>
</table>

Adapted from Zhou (2016).[64]
Values are percent unless other noted.
CI: confidence interval; OR: odds ratio; TAVI: transcatheter aortic valve implantation.

Earlier systematic reviews came to similar conclusions.[68][69] Siemieniuk (2016) also reported on a systematic review and meta-analysis comparing TAVI with surgical repair in patients at low- or intermediate-risk of open surgery, with the aim of evaluating valve durability and need for reinterventions.[70]

Overall, the results suggest that for intermediate and low operative risk patients, periprocedural and short-term (one-year) mortality rates do not differ significantly between TAVI and open aortic valve repair. However, like the high- and prohibitive-risk populations, TAVI is associated with higher rates of major vascular complications, paravalvular regurgitation, and need for permanent pacemakers, but lower rates of major bleeding.

RANDOMIZED CONTROLLED TRIALS

Seven RCTs including patients with severe aortic stenosis who were at low and/or intermediate risk for open surgery have been published. The RCTs are summarized in Tables 4 and 5 and the following paragraphs.

Table 4. Characteristics of RCTs Comparing TAVI With SAVR in Patients at Low and Intermediate Surgical Risk

<table>
<thead>
<tr>
<th>Study and Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nielsen (2012)[66]</td>
<td>Denmark</td>
<td>2</td>
<td>Nov 2008-May 2011</td>
<td>Mean age, 81 y No significant coronary artery disease</td>
<td>TAVR n=34 Edwards Sapien THV</td>
</tr>
<tr>
<td>STACCATO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAVR n=36 Conventional open-heart surgery with CPB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sponsor Participating hospitals and Danish Heart Foundation</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Study and Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
</tr>
</thead>
</table>
| Thyregod (2015)\[65]\]
Søndergaard (2016)\[71]\]
Thyregod (2019)\[72]\]
Søndergaard (2019)\[73]\]
NOTION (NCT01057173) | Denmark, Sweden | 3 | Dec 2009-Apr 2013 | Mean age, 79 y
No significant coronary artery disease
Any surgical risk (mean STS PROM, 3.0; 82% low-risk) | n=145
Core-Valve |
| Reardon (2016)\[74]\]
CoreValve U.S. Pivotal (NCT01240902) | U.S. | 45 | Feb 2011-Sep 2012 | Mean age, 81 y
STS score <7\[^a\] (median, 5.3)
Symptomatic (NYHA class ≥II) | n=202
Core-Valve |
| Leon (2016)\[67]\]
PARTNER 2A (NCT01314313) | U.S., Canada | 57 | Dec 2011-Nov 2013 | Mean age, 82 y
Symptomatic (NYHA class ≥II)
STS PROM ≥4 and ≤8 or
STS PROM <4 with coexisting conditions (mean, 5.8) | n=1,011
SAPIEN XT |
| Reardon (2017)\[75]\]
SURF2AVI (NCT01586910) | U.S., Spain, Netherlands, Germany, UK, Canada, Switzerland, Sweden | 87 | NR | Mean age, 80 y
STS PROM ≥4 and <15 (mean, 4.5)
Symptomatic (NYHA class ≥II) | n=879
Core-Valve |
| Popma (2019)\[76]\]
Evolut Low Risk Trial (NCT02701283) | Australia, Canada, France, Japan, Netherlands, New Zealand, U.S. | 86 | Mar 2016-Nov 2018 | Mean age, 74 y
STS PROMs 3 (mean, 1.9)
90% NYHA class ≥II (symptomatic); 10% NYHA class I (asymptomatic) | n=734
CoreValve, Evolut R, or Evolut PRO |

\[^a\]These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.
Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Study and Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mack (2019)[77]</td>
<td>U.S., Canada, Australia, New Zealand, Japan</td>
<td>71</td>
<td>Mar 2016 - Oct 2017</td>
<td>Mean age, 73 y STS PROM <4 (mean, 1.9) 28% NYHA III or IV</td>
<td>TAVR n=503 SAVR n=497</td>
<td>Manufacturer</td>
</tr>
</tbody>
</table>

PARTNER 3, NCT02675114

CPB: cardiopulmonary bypass; NYHA: New York Heart Association; SAVR: surgical aortic valve replacement; STS PROM: Society of Thoracic Surgeons predicted risk of mortality score; TAVR: transcatheter aortic valve replacement; THV: Transcatheter heart valve

a Includes analysis of a subset of originally randomized patients.

TABLE 5. RCTS Comparing TAVI with Surgical Repair in Patients at Low and Intermediate Surgical Risk

<table>
<thead>
<tr>
<th>Study</th>
<th>Primary Outcome</th>
<th>Results of Primary Outcomes, %</th>
<th>All-Cause Mortality (2 y), %</th>
<th>New Permanent Pacemaker (2 y), %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAVI</td>
<td>Surg</td>
<td>TE (95% CI)</td>
<td>p</td>
</tr>
<tr>
<td>Nielsen (2012)[66]</td>
<td>STACCATO</td>
<td>Death from any cause, stroke, or renal failure at 30 d</td>
<td>14.7</td>
<td>2.8</td>
</tr>
<tr>
<td>All patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyregod (2015)[65]</td>
<td>NOTION</td>
<td>Death from any cause, stroke, or MI at 1 y</td>
<td>13.1</td>
<td>16.3</td>
</tr>
<tr>
<td>All patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reardon (2016)[74]</td>
<td>CoreValve U.S. Pivotal</td>
<td>Death from any cause at 2 y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STS score ≤7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leon (2016)[67]</td>
<td>PARTNER 2A</td>
<td>Death from any cause or disabling stroke at 2 y</td>
<td>26.3</td>
<td>15.0</td>
</tr>
<tr>
<td>All patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfemoral access</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transthoracic access</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Primary Outcome</th>
<th>Results of Primary Outcomes, %</th>
<th>All-Cause Mortality (2 y), %</th>
<th>New Permanent Pacemaker (2 y), %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TAVI</td>
<td>Surg</td>
<td>TE (95% CI)</td>
</tr>
<tr>
<td>Reardon (2017)</td>
<td>Death from any cause or disabling stroke at 2 y</td>
<td>12.6</td>
<td>14.0</td>
<td>RD = -1.4 (-5.2 to 2.3)</td>
</tr>
<tr>
<td>Evolut Low Risk Trial</td>
<td>Death or disabling stroke at 2 y</td>
<td>5.3</td>
<td>6.7</td>
<td>RD = -1.4 (-4.9 to 2.1)</td>
</tr>
<tr>
<td>Mack (2019)</td>
<td>Death, stroke, or rehospitalization at 1 y</td>
<td>8.5</td>
<td>15.1</td>
<td>RD = -6.6 (-10.8 to -2.5)</td>
</tr>
</tbody>
</table>

a Superiority.

b Bayesian credible interval.

Mixed risk populations including intermediate- and low-risk

A previous RCT, the STACCATO trial, was designed to compare transapical TAVI using the SAPIEN valve with surgical aortic valve repair in operable patients with isolated aortic stenosis, without selection based on the predicted risk of death after surgery. However, the trial was prematurely terminated due to an increase in adverse events in the TAVI arm. The available results were reported by Nielsen (2012).\[^{66}\] The trial was limited by a design that assumed a low event rate (2.5%). Also, operators’ experience with the device and implantation techniques at the time of the trial might not be representative of current practice.

Reardon (2016) reported on an analysis of patients from the U.S. Pivotal High Risk Trial who had STS score less than 7.0% at baseline.\[^{74}\] The trial was described in a previous section on high surgical risk. Of the 750 total patients in the trial, 383 (202 TAVR, 181 SAVR) had an STS PROM score of 7% or less, with a median STS PROM score of 5.3%. All-cause mortality at two years for TAVR versus SAVR in the subgroup with STS score less than 7.0 was 15% (95% CI 9% to 20%) vs. 26% (95% CI 20% to 33%, *p*=0.01). The rates of stroke at two years for TAVR versus SAVR were 11% versus 15% (*p*=0.50).

Thyregod (2015) reported on the results of the NOTION RCT, which compared TAVI with surgical repair in 280 patients with severe aortic stenosis who were 70 years or older,
Patients randomized to TAVI underwent implantation of the CoreValve self-expanding prosthesis by the femoral (preferred) or subclavian route. The trial was powered to detect an absolute risk reduction of 10% or a RR reduction of 66.7% in the primary outcome at one year. At baseline, 81.8% of the study population was considered to be at low risk (STS Risk Score <4). Some of the main findings from NOTION are summarized in Table 5. In addition, TAVI-treated patients had lower rates of major or life-threatening bleeding (11.3% vs. 20.9%, p=0.03), cardiogenic shock (4.2% vs. 10.4%, p=0.05), stage 2 or 3 AKI (0.7% vs. 6.7%, p=0.01), and new-onset or worsening atrial fibrillation (16.9% vs. 57.8%, p<0.001) than surgical repair patients, all respectively. Both groups showed improvements in NYHA functional class. However, more TAVI-treated patients were in NYHA functional class II at one-year follow-up (29.5% vs. 15.0%, p=0.01).

In a two-year follow-up of the NOTION trial, Søndergaard (2016) reported slight improvements in the TAVI-treated group (n=142) compared with the surgical repair group (n=134), although between-group differences were almost exclusively not statistically significant.[71] For the composite rate of death at two years, the between-group difference was also statistically insignificant (18.8% of surgical repair patients vs. 15.8% of TAVI-treated patients, p=0.43). A similar difference was observed for all-cause mortality (8.0% of patients treated with TAVI experienced all-cause mortality vs. 9.8% of the surgical repair patients, p=0.54). Cardiovascular mortality rates, stroke rates, and MI were likewise marginally improved in the TAVI-treated patients, although the only significant difference was found for atrial fibrillation and permanent pacemaker implantation. For the former outcome, there were 60.0% of surgical patients, compared with 22.7% of TAVI patients (p<0.001); for the latter, only 4.2% of surgical patients received implantation versus 41.3% of the TAVI group (p<0.001). As a secondary outcome, moderate aortic regurgitation was improved at two years for the TAVI group (15.4%) compared with the surgical group (0.9%, p<0.001). The authors noted that the variety of risk levels observed in the patients limited their results, as did the exclusion of patients with coronary artery disease. Further, the trial was limited by its lack of power for subgroup analyses, and its inability to reveal any significant differences between groups with certainty. Overall, the results showed that TAVI-treated patients had comparable, if not improved, outcomes when treated alongside patients who received SAVR.

Results after five years of follow-up were reported by Thyregod (2019).[72] There were no significant differences between TAVR and SAVR in the incidence of the composite primary outcome (38.0% vs. 36.3%, p=0.86) or any of the components of the composite. The incidence of moderate/severe total aortic regurgitation (8.2% vs. 0.0%, p<0.001) and a new pacemaker (43.7% vs. 8.7%, p<0.001) were both higher in the TAVR group. Four patients had prosthetic re-intervention. Søndergaard (2019) compared the durability of TAVR versus SAVR after six years of follow-up from NOTION. At six years, the rates of all-cause mortality were similar for TAVR (42.5%) and SAVR (37.7%) patients. The rate of moderate to severe structural valve deterioration was higher for SAVR than TAVR (24.0% vs. 4.8%, p < 0.001) and there were no differences in nonstructural valve deterioration (57.8% vs. 54.0%), bioprothetic valve failure (6.7% vs. 7.5%) or endocarditis (5.9% vs. 5.8%).[73] At eight years of follow-up, Jørgensen (2021) found no significant difference between TAVI and SAVR in the composite outcome of mortality, stroke, or MI.[78]

Including Intermediate-Risk Only

Reardon (2017) published two-year results from an RCT (SURTAVI trial) that compared clinical outcomes for 1,746 patients at intermediate surgical risk randomized to TAVR or
SAVR.\[^{[75]}\] For the primary outcome (composite death at two years), an improvement was observed in the TAVR-treated group, compared with surgery (12.6% of TAVR patients vs. 14.0% of SAVR patients [95% credible interval -5.2% to 2.3%, posterior probability >0.999]). Rates of death, MI, and disabling stroke were comparable between groups, as were secondary outcomes that included echocardiographic measurement of aortic valve gradient and paravalvular regurgitation (data reported in the supplemental material). More patients were assigned to the CoreValve bioprosthesis (n=724) than received Evolut R bioprosthesis (n=137), which might have affected the results; also, a considerable number of patients withdrew consent before surgery, resulting in an as-treated population of 1660. Finally, the authors acknowledged a gap in knowledge of how baseline characteristics of patients who received surgery differed from those who did not. The authors noted the low 30-day surgical mortality ratio (0.38, observed-to-expected) and the similarity of this rate between groups (2.2% of the TAVR patients vs. 1.7% of surgical patients).

Leon (2016) reported on results of a multicenter noninferiority RCT (PARTNER 2A) comparing TAVI with the Edwards SAPIEN XT valve system in patients with severe aortic stenosis who were at intermediate risk for open surgery, stratified by access route (transfemoral or transthoracic).\[^{[67]}\] Eligible patients had degenerative aortic valve stenosis, with NYHA functional class II or higher, and were in STS PROM score of 4 or greater (or <4 if determined by a heart team to have an “intermediate-risk patient profile with important comorbidities not represented in the STS Risk Calculator algorithm.”) The trial used a noninferiority design, with a primary composite endpoint of death from any cause or disabling stroke (score of ≥2 on the modified Rankin Scale) at two years and a noninferiority margin of 1.2 (i.e., noninferiority was considered met if upper bound of two-sided CI for the RR for the primary outcome was <1.2). A total of 2032 patients were randomized to TAVI (n=1,011) or surgical repair (n=1,021), with 1,550 considered suitable for transfemoral placement (76.3%) and 482 (23.7%) requiring transthoracic access. At baseline, the mean STS Risk Score was 5.8%; 81.3% had a score between 4% and 8%. The primary outcome results and select additional results of the trial are summarized in Table 5. Also, similar to other TAVI trials, the frequency and severity of paravalvular regurgitation was higher after TAVI than in surgical repair. The presence of paravalvular regurgitation was associated with all-cause mortality during follow-up (HR for moderate or severe paravalvular regurgitation vs. none or trace 2.85, 95% CI 1.57 to 5.21, p<0.001). The five-year outcomes from the PARTNER 2A study revealed no significant difference in the incidence of death from any cause or disabling stroke between the TAVI and surgical repair groups (47.9% vs. 43.4%, HR 1.09, 95% CI 0.95 to 1.25, p=0.21).\[^{[79]}\] Overall, more patients in the TAVI group had at least mild paravalvular aortic regurgitation (33.3% vs. 6.3%), experienced repeat hospitalizations (33.3% vs. 25.2%), and underwent aortic valve reinterventions (3.2% vs. 0.8%). Improvement in health status at five years was similar between the groups.

Including Low-Risk Only

Popma (2019) reported results of prespecified, interim analyses of the multinational Evolut Low Risk Trial, a noninferiority trial conducted from 2016 to 2018 comparing TAVR (n=734) to SAVR (n=734) in patients who had severe aortic stenosis and were at low surgical risk (STS-PROM ≤3%).\[^{[76]}\] Patients with bicuspid aortic valves were excluded. Patients assigned to TAVR were treated with one of three Medtronic self-expanding, supra-annular bioprostheses (CoreValve, Evolut R, or Evolut PRO). Preliminary analyses were performed when 850 patients had reached 12-month follow-up. Long-term follow-up is scheduled to continue for 10 years. The primary outcome was a composite of death or disabling stroke at 24 months.
performed using Bayesian methods. At the time of the preliminary analysis, 149 patients had reached the 24 months visit. The 24-month estimated incidence of the primary outcome was 5.3% in the TAVR group and 6.7% in the SAVR group (risk difference -1.4%, 95% Bayesian credible interval -4.9 to 2.1, posterior probability of noninferiority >0.999). Several 30-day outcomes were also reported. The incidence at 30 days of disabling stroke (0.5% vs. 1.7%), bleeding complications (2.4% vs. 7.5%), AKI (0.9% vs. 2.8%), and atrial fibrillation (7.7% vs. 35.4%) were lower in TAVR compared to SAVR. The incidence at 30 days of moderate or severe aortic regurgitation (3.5% vs. 0.5%) and pacemaker implantation (17.4% vs. 6.1%) was higher in TAVR compared to SAVR. There was not a statistically significant difference in the KCCQ overall summary score at 30 days (88.7±14.2 in the TAVR group vs. 78.6±18.9 in the SAVR group).

Mack (2019) reported results of the multinational PARTNER 3 trial randomizing patients with severe aortic stenosis and low surgical risk to either TAVR with the SAPIEN (n=503) or SAVR (n=497) in 2016 to 2017. Patients bicuspid aortic valves were excluded. The primary outcome was a composite of death, stroke, or rehospitalization at one year. Follow-up is designed to continue for at least 10 years. Primary analyses were performed and reported in the as-treated population (n=496 in the TAVR, n=454 in SAVR) but sensitivity analyses of the primary outcome performed in the intention-to-treat population with multiple imputations for missing data were reportedly consistent with the primary analysis. The number of participants that did not receive the assigned treatment was higher in the SAVR group (7 vs. 43). The most common reported reason was refusal to undergo surgery or the choosing to undergo surgery at a non-trial site. The estimated incidence of the primary outcome at one year was significantly lower in TAVR versus SAVR (8.5% vs. 15.1%, risk difference -6.6%, 95% CI -10.8 to -2.5, p<0.001 for noninferiority). All components of the composite (death, stroke, and hospitalization) individually favored TAVR at 30 days and one year. At 30 days, the rate of stroke (0.6% vs. 2.4%, HR 0.25 (95% CI 0.07 to 0.88), p=0.02) and new-onset atrial fibrillation (5.0% vs. 39.5%, HR 0.10 (95% CI 0.06 to 0.16) p<0.001) was lower in TAVR than SAVR and index hospitalization time was shorter (three days vs. seven days, p<0.001). There were no significant differences at 30 days in major vascular complications, new permanent pacemaker insertions, or moderate or severe paravalvular regurgitation. The incidence of mild paravalvular regurgitation at one year was higher with TAVR (29.4% vs. 2.1%). In an analysis specific to the echocardiographic findings of the PARTNER 3 trial, Pibarot (2020) reported that the percentage of moderate or severe aortic regurgitation was low and not statistically different between the TAVR and SAVR groups at 30 days (0.8% vs. 0.2%, p=0.38); mild aortic regurgitation occurred more frequently after TAVR than SAVR (28.8% vs. 4.2%, p<0.001). Mean transvalvular gradient (13.7 ±5.6 vs. 11.6 ±5.0 mmHg, p=0.12) and aortic valve area (1.72 ±0.37 vs. 1.76 ±0.42 cm², p=0.12) were similar between groups at one year. In another analysis specific to atrial fibrillation (n=781), Shahim (2021) found lower early postoperative atrial fibrillation in patients following TAVI compared with SAVR (19.5% vs. 36.6%, p<0.0001). At two-year follow-up, Leon (2021) reported continued improvement of the composite primary endpoint with TAVI versus SAVR (11.5% vs. 17.4%, HR 0.63, 95% CI 0.45 to 0.88, p=0.007); however, there was no significant difference in death or stroke between TAVI and SAVR.

Study limitations

The purpose of the study limitation tables (see Tables 6 and 7) is to display notable limitations identified in each study. This information is synthesized as a summary of the body of evidence.
following the tables and provides the conclusions on the sufficiency of evidence supporting the position statement.

Table 6. Study Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nielsen (2012)</td>
<td>4: Included patients with any surgical risk, not limited to patients requiring alternative access</td>
<td>4: Transapical TAVI, multidetector computed tomography was not performed before procedure</td>
<td></td>
<td></td>
<td>1, 2: Terminated early</td>
</tr>
<tr>
<td>STACATTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyregod (2015)</td>
<td>4: Included patients with any surgical risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reardon (2016)</td>
<td>4: Subgroup analysis included patients at low/intermediate risk by STS-PROM but deemed at high surgical risk based on screening committee assessment despite their STS scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoreValve U.S. Pivotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leon (2016)</td>
<td>4: 12% of the study population had an STS risk score > 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTNER 2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reardon (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURTAVI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popma (2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolut Low Risk Trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mack (2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTNER 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Allocationa</td>
<td>Blindingb</td>
<td>Selective Reportingc</td>
<td>Data Completenessd</td>
<td>Powere</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>STACCATO</td>
<td>1: Patients and study staff not blinded</td>
<td>1: Patients and study staff not blinded</td>
<td>1: Study terminated early with only 70 participants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTION</td>
<td>1: Patients and study staff not blinded</td>
<td>2,3: Unclear if outcome adjudication was blinded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reardon (2016)</td>
<td>1: Patients and study staff not blinded</td>
<td>1: Patients and study staff not blinded</td>
<td>2: Post-hoc analysis of RCT: not powered to detect differences in the low/intermediate risk population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTNER 2A</td>
<td>1: Patients and study staff not blinded</td>
<td>1: Patients and study staff not blinded</td>
<td>1: High frequency of withdrawals in patients assigned to undergo surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURTAVI</td>
<td>1: Patients and study staff not blinded</td>
<td>2,3: Unclear if outcome adjudication was blinded</td>
<td>1: High frequency of withdrawals in patients assigned to undergo surgery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STS PROM: Society of Thoracic Surgeons predicted risk of mortality score; TAVI: transcatheter aortic valve implantation. The study limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.

Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.

Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.

Outcomes key: 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not established and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.

Table 7. Study Design and Conduct Limitations

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Study</th>
<th>Allocationa</th>
<th>Blindingb</th>
<th>Selective Reportingc</th>
<th>Data Completenessd</th>
<th>Powere</th>
<th>Statisticalf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popma (2019)</td>
<td></td>
<td>1: Patients and study staff not blinded</td>
<td>1: High frequency of withdrawals in patients assigned to undergo surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolut Low Risk Trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mack (2019)</td>
<td></td>
<td>1: Patients and study staff not blinded</td>
<td>1: High frequency of withdrawals in patients assigned to undergo surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTNER 3</td>
<td></td>
<td>2,3: Outcome adjudication not blinded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RCT: randomized controlled trial.

The study limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

d Data Completeness key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).
e Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.
f Statistical key: 1. Analysis is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Analysis is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Section Summary: TAVI Outcomes in Patients at Intermediate- or Low-Risk for Open Surgery

Intermediate-Risk

Most participants in five RCTs were intermediate risk, and two RCTs included only intermediate surgical risk patients. The primary outcomes were generally a composite of death and stroke; most RCTs were noninferiority studies. The rates of the primary outcome were noninferior for TAVI compared with SAVR and numerically lower, although not statistically significantly lower in three of the five RCTs including the two RCTs exclusively enrolling intermediate risk patients. The rates of adverse events differed between groups, with bleeding, cardiogenic shock, and AKI higher in patients randomized to open surgery and permanent pacemaker requirement higher in patients randomized to TAVI. Subgroup analyses of meta-analyses and the transthoracic arm of the Leon RCT suggested that the benefit of TAVI may be limited to patients who are candidates for transfemoral access. Two-year follow-up results were published for NOTION, PARTNER 2A, CoreValve U.S. Pivotal, and SURTAVI trials, but reported outcomes did not include rates of reoperation. A number of recently completed meta-
analyses evaluated mortality for TAVR versus SAVR at the 30-day mark. Mortality rates were found to be comparable between the two procedures.

Low-Risk

The NOTION trial was predominantly low surgical risk patients; the Evolut Low Risk Trial and PARTNER 3 were only low-risk patients. The STACCATO trial also included some patients at low surgical risk. In the NOTION trial, the risk of the composite outcome of death from any cause, stroke, or MI at one year was numerically but not statistically significantly lower in the TAVR group compared to SAVR and after five years of follow-up, there were still no significant differences between TAVR and SAVR in the incidence of the composite outcome (38.0% vs. 36.3%, p=0.86) or any of the components of the composite. Six-year follow-up from NOTION showed less structural valve deterioration in TAVR than SAVR. In the Evolut Low Risk Trial, TAVR was noninferior to SAVR with respect to the composite outcome of death or disabling stroke at 24 months. At 30 days, TAVR was associated with a lower incidence of disabling stroke, acute kidney injury, bleeding events, and atrial fibrillation but with a higher incidence of aortic regurgitation and permanent pacemaker use. In the PARTNER 3 trial, the rate of the composite of death, stroke, or rehospitalization at one year was significantly lower with TAVR than SAVR. At 30 days, TAVR was associated with a lower rate of stroke, death or stroke composite, new-onset atrial fibrillation, and shorter index hospitalization. There were no significant between-group differences in major vascular complications or new permanent pacemaker insertions at 30 days. The age of participants in the low-risk RCTs was markedly lower than that in previous TAVR trials and therefore life expectancy is longer. Extended follow-up will be needed to address the long-term advantages and disadvantages of TAVR versus SAVR and valve durability. Both of the low-risk RCTs have planned follow-up of 10 years and both excluded patients with bicuspid aortic valves.

The ongoing NOTION 2 Trial (NCT02825134) includes only patients ≤75-years-old and does not exclude patients with bicuspid aortic valves. Data collection of the primary outcome is scheduled for completion in 2020.

TAVI OUTCOMES FOR “VALVE-IN-VALVE” APPROACH

Clinical Context and Therapy Purpose

The purpose of transcatheter aortic “valve-in-valve” implantation is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as surgical aortic valve repair and medical management, in patients with valve dysfunction and aortic stenosis or regurgitation after aortic valve repair.

Systematic Reviews

In 2019, the National Institute for Health and Care Excellence prepared an interventional procedure overview on safety and efficacy of valve-in-valve TAVI for aortic bioprosthetic valve dysfunction based on a rapid review of medical literature including publications through August 2018 and specialist opinion.[83] The review included three systematic reviews and meta-analysis[84–86] and eight case series (registries) totaling 4,256 patients, although the authors note that there may be some overlap of patients in the global valve-in-valve register and other registries. There are no RCTs comparing valve-in-valve TAVI with redo SAVR. The available evidence is from observational studies and registry data with follow-up ranging from one month to one year. Two systematic reviews and meta-analysis compare valve-in-valve TAVI with redo
SAVR and reported similar favorable outcomes. One of the included systematic reviews of 15 studies (861 patients) reported a pooled technical success rate of 95% (95% CI 94% to 97%). Another included systematic review of six observational studies reported no statistically significant difference between valve-in-valve TAVI and redo SAVR in perioperative mortality (5% vs. 6%, RR 0.78, 95% CI 0.33 to 1.84), late mortality (median one-year follow-up, incident rate ratio 0.93, 95% CI 0.74 to 1.16), or perioperative stroke (2% vs. 3%, RR 0.73, 95% CI 0.18 to 3.02), whereas, the rate of permanent pacemaker insertion was statistically significantly lower in the valve-in-valve TAVI group (8% vs. 15%, RR 0.57, 95% CI 0.32 to 1.0) and the rate of mild or greater paravalvular regurgitation was statistically significantly higher in the valve-in-valve TAVI group (21% vs. 6%, RR 3.83, 95% CI 1.2 to 12.22). In two registries (including 365 and 227 patients), the rate of conversion to surgery or surgical reintervention within 30 days was less than 1%.

Saleem (2021) published a meta-analysis of observational studies comparing valve-in-valve TAVI with redo-SAVR. A total of 11 observational studies including 8,326 patients were identified. All-cause mortality (OR 0.45, 95% CI 0.30 to 0.68, p=0.0002), cardiovascular mortality (OR 0.44, 95% CI 0.26 to 0.73, p=0.001), and major bleeding (OR 0.29, 95% CI 0.15 to 0.54, p=0.0001) were improved with TAVI compared with redo-SAVR at 30 days. However, at longer follow-up (six months to five years) no significant difference between treatments was found for all-cause mortality (OR 1.06, 95% CI 0.85 to 1.32, p=0.62), cardiovascular mortality (OR 1.07, 95% CI 0.77 to 1.47, p=0.7), or stroke (OR 0.82, 95% CI 0.13 to 5, p=0.83).

Registries

Registries not included in the systematic reviews described above will be briefly summarized if they include longer follow-up than those already summarized.

Following the National Institute for Health and Care Excellence review, three-year results from the PARTNER 2 valve-in-valve registry were published by Webb (2019). The registry included 365 patients who had valve-in-valve procedures with a mean age of 79 (± 10) years and mean STS-PROM score of 9.1% (±4.7). The estimated incidence of all-cause mortality at three years was 32.7%. Aortic valve re-replacement was performed in 1.9% by three years. From baseline to year three, NYHA functional class improved; 90.4% of patients were in class III or IV at baseline and 14.1% were in class III or IV at three years (p<0.0001). QoL as measured by the KCCQ overall score also increased from baseline to three years (43.1 to 73.1, p < 0.0001).

Section Summary: TAVI Outcomes for “Valve-in-Valve” Approach

The evidence related to the use of TAVI for valve-in-valve replacement after failed TAVI or degenerated bioprosthetic valve consists of comparative and single-arm observational studies including registry data with follow-up ranging from one month to three years and systematic reviews. Two systematic reviews of observational studies have compared valve-in-valve TAVI to redo SAVR and have reported similar favorable outcomes. However, selection bias cannot be ruled out given that no RCTs are available.

PRACTICE GUIDELINE SUMMARY

American College of Cardiology and American Heart Association
In 2014, the American College of Cardiology and the American Heart Association published joint guidelines on the management of valvular heart disease.[88] Both groups issued a joint focused update in 2017.[89] In 2020, a new full guideline was published that replaces the 2014 revision and 2017 focused update.[90] These guidelines made the following recommendations on the timing of intervention and choice of surgical or transcatheter intervention for treatment of aortic stenosis (see Table 8).

Additionally, the guidelines state the following:

- "Treatment of severe aortic stenosis with either a transcatheter or surgical valve prosthesis should be based primarily on symptoms or reduced ventricular systolic function. Earlier intervention may be considered if indicated by results of exercise testing, biomarkers, rapid progression, or the presence of very severe stenosis."

- "Indications for TAVI are expanding as a result of multiple randomized trials of TAVI versus surgical aortic valve replacement. The choice of type of intervention for a patient with severe aortic stenosis should be a shared decision-making process that considers the lifetime risks and benefits associated with type of valve (mechanical versus bioprosthetic) and type of approach (transcatheter versus surgical)."

Table 8. Recommendations on Surgical or Transcatheter Intervention for Aortic Stenosis

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing of Intervention</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| "In adults with severe high-gradient AS (Stage D1) and symptoms of exertional dyspnea, heart failure, angina, syncope, or presyncope by history or on exercise testing, AVR is indicated."
| I | A |
| "In asymptomatic patients with severe AS and a left ventricular ejection fraction <50% (Stage C2), AVR is indicated."
| I | B |
| "In asymptomatic patients with severe AS (Stage C1) who are undergoing cardiac surgery for other indications, AVR is indicated."
| I | B |
| "In symptomatic patients with low-flow, low-gradient severe AS with reduced left ventricular ejection fraction (Stage D2), AVR is recommended."
| I | B |
| "In symptomatic patients with low-flow, low-gradient severe AS with reduced left ventricular ejection fraction (Stage D3), AVR is recommended if AS is the most likely cause of symptoms."
| I | B |
| "In apparently asymptomatic patients with severe AS (Stage C1) and low surgical risk, AVR is reasonable when an exercise test demonstrates decreased exercise tolerance (normalized for age and sex) or a fall in systolic blood pressure of ≥10 mmHg from baseline to peak exercise."
| Ila | B |
| "In asymptomatic patients with very severe AS (defined as an aortic velocity of ≥5 m/s) and low surgical risk, AVR is reasonable."
| Ila | B |
| "In apparently asymptomatic patients with severe AS (Stage C1) and low surgical risk, AVR is reasonable when the serum B-type natriuretic peptide level is >3 times normal."
| Ila | B |
| "In asymptomatic patients with high-gradient severe AS (Stage C1) and low surgical risk, AVR is reasonable when serial testing shows an increase in aortic velocity ≥0.3 m/s per year."
| Ila | B |
| "In asymptomatic patients with severe high-gradient AS (Stage C1) and a progressive decrease in left ventricular ejection fraction on at least 3 serial imaging studies to <60%, AVR may be considered."
| Iib | B |
"In patients with moderate AS (Stage B) who are undergoing cardiac surgery for other indications, AVR may be considered.

Choice of SAVR Versus TAVI for Patients for Whom a Bioprosthetic AVR is Appropriate

"For symptomatic and asymptomatic patients with severe AS and any indication for AVR who are <65 years of age or have a life expectancy >20 years, SAVR is recommended."

"For symptomatic patients with severe AS who are 65 to 80 years of age and have no anatomic contraindication to transfemoral TAVI, either SAVR or transfemoral TAVI is recommended after shared decision-making about the balance between expected patient longevity and valve durability."

"For symptomatic patients with severe AS who are >80 years of age or for younger patients with a life expectancy of <10 years and no anatomic contraindication to transfemoral TAVI, transfemoral TAVI is recommended in preference to SAVR."

"In asymptomatic patients with severe AS and a left ventricular ejection fraction <50% who are ≤80 years of age and have no anatomic contraindication to transfemoral TAVI, the decision between TAVI and SAVR should follow the same recommendations as for symptomatic patients in the 3 recommendations above."

"For asymptomatic patients with severe AS and an abnormal exercise test, very severe AS, rapid progression, or an elevated B-type natriuretic peptide, SAVR is recommended in preference to TAVI."

"For patients with an indication for AVR for whom a bioprosthetic valve is preferred but valve or vascular anatomy or other factors are not suitable for transfemoral TAVI, SAVR is recommended."

"For symptomatic patients of any age with severe AS and a high or prohibitive surgical risk, TAVI is recommended if predicted post-TAVI survival is >12 months with an acceptable quality of life."

"For symptomatic patients with severe AS for whom predicted post-TAVI or post-SAVR survival is <12 months or for whom minimal improvement in quality of life is expected, palliative care is recommended after shared decision-making, including discussion of patient preferences and values."

"In critically ill patients with severe AS, percutaneous aortic balloon dilation may be considered as a bridge to SAVR or TAVI."

AS: aortic stenosis; **AVR**: aortic valve replacement; **COR**: class of recommendation; **LOE**: level of evidence; **SAVR**: surgical aortic valve replacement; **TAVI**: transcatheter aortic valve implantation.

SUMMARY

TAVI

There is enough research to show that transcatheter aortic valve implantation (TAVI) can improve health outcomes for individuals with heart failure who have severe symptomatic aortic stenosis. For patients who are not surgical candidates due to excessive surgical risk, trial results have shown decreased mortality for the TAVI patients at one year compared with medical care, but an increased risk of stroke and vascular complications. For patients who are surgical candidates, trials have shown similar or better outcomes for TAVI compared to open surgical procedures. Therefore, TAVI may be considered medically necessary for patients that meet the policy criteria.

TAVR
There is not enough research to show that transcatheter aortic valve replacement (TAVR) can improve health outcomes for individuals with bioprosthetic valves who have valve dysfunction and aortic stenosis or regurgitation compared with open repair. Studies comparing TAVR to surgical repair and have reported similar mortality, stroke, and survival rates for the two procedures, however there is a lack of high-quality trial data. Therefore, TAVR may be considered medically necessary for high- or prohibitive-risk surgical patients but is otherwise considered investigational.

Bicuspid Aortic Valves

There is not enough research to show that transcatheter aortic valve implantation or replacement can improve health outcomes for patients with bicuspid valves. Individuals with bicuspid aortic valves were excluded from the large trials that evaluated transcatheter aortic valve implantation (TAVI) and transcatheter aortic valve replacement (TAVR), due to an increased risk of complications. Further study is needed to evaluate the long-term health outcomes and identify which patients may benefit from these procedures. Therefore, TAVI and TAVR are considered investigational for patients with bicuspid aortic valves.

Other Indications and Devices

There is not enough research to show that transcatheter aortic valve implantation or replacement can improve health outcomes for patients without heart failure symptoms and severe aortic stenosis. There is also a lack of evidence regarding non-FDA-approved devices. Therefore, these are considered investigational.

REFERENCES

65. Thyregod HG, Steinbruchel DA, Ihlemann N, et al. Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial. Journal of the American College of Cardiology. 2015;65(20):2184-94. PMID: 25787196

Sur201 | 36

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>33361</td>
<td>Transcatheter aortic valve replacement (TAVR/TAVI) with prosthetic valve; percutaneous femoral artery approach</td>
</tr>
<tr>
<td></td>
<td>33362</td>
<td>;open femoral artery approach</td>
</tr>
<tr>
<td></td>
<td>33363</td>
<td>;open axillary artery approach</td>
</tr>
<tr>
<td></td>
<td>33364</td>
<td>;open iliac artery approach</td>
</tr>
<tr>
<td></td>
<td>33365</td>
<td>;transaortic approach (eg, median sternotomy, mediastinotomy)</td>
</tr>
<tr>
<td></td>
<td>33366</td>
<td>;transapical exposure (eg, left thoracotomy)</td>
</tr>
<tr>
<td></td>
<td>33367</td>
<td>;cardiopulmonary bypass support with percutaneous peripheral arterial and venous cannulation (eg, femoral vessels) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>33368</td>
<td>;cardiopulmonary bypass support with open peripheral arterial and venous cannulation (eg, femoral, iliac, axillary vessels) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>33369</td>
<td>;cardiopulmonary bypass support with central arterial and venous cannulation (eg, aorta, right atrium, pulmonary artery) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Date of Origin: December 2018
Ablation of Primary and Metastatic Liver Tumors

Effective: March 1, 2022

Next Review: November 2022

Last Review: January 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Ablation is a method of locoregional therapy used to treat cancerous lesions, including hepatocellular carcinoma and hepatic metastases from other primary cancers.

MEDICAL POLICY CRITERIA

Note: This policy addresses locoregional therapies, specifically, percutaneous ethanol injection, cryoablation, radiofrequency and microwave ablation for primary and metastatic liver tumors. Please see Cross References for other ablative techniques and indications.

I. Percutaneous ethanol injection, cryoablation, radiofrequency and microwave local ablative techniques may be considered **medically necessary** for treatment of liver tumors when either of the following (A. or B.) are met:

A. In patients *not* currently awaiting liver transplantation, and one or more of the following criteria are met:

 1. Unresectable primary liver tumors [hepatocellular carcinoma] when **all** of the following criteria (a.-c.) are met:

 a. The tumor(s) is 5 cm or less in diameter; and
b. There are no more than 3 hepatic lesions; and

c. There is documentation that the tumor(s) is unresectable (e.g., due to comorbidities or an estimate of inadequate liver volume following resection).

2. Hepatic metastases from colorectal tumors, including but not limited to adenocarcinoma when all of the following criteria (a.-d.) are met

 a. The metastatic tumor(s) is 5 cm or less in diameter; and

 b. There are no more than 5 hepatic lesions; and

 c. There is documentation that the tumor(s) is unresectable (e.g., due to comorbidities or an estimate of inadequate liver volume following resection); and

 d. No extrahepatic metastatic disease is present.

3. Hepatic metastases from neuroendocrine tumors when all of the following criteria (a.-c.) are met:

 a. The disease is symptomatic; and

 b. Systemic therapy has failed to control symptoms; and

 c. There is documentation that the tumor(s) is unresectable (e.g., due to comorbidities or an estimate of inadequate liver volume following resection)

B. As a bridge to liver transplantation when the intent is to prevent tumor progression or decrease tumor size to achieve or maintain a patient’s candidacy for liver transplant.

II. Percutaneous ethanol injection, cryoablation, radiofrequency and microwave ablation are considered investigational as a treatment for all other benign or malignant liver tumors that do not meet the medical necessity criteria above, including but not limited to the following:

A. More than 3 hepatocellular carcinoma tumors; more than 5 metastatic colorectal tumors in the liver; or metastatic or primary liver tumors larger than 5 cm in diameter

B. Metastases to the liver from organ tumors other than colorectal, asymptomatic neuroendocrine tumors, or neuroendocrine tumors with symptoms controlled by systemic therapy

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

NEUROENDOCRINE TUMORS

Neuroendocrine tumors are rare, slow-growing, hormone-secreting tumors that may occur in numerous locations in the body.[1] Neuroendocrine tumors include the following:

• Carcinoid Tumors
• Islet Cell Tumors (also known as Pancreatic Endocrine Tumors)
• Neuroendocrine Unknown Primary
• Adrenal Gland Tumors
• Pheochromocytoma/paraganglioma
• Poorly Differentiated (High Grade or Anaplastic)/Small Cell
• Multiple Endocrine Neoplasia, Type 1 (also known as MEN-1 syndrome or Wermer’s syndrome)
• Multiple Endocrine Neoplasia, Type 2 a or b (also known as pheochromocytoma and amyloid producing medullary thyroid carcinoma, PTC syndrome, or Sipple syndrome)

Neuroendocrine tumors may also be referred to by their location (e.g., pulmonary neuroendocrine tumors; gastroenteropancreatic neuroendocrine tumors).

Some appendiceal carcinoids, also called adenocarcinoids, goblet cell carcinoids, or crypt cell carcinoids, have mixed histology, including elements of adenocarcinoma. While these biphasic tumors have both neuroendocrine and adenocarcinoma components, the National Comprehensive Cancer Network (NCCN) recommends they be managed according to colon cancer guidelines.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

1. Specific description of the tumor(s) targeted for treatment including the following:
 • Tumor type (primary vs. metastatic; primary tumor type)
 • The location of tumor(s)
 • The number and size(s) of lesion(s) being treated
2. Rationale for the determination that the patient is not a surgical candidate or the tumor is unresectable
3. Whether the goal of treatment is curative or palliative
4. Comorbidities and any contraindicated treatments (e.g., surgery; radiation therapy)
5. Prior treatments, if any, and tumor response
6. Documentation of whether this treatment is to preserve organ function
7. Include documentation of the presence or absence of extra-hepatic disease

CROSS REFERENCES

1. Radioembolization, Transarterial Embolization (TAE), and Transarterial Chemoembolization (TACE), Medicine, Policy No. 140
2. Radiofrequency Ablation (RFA) of Tumors Other than Liver, Surgery, Policy No. 92
3. Cryosurgical Ablation of Miscellaneous Solid Tumors, Surgery, Policy No. 132
4. Magnetic Resonance (MR) Guided Focused Ultrasound (MRgFUS) and High Intensity Focused Ultrasound (HIFU) Ablation, Surgery, Policy No. 139
5. Microwave Tumor Ablation, Surgery, Policy No. 189
6. Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy for Tumors Outside of Intracranial, Skull Base, or Orbital Sites, Surgery, Policy No. 214

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
BACKGROUND

ABLATIVE TECHNIQUES

THERMAL ABLATION

Radiofrequency Ablation

Radiofrequency ablation (RFA) is one of a number of locoregional thermal ablation therapies to treat various benign or malignant tumors. RFA kills cells (cancerous and normal) by applying a heat-generating rapidly alternating radiofrequency current through probes inserted into the tumor. The cells killed by RFA are not removed but are gradually replaced by fibrosis and scar tissue. If there is local recurrence, it occurs at the edge of this scar tissue and, in some cases, may be retreated. RFA can be performed as an open surgical procedure, laparoscopically, or percutaneously with ultrasound or computed tomography (CT) guidance. The goals of RFA may include 1) controlling local tumor growth and preventing recurrence; 2) palliating symptoms; and 3) extending survival duration for patients with certain cancerous tumors.

Reports have been published on use of RFA to treat renal cell carcinomas, breast cancer, pulmonary (including primary and metastatic lung tumors), bone, and other tumors including those that are non-cancerous (benign). Well-established local or systemic treatment alternatives are available for each of these tumor types.

Radiofrequency ablation (RFA) has been investigated as a treatment for unresectable hepatic tumors, both as primary treatment and as a bridge to liver transplant. In the latter setting, RFA is being tested to determine whether it can reduce the incidence of tumor progression in patients awaiting transplantation and thus maintain patients’ candidacy for liver ablation, transhepatic arterial chemoembolization, microwave coagulation, percutaneous ethanol injection, and radioembolization (yttrium-90 microspheres).

Microwave Ablation

Microwave ablation (MWA) is a technique in which the use of microwave energy induces an ultra-high speed, 915 MHz or 2,450 MHz (2.45 GHz), alternating electric field which causes water molecule rotation and the creation of heat. This results in thermal coagulation and localized tissue necrosis. In MWA, a single microwave antenna or multiple antennas connected to a generator are inserted directly into the tumor or tissue to be ablated; energy from the antennas generates friction and heat. The local heat coagulates the tissue adjacent to the probe, resulting in a small, approximately 2 to 3 cm elliptical area (5 x 3 cm) of tissue ablation. In tumors greater than 2 cm in diameter, 2 to 3 antennas may be used simultaneously to increase the targeted area of MWA and shorten operative time. Multiple antennas may also be used simultaneously to ablate multiple tumors. Tissue ablation occurs quickly, within one minute after a pulse of energy, and multiple pulses may be delivered within a treatment session depending on the size of the tumor. The cells killed by MWA are typically not removed but are gradually replaced by fibrosis and scar tissue. If there is local recurrence, it occurs at the edges. Treatment may be repeated as needed. MWA may be used to: 1) control local tumor growth and prevent recurrence; 2) palliate symptoms; and 3) extend survival duration.

Complications from MWA are usually considered mild and may include pain and fever. Other potential complications associated with MWA include those caused by heat damage to
normal tissue adjacent to the tumor (e.g., intestinal damage during MWA of the kidney or liver), structural damage along the probe track (e.g., pneumothorax as a consequence of procedures on the lung), liver enzyme elevation, liver abscess, ascites, pleural effusion, diaphragm injury or secondary tumors if cells seed during probe removal. MWA should be avoided in pregnant patients since potential risks to the patient and/or fetus have not been established and in patients with implanted electronic devices such as implantable pacemakers that may be adversely affected by microwave power output.

MWA is an ablative technique similar to radiofrequency or cryosurgical ablation; however, MWA may have some advantages. In MWA, the heating process is active, which produces higher temperatures than the passive heating of radiofrequency ablation and should allow for more complete thermal ablation in a shorter period of time. The higher temperatures reached with MWA (over 100° C) can overcome the “heat sink” effect in which tissue cooling occurs from nearby blood flow in large vessels potentially resulting in incomplete tumor ablation. MWA does not rely on the conduction of electricity for heating, and therefore, does not have electrical current flow through patients and does not require grounding pads be used during the procedure to prevent skin burns. Unlike radiofrequency ablation, MWA does not produce electric noise, which allows ultrasound guidance to occur during the procedure without interference. Finally, MWA can be completed in less time than radiofrequency ablation since multiple antennas can be used simultaneously.

Regulatory Status

There are several devices cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for MWA. Covidien’s (a subsidiary of Tyco Healthcare) Evident Microwave Ablation System has 510(k) clearance for soft tissue ablation, including partial or complete ablation of non-resectable liver tumors. The following devices have 510(k) clearance for MWA of (unspecified) soft tissue:

- BSD Medical Corporation’s MicroThermX® Microwave Ablation System (MTX-180);
- MicroSurgeon Microwave Soft Tissue Ablation Device;
- Angiodynamics’ Solero Microwave Tissue Ablation System;
- Surgnova Healthcare Technologies’ Microwave Ablation System;
- Microsulis Medical’s Acculis Accu2i; and
- Johnson & Johnson’s NEUWAVE Microwave Ablation System

FDA determined that these devices were substantially equivalent to existing radiofrequency and MWA devices. FDA product code: NEY.

CRYOSURGICAL ABLATION

Cryosurgical ablation (also called cryosurgery, cryotherapy, or cryoablation) kills cells (cancerous and normal) by freezing target tissues, most often by inserting a probe into the tumor through which coolant is circulated. Cryosurgery may be performed as an open surgical technique or as a closed procedure under laparoscopic or ultrasound guidance.

The goals of cryosurgery may include the following:

- Destruction or shrinkage of tumor tissue
- Controlling local tumor growth and preventing recurrence
- Palliating symptoms
• Extending survival duration for patients with certain tumors.

Potential complications associated with cryosurgery in any organ include the following:

• Hypothermic damage to normal tissue adjacent to the tumor (e.g., nerve damage)
• Structural damage along the probe track
• Secondary tumors if cancerous cells are seeded during probe removal.

Regulatory Status

There are several cryoablation devices cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for use in open, minimally invasive or endoscopic surgical procedures in the areas of general surgery, urology, gynecology, oncology, neurology, dermatology, proctology, thoracic surgery and ear, nose and throat.

Examples include:

• Cryocare® Surgical System by Endocare;
• CryoGen Cryosurgical System by Cryosurgical, Inc.;
• CryoHit® by Galil Medical;
• IceRod® CX, IcePearl® 2.1 CX and IceFORCE® 2.1 CX Cryoablation Needles by Galil Medical;
• SeedNet™ System by Galil Medical;
• Visica® System by Sanarus Medical;
• Visual-ICE® Cryoablation System by Galil;
• ERBECRYO 2® Cryosurgical Unit, ERBE USA Incorporated

PERCUTANEOUS ETHANOL INJECTION

Using a needle, percutaneous ethanol injection (PEI) delivers an injection of 95 percent ethanol directly into a tumor. Multiple treatment sessions may be performed in order to achieve tumor destruction. Prior to RFA, PEI was the most widely accepted, minimally invasive method to treat hepatocellular carcinoma. Like other local ablative techniques, PEI is most successful in small HCC tumors when resection is not an option.

LIVER (HEPATIC) TUMORS

Hepatic tumors can arise either as primary liver cancer (such as hepatocellular carcinoma, HCC) or by metastasis to the liver from other primary cancer sites. Local therapy for hepatic metastasis may be indicated when there is no extrahepatic disease, which rarely occurs for patients with primary cancers other than colorectal carcinoma or certain neuroendocrine malignancies. At present, surgical resection with adequate margins or liver transplantation constitutes the only treatments available with demonstrated curative potential. Partial liver resection, hepatectomy, is considered the gold standard. However, the majority of hepatic tumors are unresectable at diagnosis, due either to their anatomic location, size, number of lesions, or underlying liver reserve.

Locoregional therapies are proposed as a treatment for unresectable hepatic tumors, both as primary treatment, palliative treatment, and as a bridge to liver transplant. In the case of liver transplants, it is hoped that locoregional ablative techniques will reduce the incidence of tumor progression while awaiting transplantation and thus maintain a patient’s candidacy for liver transplant during the wait time for a donor organ.
EVIDENCE SUMMARY

MULTIPLE ABLATIVE TECHNIQUES

Systematic Reviews

Yu (2021) performed a meta-analysis of RCTs comparing RFA with microwave ablation for the treatment of localized, very early- or early-stage HCC.\[^2\] Five RCTs comparing RFA (n=413) and microwave ablation (n=431) were identified. The OS between microwave ablation and RFA was not significantly different at one year (OR=0.705; 95% CI 0.382 to 1.301) or three years (OR=0.972; 95% CI 0.615 to 1.538). Similarly, there was no difference observed in recurrence-free survival between microwave ablation and RFA at one year (OR=1.167; 95% CI: 0.568 to 2.396) and three years (OR=0.981; 95% CI 0.616 to 1.562). Among the procedure-related complications evaluated, there were no statistically significant differences between the two groups.

A similar analysis was published by Gupta in 2021 that compared outcomes for very early and early HCC following RFA, MWA, or cryoablation.\[^3\] A total of 19 studies (six RCTs and 13 observational studies) met inclusion criteria. No statistically significant differences between groups were identified for OS or local recurrence (LR).

Shin (2021) compared the efficacy of surgical resection with local ablative therapies for HCC meeting Milan criteria.\[^4\] The analysis included seven RCTs and 18 non-randomized trials (n=5,629) that compared surgical resection with either RFA, microwave ablation, or RFA plus TACE. Four of the RCTs were judged to be at high risk of bias overall, due to either lack of reported randomization method or missing data. All non-randomized trials were classified as having a high risk for bias due to the missing data. There was no significant difference between surgical resection and RFA alone when the RCTs were analyzed; the three- and five-year OS favored surgical resection in the analysis of the non-randomized trials. A multiple treatment meta-analysis using a frequentist framework random effect model found that 5-year recurrence free survival was highest with surgical resection (hazard ratio [HR]=0.64, 95% CI 0.56 to 0.74 vs RFA), followed by RFA plus TACE (HR=0.70, 95% CI 0.53 to 0.92 vs RFA); no difference was found between microwave ablation and RFA (HR=0.93, 95% CI 0.63 to 1.37). However, the latter comparisons were limited by the number of trials evaluating RFA plus TACE (five studies) and microwave ablation (two studies).

Cui (2020) conducted a systematic review and meta-analysis of MWA compared to various treatment modalities for the treatment of hepatocellular carcinoma.\[^5\] The analysis included four RCTs, with three comparing MWA to RFA and one comparing MWA to TACE. The remaining 11 studies were nonrandomized trials comparing MWA to RFA (eight studies), resection (two studies), or ethanol ablation (one study). Meta-analyses were not performed for MWA versus TACE or ethanol ablation, because these comparisons were only examined in one study each. Meta-analyses of studies comparing MWA to RFA found no difference in three-year OS, five-year OS, local tumor progression at one year, progression-free survival at three years, or major complications. A meta-analysis of two nonrandomized studies comparing MWA to resection found no difference in three-year OS between treatments; however, this comparison is limited by the small number of studies included and the lack of RCTs included. The reviewers concluded that MWA showed similar safety and efficacy compared with RFA, but higher quality clinical studies are needed to validate the superiority of MWA.
Gui (2020) reported a systematic review and meta-analysis of trans-arterial chemoembolization plus RFA compared to surgical resection for hepatocellular carcinoma.[6] One RCT and eight retrospective studies met inclusion criteria. According to the unadjusted pooled analysis, there was no significant difference in one-, three-, and five-year OS and one-year disease-free survival between TACE+RFA and surgical resection. There were statistically significant differences favoring surgical resection in three-year disease-free survival (odds ratio [OR] 0.78, 95% confidence interval [CI] 0.62 to 0.98, p=0.03) and five-year disease-free survival (OR 0.74, 95% CI 0.58 to 0.95, p=0.02) compared to TACE+RFA. In the propensity matched analysis, the difference in three- and five-year disease-free survival was not significant.

Han (2020) reported a systematic review comparing MWA and RFA for early stage hepatocellular carcinoma.[7] Five RCTs, one prospective cohort studies and 20 retrospective cohort studies were included, for a total of 4,396 patients. Four of the RCTs were rated as high quality and one as low quality. Of the remaining studies, 16 were rated as high quality and five as low quality. According to the meta-analysis, there were no statistically significant differences between MWA and RFA for disease progression (OR=0.877, 95% CI 0.710 to 1.084, I²=0%, p =0.225), or survival, either overall or disease-free (hazard ratio [HR]=0.891 and 1.014, p=0.222 and 0.852, respectively). Only six studies reported the OS rates, with five reporting one-year, five reporting three-year, and three reporting five-year OS. The one-, three-, and five-year OS estimates were 88.00% (95% CI 72.30% to 100%), 47.00% (95% CI 23.50 to 70.50%), and 17.00% (95% CI 0 to 34.60%) for LITT; 95.10% (95% CI 91.20 to 99.00%), 76.83% (95% CI 67.00 to 86.60%), and 27.00% (95% CI 11.00 to 51.00%) for RFA; not reported, 66.67% (95% CI 29.40 to 103.90%), and 33.33% (95% CI 0 to 70.60%) for MWA; and 91.49% (95% CI 83.70 to 99.30%), 79.3% (95% CI 59.70 to 98.90%), and not reported for PC.

Xiang (2020) published a systematic review and pooled analysis of multiple types of magnetic resonance-guided ablation techniques for the treatment of liver tumors.[8] Thirty studies (14 on RFA, one on MWA and RFA, eight on LITT, two on percutaneous cryoablation, and one on percutaneous ethanol injection) met inclusion criteria. No quality assessment was reported. The rates of complete ablation were 95.60%, 98.86%, 77.78%, 47.92%, and 85.71% in patients who underwent RFA, MWA, LITT, PC, and PEI, respectively.

Glassberg (2019) performed a systematic review and meta-analysis comparing MWA and RFA for the treatment of liver cancer.[9] A total of 28 RCTs and observational studies met inclusion criteria. The overall quality of the studies was rated as acceptable and most studies had low or unclear risk of bias across most domains. The meta-analysis indicated that local tumor progression was significantly reduced in patients treated with MWA as compared to RFA, whether the analysis included all studies (30% reduction, risk ratio [RR]=0.70, p=0.02) or RCTs only (45% reduction, RR=0.55, p=0.007). No other efficacy or safety outcomes were found to be significantly different between groups.

Di Martino (2019) compared local ablative therapies for resectable colorectal liver metastases in a systematic review and meta-analysis.[10] Therapies evaluated included RFA, MWA, cryoablation and electroporation. A total of 20 studies with 860 patients met inclusion criteria. Surgical resection was superior to local ablative therapies with respect to disease-free survival, tumor progression, and overall survival. Compared to surgical resection, RFA reduced one-year disease-free survival (RR 0.83, 95% CI 0.71 to 0.98), three-year disease-free survival
A meta-analysis by Meijerink (2018) compared RFA and MWA to systemic chemotherapy and to partial hepatectomy (PH) for the treatment of colorectal liver metastases.[11] Forty-eight articles were identified, most of which were observational studies and case series, although two RCTs and eight systematic reviews were included. The authors found 18 observational studies of very low quality that looked at RFA alone compared to PH alone or PH plus RFA. For OS, their analysis concluded that PH alone was superior to RFA alone (HR=1.78; 95% CI 1.35 to 2.33). The meta-analysis for 30-day mortality comparing RFA alone to PH alone showed no difference between the two interventions (RR=0.64; 95% CI 0.21 to 1.95). DFS was higher for PH alone over RFA alone (HR=1.49; 95% CI 1.23 to 1.81), as well as for local progression-free survival (HR=5.36; 95% CI 1.64 to 17.52). However, complication rates were lower for RFA alone than for PH alone (risk ratio=0.47; 95% CI 0.28 to 0.78). One limitation of this review is that the included observational studies were all confounded by indication because RFA was only performed on unresectable lesions. Observational studies are also at increased risk for publication bias.

Majumdar (2017) published a Cochrane review and network meta-analysis of the management of early and very early-stage HCC.[12] Reviewers included 14 RCTs (total n=2533 patients) of nonsurgical treatments compared with each other, sham, or no intervention in patients with unresectable HCC. The quality of the evidence was rated as low or very low for all outcomes. Follow-up ranged from 6 to 37 months. Compared with RFA, mortality was higher for percutaneous acetic acid injection (HR=1.8; 95% CI 1.1 to 2.8; one trial; n=125) and PEI (HR=1.49; 95% CI 1.2 to 1.9; five trials; n=882). No trials reported health-related quality of life.

In 2016, Lan published a network meta-analysis comparing different interventional treatments for early stage HCC.[13] A total of 21 RCTs were included that compared transhepatic arterial chemoembolization (TACE), RFA, percutaneous ethanol injection (PEI), and hepatic resection, or combinations of treatments. These studies were all rated at a low-to-moderate risk of bias, with lack of blinding being the most substantial limitation. The primary outcome measures were overall survival (OS) at one, three, and five years posttreatment. The treatments and combinations of treatments were rank-ordered by results on OS. At each time point, the combination of RFA plus TACE was the number one ranked treatment. The combination of RFA plus TACE ranked second highest at one and three years, and was third highest at five years, with hepatic resection ranked second at five years. RFA alone was ranked as the fourth highest treatment at one year and the fifth highest treatment at three and five years.

In 2016, Facciorusso reported results from a systematic review and meta-analysis of one RCT and six retrospective studies (n=774) comparing RFA and MWA for the treatment of unresectable hepatocellular carcinoma (HCC).[14] The authors found a non-significant trend of higher complete response rates in the patients treated with MWA (OR=1.12, 95% CI 0.67 to 1.88, p = 0.67). Overall local recurrence was similar between the two treatment groups (OR 1.01, 95% CI 0.53 to 1.87, p=0.98) but MWA outperformed RFA in cases of larger nodules (OR 0.46, 95% CI 0.24 to 0.89, p=0.02). Three-year survival was higher after RFA without statistically significant difference (OR 0.95, 95% CI 0.58 to 1.57, p=0.85). Major complications were more frequent, although not significantly, in MWA patients (OR 1.63, 95% CI 0.88 to 3.03, p=0.12).
In a 2013 Cochrane review, Weis reviewed studies on RFA for HCC versus other interventions.[15] Moderate-quality evidence demonstrated hepatic resection had superior survival outcomes compared with RFA; however, resection might have greater rates of complications and longer hospital stays. Other systematic reviews and meta-analyses have also found superior survival with hepatic resection but higher rates of complications than RFA.[16-19] This finding reinforces the use of RFA only for unresectable HCC. The Cochrane review also reported finding moderate quality evidence demonstrating superior survival with RFA over PEI.[15] Evidence on RFA versus acetic acid injection, microwave ablation, or laser ablation was insufficient to draw conclusions.[15]

RADIOFREQUENCY ABLATION

RFA AS A PRIMARY TREATMENT OF HEPATOCELLULAR CANCER

Systematic Reviews

Jia (2021) performed a meta-analysis to compare clinical efficacy between RFA and surgical resection in patients with HCC meeting Milan criteria.[20] The analysis only included RCTs, accounting for eight trials (n=1,177). There were no significant differences found between RFA and surgical resection in OS and disease-free survival (DFS) rates. In a subgroup analysis stratifying by tumor size, there was still no significant differences between the two therapies for both tumors ≤4 cm and >4 cm. Limitations of the analysis include inclusion of clinical trials with small sample sizes and a lack of double blinding as it is not feasible.

Pan (2020) reported a systematic review comparing stereotactic body radiotherapy and RFA for hepatocellular carcinoma.[21] No RCTs and 10 retrospective studies (n=2,732 patients) met inclusion criteria. Over half of the studies were giving a medium score for quality because of inconsistent comparability. According to the meta-analysis, SBRT had significantly higher one- and three-year local control (OR 0.42, 95% CI 0.24 to 0.74, p=0.003; and OR 0.54, 95% CI 0.37 to 0.80, p=0.002, respectively) and significantly shorter one- and two-year OS (OR 1.52, 95% CI 1.21 to 1.90, p=0.0003; and OR 1.66, 95% CI 1.38 to 2.01, p<0.00001, respectively). When used as a bridge to treatment, no significant differences were identified between groups in transplant rate or post-transplant pathological necrosis rate (OR 0.57, 95% CI 0.32 to 1.03, p=0.060; and OR 0.49, 95% CI 0.13 to 1.82, p=0.290, respectively).

Jin (2020) performed a systematic review of RCTs comparing laparoscopic hepatectomy and RFA for HCC.[22] Seven RCTs met inclusion criteria. The studies were at unclear risk of bias for allocation concealment and blinding (participants, personnel, and outcome assessment) and low risk of reporting and attrition bias. Pooling of the five studies that reported duration of surgery showed that the RFA group had significantly shorter duration than the hepatectomy group (MD=−99.04; 95% CI −131.26 to −66.82; p<0.001; I²=95%). Four studies reported the incidence of cancer recurrence, and pooled data from these RCTs indicated a higher rate of recurrence in the RFA group (OR=2.68; 95% CI 1.72 to 4.18; p<0.001; I²=23%). The pooled data from the four RCTs that reported on estimated bleeding volume during surgery and duration of hospital stay showed that the RFA group had significantly lower volume (MD=−241.97; 95% CI −386.93 to −97.02; p< 0.001; I²=97%) and shorter duration (MD=−3.4; 95% CI −5.22 to −1.57; p<0.001; I²=94%) than the hepatectomy group. Pooling of the three studies that reported the incidence of blood transfusion during surgery indicated significantly lower incidence in the RFA group (OR=0.08; 95% CI 0.02 to 0.37; p=0.001; I²=0%).
Li (2019) performed a systematic review and meta-analysis to compare the effectiveness of laparoscopic hepatectomy and RFA. A total of 10 studies met inclusion criteria. This included 1,570 HCC patients treated with laparoscopic hepatectomy or RFA. The pooled five-year OS rate was significantly higher in the hepatectomy group (OR=0.53, 95% CI=0.40, 0.69, p<0.001) analyzed as a whole and in a subgroup analysis of small HCCs (OR=0.47, 95% CI=0.33, 0.66, p<0.001). The hepatectomy group also had better one- and three-year disease-free survival rate and a lower recurrence rate, but additionally a higher complication rate (OR=0.64, 95% CI 0.46 to 0.89, p=0.008).

Si (2019) reported results of a systematic review and meta-analysis of minimally invasive liver surgery compared to RFA for the treatment of small HCC nodules. A total of six studies met inclusion criteria, including 313 RFA-treated and 284 surgically treated patients. Three-year OS rates were significantly higher in the surgically treated patients (OR 0.55; 95% CI 0.36 to 0.84), as were three-year disease-free survival rates (OR 0.63; 95% CI 0.41 to 0.98). RFA-treated patients experienced significantly higher rates of local intrahepatic recurrence (OR 2.24; 95% CI 1.47 to 3.42), lower incidence of postoperative complications (OR 0.34; 95% CI 0.22 to 0.53), and shorter operation (OR -145.31, 95% CI -200.24 to -90.38) and hospitalization (OR -4.02, 95% CI -4.94 to -3.10) durations.

Another systematic review comparing surgery to RFA, this one of early HCC, was reported by Tan (2019). A total of 11 studies met inclusion criteria. These included 1,691 patients undergoing hepatic resection or RFA. The hepatic resection group had statistically significantly higher three- and five-year OS, as well as three-year disease-free survival. This group also had a lower local recurrence rate that did not reach statistical significance. Patients undergoing laparoscopic radiofrequency ablation had higher three- and five-year OS than other minimally invasive ablation techniques.

In 2012, Xu reported on a meta-analysis of 13 studies that compared RFA with surgical resection for early HCC. Only two studies were RCTs. Surgical resection was done in 1233 patients and RFA was used in 1302 patients. Surgical resection patients had significantly longer OS rates at one, three, and five years than RFA patients (OR 0.60; 95% CI 0.42 to 0.86, OR=0.49; 95% CI 0.36 to 0.65; OR=0.60; 95% CI 0.43 to 0.84), respectively. When only HCC tumors of 3 cm or less were analyzed, resection still had significantly better OS than RFA at one, three, and five years. Recurrence rates were also significantly lower in the surgical resection group at one, three, and five years than in the RFA group (OR=1.48; 95% CI 1.05 to 2.08; OR=1.76; 95% CI 1.49 to 2.08; OR=1.68; 95% CI 1.21 to 2.34; all respectively). Local recurrence rates did not differ significantly between procedures. Complication rates were higher with resection than with RFA (OR=6.25; 95% CI 3.12 to 12.52; p=0.000), but, in a subanalysis of HCC 3 cm or less, complication rates were significantly lower with resection than RFA.

Randomized Controlled Trials

No randomized trials published after the above systematic reviews were identified.

Nonrandomized Studies

A large body of case series, meta-analyses, and retrospective evidence has been published on RFA as a treatment of unresectable primary liver tumors. These articles reported disease-free survival rates consistent with those reported in the randomized controlled trials.
RFA AS A PRIMARY TREATMENT OF INTRAHEPATIC CHOLANGIOCARCINOMAS

Cholangiocarcinomas are tumors that originate in the bile duct epithelium; 90% are adenocarcinomas. Intrahepatic cholangiocarcinomas (ICC) are located within the hepatic parenchyma. They may also be referred to as peripheral cholangiocarcinomas. Extrahepatic cholangiocarcinomas (ECC) are more common than intrahepatic cholangiocarcinoma and are located within the extrahepatic bile duct. Complete resection with negative margin is potential curative, though recurrence is common and most cases are unresectable due to advanced disease when diagnosed. For unresectable or metastatic cholangiocarcinomas at any location, the primary treatment may include chemotherapy, treatment within a clinical trial, or best supportive care. RFA and other locoregional therapies may be an option. Biliary drainage with biliary stenting may be warranted for unresectable or metastatic extrahepatic disease. Liver transplantation is potentially curative in carefully selected patients with lymph node negative, nondissemiated locally advanced hilar cholangiocarcinomas and otherwise normal biliary and hepatic function or underlying liver disease precluding surgery.

A number of small (n<20) retrospective analyses and case series have been published for ablation of ICC. These studies consistently reported high technical effectiveness with early tumor necrosis, and a low rate of major adverse effects.

RFA AS A PRIMARY TREATMENT OF LIVER METASTASES OF COLORECTAL AND NEUROENDOCRINE ORIGIN

Colon Cancer

More than half of patients with colorectal cancer (CRC) will develop liver metastases, generally with a poor prognosis. A median survival of 21 months has been observed in patients with a single CRC liver metastasis; those with several unilobar lesions have median survival of 15 months; and those with disseminated metastases have median survival of less than one year. A number of first-line systemic chemotherapy regimens have been used to treat metastatic CRC, with a two-year survival rate of 25% for those treated with 5-fluouracil (5-FU) or 5-FU plus leucovorin. With the introduction of newer agents (e.g., irinotecan, oxaliplatin) and targeted drugs (e.g., cetuximab, bevacizumab), two-year survival rates have increased to between 30% and 39%, with marked improvement in OS. Because the liver is often the only site of metastases from CRC, however, locoregional therapies have been investigated. Surgical resection is considered the criterion standard for treatment of CRC liver metastases, with five-year actuarial survival rates that historically range from 28% to 38%, but may reach 58% in appropriately selected, resectable patients without widely disseminated disease. However, only 10% to 25% of patients with CRC metastases are eligible for surgical resection because of the extent and location of the lesions within the liver or because of the presence of comorbid conditions or disseminated disease. Unresectable cases or those for whom surgery is contraindicated typically are treated with systemic chemotherapy, with poor results and considerable adverse effects.

Alternatively, RFA has been proposed to treat metastatic CRC in the liver. Early clinical experience with RFA comprised case series to establish feasibility, safety, tolerability, and local therapeutic efficacy in short-term follow-up. A 2006 literature review encompassing six case series (total n=446 patients) showed that RFA of unresectable CRC metastases was associated with one-, two-, and three-year survival rates that ranged from 87% to 99%, 69% to 77%, and 37% to 58%, respectively. While these results suggested RFA may have clinical benefit in this setting, a primary caveat is the definition of the term “unresectable” in the...
different series and that different surgeons may have different opinions on this issue. Further, differences in lesion size, number, distribution, prior treatments, RFA technology, and physician experience may affect results, making it difficult to compare results of different studies.

Systematic Reviews

Hao (2020) reported a systematic review and meta-analysis of RFA versus liver resection for solitary colorectal liver metastases.[46] A total of 10 studies met inclusion criteria. Study quality was not assessed. Significant interstudy heterogeneity was identified. Statistically significant differences were identified in the meta-analysis for one-year PFS (RR 0.77 95% CI 0.630 to 0.940, p=0.009), three-year OS (RR 0.860, 95% CI 0.760 to 0.980, p=0.021, and five-year OS (RR 0.66, 95% CI 0.52 to 0.85, p=0.001), with superior outcomes in the resection group. There was significantly lower incidence of postoperative complication in the RFA group (RR 0.340, 95% CI 0.230 to 0.510, p=0.000). The subgroup analysis identified the following variables as contributing to the heterogeneity: publication year, geographic location, tumor size, adjuvant chemotherapy, and synchronous metastases.

A 2017 systematic review with meta-analyses by van Amerongen compared the RFA to surgery as a curative treatment for patients with colorectal liver metastases.[47] Authors found that all studies included had risk of patient selection bias.

A 2012 systematic review by Cirocchi analyzed 17 nonrandomized studies and a meeting abstract of an RCT on RFA for CRC liver metastases.[48] The RCT reported PFS was significantly higher in 60 patients receiving RFA plus chemotherapy than in 59 patients receiving only chemotherapy. The RCT did not report OS. This Cochrane review found different types of vulnerability in all reviewed studies. Of main concern was the imbalance in patient characteristics across studies reviewed, as well as heterogeneity in the interventions, comparisons, and outcomes. Therefore, the reviewers concluded the evidence was insufficient to recommend RFA for CRC liver metastasis. In a 2014 Health Technology Assessment, Loveman also found insufficient evidence to draw conclusions on the clinical effectiveness of ablative therapies, including RFA, for liver metastases.[49]

In 2012, Weng reported a meta-analysis comparing RFA with liver resection for the treatment of CRC liver metastases.[50] One prospective study and 12 retrospective studies were included in the analysis. OS at three and five years was significantly longer in liver resection than in RFA (relative risk [RR], 1.377; 95% CI 1.246 to 1.522; RR=1.474; 95% CI 1.284 to 1.692, respectively). DFS was also significantly longer in liver resection than RFA at three and five years (RR=1.735; 95% CI 1.483 to 2.029; RR=2.227; 95% CI 1.823 to 2.720, respectively). While postoperative morbidity with liver resection was significantly higher than with RFA (RR=2.495; 95% CI 1.881 to 3.308), mortality did not differ significantly between treatments. Liver resection also performed significantly better than RFA when data were analyzed in three subgroups: tumors less than 3 cm, solitary tumor, and open or laparoscopic approach. However, hospital stays were significantly shorter (9.2 days vs 3.9 days, p<0.01) and rates of complications lower (18.3% vs 3.9%, p<0.01) with RFA than liver resection. Interpretation of the meta-analysis is limited by the retrospective nature of most studies.

Randomized Controlled Trials

In 2012 and 2017, Ruers published the results of a multicenter RCT that compared RFA plus systemic treatment with systemic treatment alone for unresectable colorectal liver...
metastases.[51, 52] This RCT, originally designed as a phase 3 study, was completed as a phase 2 study due to slow accrual (n=119 patients). To be included in the trial, patients had to have nonresectable liver metastases with fewer than 10 nodes and without extrahepatic disease. In the experimental arm, RFA, with or without additional resection, was given in combination with systemic therapy. The primary end point was a 30-month survival higher than 38% in the experimental arm with intention-to-treat analysis. At three years, OS did not differ significantly between groups. However, there was a significant improvement in progression-free survival (HR=0.74; 95% CI 0.42 to 0.95; p=0.025), which corresponded to a difference in progression-free survival at three years from 10.6% in the systemic therapy arm to 27.6% in the combined treatment arm. At a median follow-up of 9.7 years, 39 (65%) of 60 patients in the combined treatment arm had died compared with 53 (89.8%) of 59 in the systemic treatment arm (HR=0.58; 95% CI 0.38 to 0.88; p=0.01).

Nonrandomized Studies

Nonrandomized studies in which RFA was compared to resection or systemic chemotherapy in patients with localized CRC metastases and no evidence of additional metastatic disease have been conducted. Tago reported a retrospective analysis in 2021 of CRC patients with liver metastases who underwent RFA (n=26), resection (n=92), or chemotherapy (n=29).[53] Median OS was 44.9, 49.5, and 11.6 months in the RFA, resection, and chemotherapy groups, respectively, with statistically significant differences between RFA and resection (p=0.027), and RFA and chemotherapy (p=0.003). Five-year OS was not significantly different between RFA and resection (p=0.508).

In 2016, Hof compared outcomes from RFA or hepatic resection in patients with hepatic metastases from CRC.[54] There were 431 patients included from an institutional database. All patients underwent locoregional treatment for hepatic metastases from CRC. Initial treatment was either hepatic resection (n=261), open RFA (n=26), percutaneous RFA (n=75), or a combination of resection plus RFA (n=69). Mean follow-up was 38.6 months. The overall recurrence rate was 83.5% (152/182) in patients treated with RFA compared to 66.6% (201/302) in patients treated with hepatic resection (p<0.001). The five-year OS estimate by Kaplan-Meier analysis was 51.9% for RFA and 53.0% for hepatic resection (p=0.98).

Abdalla examined recurrence and survival rates for clinically similar patients treated with hepatic resection only (n=190), resection plus RFA (n=101), RFA only (n=57, open laparotomy by hepatobiliary surgeon), and systemic chemotherapy alone (n=70).[55] In the key relevant comparison, RFA versus chemotherapy in chemotherapy-naive patients with nonresectable CRC metastases (median, one lesion per patient; range, 1 to 8; median tumor size, 2.5 cm), OS at four years was 22% in the RFA group and 10% in the chemotherapy group (p=0.005). Median survival was estimated at 25 months in the RFA group and 17 months in the chemotherapy group (p not reported). Recurrence at a median follow-up of 21 months was 44% in the RFA group and 11% in the resection-only group (p<0.001), although the proportion of patients with distant recurrence as a component of failure was similar (41% resection vs 40% RFA, p=NS).

In a second trial, a consecutive series of well-defined, previously untreated patients (n=201) without extrahepatic disease underwent laparotomy to determine therapeutic approach.[56] Three groups were identified: those amenable to hepatic resection (n=117); those for whom resection plus local ablation were indicated (RFA, n=27; cryoablation, n=18); and those deemed unresectable and unsuitable for local ablation (n=39) who received systemic
chemotherapy. Median OS was 61 months (95% CI 41 to 81 months) in resected patients (median, one tumor per patient; range, 1 to 9; median diameter, 3.8 cm), 31 months (95% CI 20 to 42 months) in locally ablated patients (median, four tumors per patient; range, 1-19; median diameter, 3 cm per lesion), and 26 months (95% CI 17 to 35 months) in the chemotherapy patients (median, four tumors per patient; range, 1 to 17; median diameter, 4 cm per lesion; p=NS, ablated vs chemotherapy). Results from two validated quality-of-life instruments (EuroQol-5D, EORTC QLQ C-30) showed that patients treated by local ablation returned to baseline values within three months, whereas those treated with chemotherapy remained significantly lower (ie, worse quality of life) than baseline over 12 months posttreatment (p<0.05).

In 2011, Van Tilborg reported long-term results in 100 patients with unresectable colorectal liver metastases who underwent a total of 126 RFA sessions (237 lesions).[57] Lesion size ranged from 0.2 to 8.3 cm (mean 2.4 cm). Mean follow-up time was 29 months (range, 6-93 months). Major complications (including abscess, hemorrhage, grounding pad burns, and diaphragm perforation) occurred in eight patients. Factors that determined the success of the procedure included lesion size and the number and location of the lesions. Local tumor site recurrence was 5.6% for tumors less than 3 cm, 19.5% for tumors 3 to 5 cm, and 41.2% for those greater than 5 cm. Centrally located lesions recurred more often than peripheral, at 21.4% versus 6.5%, respectively (p=0.009). Mean survival time from the time of RFA was 56 months (95% CI 45 to 67 months).

Neuroendocrine Cancer

Unlike the above liver tumors, the treatment benefit for RFA of neuroendocrine metastases in the liver is related to symptom control rather than survival or local recurrence. Therefore, patient selection and outcome measures in related studies focused on the level of symptoms rather than lesion size, number, and location. The primary treatment of symptomatic neuroendocrine tumor (NET) metastases is chemotherapy.

Systematic Reviews

Most reports of RFA treatment for neuroendocrine liver metastases include small numbers of patients or subsets of patients in reports of more than one ablative method or very small subsets of larger case series of patients with various diagnoses. A systematic review of RFA as treatment for unresectable metastases from neuroendocrine tumors was published in 2015.[58] Seven unique studies (total n=301 patients) included in the review, all were retrospective case series from a single institution. The most common tumor type was carcinoid (59%), followed by nonfunctional pancreatic tumors (21%) and functional pancreatic tumors (13%). There were two periprocedural deaths (rate, 0.7%), and the overall rate of complications was 10% (including hemorrhage, abscess, viscus perforation, bile leak, biliopleural fistula, transient liver insufficiency, pneumothorax, grounding pad burn, urinary retention, pneumonia, pleural effusion). Improvement in symptoms was reported in 92% (117/127) of symptomatic patients, with a median duration of symptom relief ranging from 14 to 27 months. There was a high degree of variability in the length of follow-up and surveillance used for follow-up, and a wide range of local recurrence rates, from less than 5% to 50%. The reported five-year survival rates ranged from 57% to 80%.

Randomized Controlled Trials
No randomized controlled trials of RFA as a treatment for neuroendocrine metastases in the liver were identified.

Nonrandomized Studies

Fairweather (2017) compared OS in patients with neuroendocrine liver metastases (N=649) from a large prospective database.[59] Primary treatment modalities included: systemic therapy (n=316), chemoembolization (n=130), observation (n=117), surgical resection (n=58), and RFA (n=28). The most favorable 10-year OS estimates were achieved with surgical resection (70%), followed by RFA (55%), systemic therapy (31%), chemoembolization (28%), and observation (20%).

Berber (2008) analyzed a large series of liver tumors treated with RFA.[60] Of 1,032 tumors in the study, 295 were neuroendocrine tumor metastases. The mean number of lesions treated was 5.6 (range, 1 to 16) and mean lesion size was 2.3 cm (range, 0.5 to 10.0 cm). Local recurrence rates were lower in patients with neuroendocrine tumors than in patients with other tumor types: neuroendocrine tumors (19/295 [6%]), colorectal metastases (161/480 [24%]), non–colorectal, non–neuroendocrine metastases (28/126 [22%]), and HCC (23/131 [18%]). In patients with neuroendocrine tumors, 58% of the recurrences were evident at one year and 100% at two years versus 83% at one year and 97% at two years for colorectal metastases. Eight neuroendocrine tumors were eligible for repeat RFA; seven were retreated, and one was not. Symptom control and survival were not reported.

Mazzaglia reported on a series gathered over 10 years for 63 patients with neuroendocrine metastases who were treated with 80 sessions of LRFA.[61] Tumor types were 36 carcinoid, 18 pancreatic islet cell, and nine medullary thyroid cancer. Indications for study enrollment were liver metastases from neuroendocrine tumors, enlarging liver lesions, worsening of symptoms, and/or failure to respond to other treatment modalities and predominance of disease in the liver; patients with additional minor extrahepatic disease were not excluded. RFA was performed 1.6 years (range, 0.1 to 7.8 years) after diagnosis of liver metastases. Fourteen patients had repeat sessions for disease progression. The mean number of lesions treated at the first RFA session was six and the mean tumor size was 2.3 cm. One week after surgery, 92% of patients had at least partial symptom relief and 70% had complete relief. Symptom control lasted 11 months. Median survival times were 11 years postdiagnosis of the primary tumor, 5.5 years postdiagnosis of the neuroendocrine hepatic metastases, and 3.9 years after the first RFA treatment.

Elias reported on 16 patients who underwent a one-step procedure comprising a combination of hepatectomy and RFA for treatment of gastroenteropancreatic endocrine tumors.[62] A mean of 15 liver tumors per patient were surgically removed, and a mean of 12 were ablated using RFA. Three-year survival and DFS rates were similar to those observed in the authors’ preliminary series of 47 patients who had hepatectomy with a median of seven liver tumors per patient. Venkatesan reported on six patients treated for pheochromocytoma metastases.[63] Complete ablation was achieved in six of seven metastases. Mean follow-up was 12.3 months (range, 2.5 to 28 months).

RFA AS A PRIMARY TREATMENT OF UNRESECTABLE LIVER METASTASES OF OTHER ORIGIN

Breast Cancer
A number of case series have reported on use of RFA to treat breast cancer liver metastases. In 2014, Veltri analyzed 45 women treated with RFA for 87 breast cancer liver metastases (mean size, 23 mm). Complete ablation was seen on initial follow-up in 90% of tumors, but tumor recurrence occurred in 19.7% within eight months. RFA did not impact OS, which at one year was 90% and at three years was 44%.

In a retrospective review, Meloni assessed local control and intermediate- and long-term survival in 52 patients. Inclusion criteria were fewer than five tumors, maximum tumor diameter of 5 cm, and disease confined to the liver or stable with medical therapy. Complete tumor necrosis was achieved in 97% of tumors. Median time to follow-up from diagnosis of liver metastasis and from RFA was 37.2 and 19.1 months, respectively. Local tumor progression occurred in 25% of patients, and new intrahepatic metastases developed in 53%. Median OS, from the time of first liver metastasis diagnosis, was 42 months, and five-year survival was 32%. Patients with tumors 2.5 cm in diameter or larger had worse prognoses than those with smaller tumors. The authors concluded that these survival rates were comparable to those reported in the literature for surgery or laser ablation. In another series of 43 breast cancer patients with 111 liver metastases, technical success (tumor ablation) was achieved in 107 (96%) metastases. During follow-up, local tumor progression was observed in 15 metastases. Estimated median OS was 58.6 months. Survival was significantly lower among patients with extrahepatic disease, with the exception of skeletal metastases.

A series of 19 patients was reported by Lawes. Eight patients had disease confined to the liver, with 11 also having stable extrahepatic disease. At the time of the report, seven patients, with disease confined to the liver at presentation, were alive, as were six with extrahepatic disease; median follow-up after RFA was 15 months (range, 0 to 77 months). Survival at 30 months was 41.6%. RFA failed to control hepatic disease in three patients.

Sarcoma

Jones evaluated RFA in a series of patients with sarcoma. Thirteen gastrointestinal stromal tumor (GIST) patients and 12 with other histologic subtypes received RFA for metastatic disease in the liver: 12 responded to the first RFA procedure and one achieved stable disease. Two GIST patients received RFA on two occasions for separate lesions within the liver, and both responded to the second RFA procedure. Of the other subtypes, seven underwent RFA to liver lesions, five of whom responded to RFA, one progressed, and one was not assessable at the time of analysis. RFA was well-tolerated in this series of sarcoma patients. RFA may have a role in patients with GIST who have progression in a single metastasis but stable disease elsewhere. The authors advised conducting further larger studies to better define the role of this technique in this patient population.

A case series of 66 patients who underwent hepatic resection (n=35), resection and RFA (n=18), or RFA alone (n=13) was reported by Pawlik. After a median follow-up of 35.8 months, 44 patients had recurrence (intrahepatic only, n=16; extrahepatic only, n=11; both, n=17). The one-, three-, and five-year OS rates were 91.5%, 65.4%, and 27.1%, respectively. The authors recommended that patients with metastatic disease who can be rendered surgically free of disease be considered for potential hepatic resection.

RFA AS A TREATMENT OF UNRESECTABLE HCC TUMORS IN THE TRANSPLANT SETTING

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
The goal of RFA prior to transplantation is to maintain a patient’s eligibility for liver transplant by either downsizing a large tumor or by preventing progression of a smaller tumor. The literature related to locoregional therapy for HCC in the transplant setting can be divided into three objectives:

- Prevention of tumor progression while on the waiting list
- Downgrading HCC prior to transplantation
- To reduce risk of post-transplantation tumor recurrence in patients with T3 tumors

Assessment of the effects of pre-transplantation RFA on these objectives would, ideally, include clinical trials that compare the recurrence-free survival of patients who received pretransplant locoregional therapies with those who did not and to study recurrence-free survival in patients who received locoregional therapies to downsize larger tumor(s) or to prevent progression of smaller tumor(s) in order to meet transplant waiting list criteria.

The current published evidence is limited to case series and retrospective reviews which are considered unreliable due to methodologic limitations such as lack of randomization and lack of a control group for comparison.[70-79] In addition to these limitations, current studies targeted only a subset of candidates for liver transplant to treat HCC. Because only patients with adequate liver reserves were offered treatment, it cannot be determined whether any reported increase in recurrence-free survival was related to the pretransplant locoregional therapy or liver reserve status. It is unknown whether patients with adequate liver reserves have improved outcomes regardless of pretransplant management.

United Network for Organ Sharing policy

The United Network for Organ Sharing (UNOS) recognizes pretransplant locoregional therapies including RFA as a component of patient management during the waiting period for a donor liver.[80] In allocating donor organs, UNOS sought to balance risk of death on the waiting list against risk of recurrence after transplant. For HCC, part of this balance included tumor size and number of nodules as follows:

- T1: 1 nodule 1.9 cm or smaller
- T2: 1 nodule between 2.0–5.0 cm, or 2 or 3 nodules each smaller than 3.0 cm
- T3: 1 nodule larger than 5.0 cm, or 2 or 3 nodules with at least 1 larger than 3.0 cm

Patients with T1 lesions were considered at low risk of death on the waiting list, while those with T3 lesions were considered at high risk of post-transplant recurrence. Patients with T2 tumors were considered to have an increased risk of dying while on the waiting list compared with T1 lesions, and an acceptable risk of post-transplant tumor recurrence. Therefore, the UNOS criteria prioritized T2 HCC. In addition, patients could be removed from the waiting list if they were determined to be unsuitable for transplantation based on progression of HCC. Thus these criteria provide incentives to use locoregional therapies to maintain T2 classification.

The UNOS allocation system provides incentives to use locoregional therapies in two different settings:

To downsize T3 tumors to T2 status to meet the UNOS criteria for additional allocation points; or to prevent progress of T2 tumors while on the waiting list to maintain the UNOS allocation points.
These two indications are discussed further here. It should be noted that the UNOS policy addresses the role of locoregional therapy in the pretransplant setting as follows:

Organ Procurement and Transplant Network (OPTN) Class 5T (Treated) nodules are defined as any OPTN Class 5 or biopsy-proven HCC lesion that was automatically approved upon initial application or extension and has subsequently undergone loco-regional treatment. OPTN Class 5T nodules qualify for continued priority points predicated on the pre-treatment classification of the nodule(s) and are defined as:

- Past loco-regional treatment for HCC (OPTN class 5 lesion or biopsy proven prior to ablation).
- Evidence of persistent/recurrent HCC such as nodular or crescentic extra-zonal or intra-zonal enhancing tissue on late arterial imaging (relative to hepatic parenchyma) may be present.

OPTN guidelines also indicate “candidates whose tumors have been ablated after previously meeting the criteria for additional MELD/PELD points (OPTN Class 5T) will continue to receive additional MELD/PELD points (equivalent to a 10-percent increase in candidate mortality) every 3 months without RRB review, even if the estimated size of residual viable tumor falls below stage T2 criteria.”

Candidates with HCC not meeting transplant criteria, “including those with downsized tumors whose original or presenting tumor was greater than a stage T2, must be referred to the applicable RRB [Regional Review Board] for prospective review in order to receive additional priority.”[80]

ADVERSE EVENTS

Complication rates for RFA of liver tumors are reported in approximately 7% of patients, as compared with that of open liver resection which may be as high as 22%. [81]

Specific complications reported in the literature to date include the following:[57, 60, 81-84]

1. Hemorrhage
2. Liver Abscess
3. Liver infarction
4. Liver failure
5. Cutaneous burn
6. Diaphragm perforation
7. Bowel perforation
8. Seeding of the needle tract with cancer cells
9. Hydrothorax or hemothorax requiring drainage
10. Bile duct injury
11. Death

MICROWAVE ABLATION

MWA AS A TREATMENT OF HEPATOCELLULAR CARCINOMA

Systematic Reviews
Glassberg (2019) conducted a systematic review of MWA compared to resection in patients with HCC or metastatic liver cancer. One RCT (Xu 2015) was included; the other studies (n=15) were observational (2 prospective, 13 retrospective). Patients who received MWA had significantly higher risk of LTR compared to those who received resection (RR=3.04; p<0.001). At one year, overall survival did not differ between MWA and resection, but three- and five-year overall survival was significantly higher in patients who had received resection. Overall complications and major complications were lower with MWA compared to resection. Additionally, operative time, intraoperative blood loss, and hospital length of stay were significantly lower with MWA. Some studies included patients that were nonresectable in the MWA treatment arm, but due to limited reporting and patient preference affecting which treatment was performed, the reviewers were not able to calculate the number of patients who were nonresectable or to conduct subgroup analyses by resectable vs unresectable tumors. Microwave ablation was typically selected for patients with smaller and/or deeper tumors, more comorbidities, and a preference for a less invasive procedure. The reviewers concluded that MWA can be an effective and safe alternative to HR in patients or tumors that are not amenable to resection, but more studies are needed to determine the target population that would benefit most from MWA.

In 2017, Zhang reported results from a systematic review and meta-analysis comparing hepatic resection with microwave ablation as a treatment of hepatocellular carcinoma. Nine studies with follow-up time of three years or greater were included overall, totalling 1,480 participants. For overall survival (seven reports), studies were not found to have statistical bias, and overall heterogeneity amongst studies was not significant (I^2 =0.0%, p=0.749), however, heterogeneity amongst studies included for meta-analysis of disease-free survival (five reports) was significant (I^2 =71.1%, p=0.008). No difference was found comparing MWA to resection for OS and DFS (HR =0.98, 95% CI 0.76 to 1.26, p=0.878, and HR =1.16, 95% CI 0.79 to 1.71, p=0.442, respectively). Meta-analysis demonstrated that MWA was associated with shorter operation time (standardized mean difference [SMD] −1.37, 95% CI −1.92 to −0.81, p=0.000), less amount of blood loss in operation (SWD −1.19, 95% CI −1.76 to −0.61, p=0.000), and less complications (OR 0.22, 95% CI 0.12 to 0.40, p=0.000) than resection. The authors concluded that MWA may be superior given there were no differences identified in OS and DFS, but demonstrated fewer complications and improved intraoperative outcomes.

In 2011, Bertot conducted a systematic review evaluating mortality and complication rates of ablation techniques for primary and secondary liver tumors. This review included two studies using MWA totaling 1,185 patients. The pooled mortality rate for MWA was 0.23% (95% CI 0.0 to 0.58%). Major complication rates were 4.6% for MWA (calculated by using a random effects model since there was significant heterogeneity). The authors concluded that percutaneous ablation techniques, including MWA, are safe and have acceptable complication rates for the treatment of liver tumors.

In 2009, Ong conducted a systematic review of studies on MWA for primary and secondary liver tumors. Based on the results from 25 clinical studies, the authors concluded that MWA was an effective and safe technique for liver tumor ablation with low complication rates and survival rates comparable to hepatic resection. However, rates of local recurrence after MWA were noted to be higher than hepatic resection. In most studies of MWA, hepatocellular carcinoma recurrence rates were approximately 10% but were also noted to be as high as 50%, which the authors indicated could be addressed with further ablation. Survival rates in the studies on MWA for hepatocellular carcinoma were as high as 92% at three years and 72% at five years, which was noted to be comparable to radiofrequency ablation (RFA) and
percutaneous ethanol injections. Pain and fever were the most frequently reported complications, but complications increased when there were more tumors, larger tumors, and more microwave antennas used. The authors concluded that MWA may be a promising option for the treatment of HCC tumors but should be reserved for patients not amenable to hepatic resection. The authors also noted further randomized clinical trials are warranted to compare MWA to other ablation procedures.

Randomized Controlled Trials

Zaitoun (2021) compared the safety and efficacy of combination therapy with TACE and MWA (n=89) compared to TACE (n=84) or MWA (n=92) only in patients with solitary HCC lesions measuring between 3 to 5 cm.[92] TACE was performed first, followed by MWA after 15 days. Mean tumor size was 3.6 cm, 3.9 cm, and 3.7 cm in the TACE, MWA, and combination groups, respectively (p=0.053). Complete response at one month was achieved by 86.5% of patients who received combination therapy compared with 54.8% of patients treated with TACE and 56.5% of patients treated with MWA. Patients treated with combination therapy had a significantly lower recurrence rate at 12 months (p=0.0001) and a significantly higher OS rate at three years (69.6%; p=0.02). Post-procedural minor adverse events (e.g., nausea, vomiting, abdominal pain, and low-grade fever) were reported in 24.7%, 47.6%, and 38% of patients in the combined, TACE, and MWA groups, respectively. Severe hepatic dysfunction was observed in one patient in the combined group and three patients in the TACE group. Tumor seeding was reported in two patients in the MWA group. A decrease in alpha-fetoprotein (AFP) concentration was observed in 75%, 63%, and 48% of patients who underwent combined therapy, MWA, or TACE, respectively.

Chong (2020) conducted an RCT comparing MWA to RFA in 93 patients with HCC (up to 3 lesions of 5 cm or smaller).[93] Mean tumor size was 3.1 cm in the MWA group and 2.8 cm in the RFA group. The primary outcome of this study was the rate of complete ablation at one month, which did not differ significantly for MWA (95.7%) versus RFA (97.8%; p>0.99). Rates of OS up to five years and rates of disease-free survival up to three years were similar between groups. However, the sample size calculations were based on rates of complete ablation at one month, so the study may not have been adequately powered to detect differences in OS or disease-free survival.

Fang (2019) randomized hepatic carcinoma patients to receive conventional surgical excision (n=47) or ultrasound-guided microwave ablation (n=47).[94] Statistically significant differences (p<0.05) between groups were reported for duration of operation (shorter for MWA), quantities of intraoperative bleeding and blood transfusions (lower for surgical excision), effective rate of treatment (higher for MWA), occurrence rate of complications (lower for MWA). In addition significantly higher albumin and total bilirubin and lower alanine aminotransferase and aspartate transaminase were reported for the MWA group (p<0.05).

Older RCTs are included in the SRs above.

Nonrandomized Studies

In addition to the studies noted above, a number of nonrandomized studies have been published on the use of MWA in patients with hepatocellular carcinoma. Several examples are cited, below. The results of these studies should be interpreted with caution due to the following limitations:
• Results from small sample sizes (n<100), limit the ability to rule out the role of chance as an explanation of study findings.\cite{95-102}

• Results from studies with short-term follow-up (<one year) are not adequate to determine the durability of the treatment effect.\cite{95, 103, 104}

• A lack of comparison group, without which it is not possible to account for the many types of bias that can affect study outcomes.\cite{89, 90, 101-110}

Given the limitations noted above, nonrandomized studies do not provide reliable data to demonstrate the efficacy of MWA treatment in patients with HCC.

MWA AS A TREATMENT OF HEPATIC METASTASIS

Systematic Reviews

A 2014 Health Technology Assessment\cite{49} and a 2013 Cochrane review\cite{111} also identified only one RCT on ablation for liver metastasis, Shibata.\cite{112} The reviewers found insufficient evidence to determine any benefits of MWA for liver metastasis over surgical resection.

In 2013, Vogl reviewed evidence regarding RFA, laser-induced thermotherapy (LITT) and MWA treatment of breast cancer liver metastasis.\cite{113} Local tumor response, progression and survival rates were evaluated. Authors reported positive response rates of 63 % to 97 % in RF-ablated lesions, 98.2 % in LITT-treated lesions and 34.5-62.5 % in MWA lesions. Median survival was 10.9-60 months with RFA, 51-54 months with LITT and 41.8 months with MWA. Five-year survival rates were 27-30 %, 35 % and 29 %, respectively. Local tumour progression ranged from 13.5 % to 58 % using RFA, 2.9 % with LITT and 9.6 % with MWA. The authors called for additional, large RCTs to further explore the benefits of ablation therapies.

In the Ong review described above\cite{91}, local recurrence rates for liver metastases after treatment with MWA averaged approximately 15% but varied between 0 and 50% in the seven studies reviewed that addressed liver metastases. As noted above, Ong concluded MWA may be a promising treatment option for the treatment of liver tumors but should be reserved for patients not amenable to hepatic resection.

In 2011, Pathak also conducted a systematic review of ablation techniques for colorectal liver metastases, which included 13 studies on MWA, totaling 406 patients with a minimum of 1-year follow-up.\cite{114} Mean survival rates were 73%, 30% and 16% and ranged from 40–91.4%, 0–57% and 14–32% at one-, three-, and five-years’ follow-up, all respectively. Minor and major complication rates were considered acceptable and ranged from 6.7–90.5% and 0–19%, respectively. Local recurrence rates ranged from 2-14%. The authors acknowledged limitations in the available studies but concluded survival rates for MWA are more favorable than for palliative chemotherapy alone.

Randomized Controlled Trials

Only one RCT comparing the use of MWA for hepatic metastases to the gold standard of surgical resection was identified. In 2000, Shibata reported on a trial of 30 patients with hepatic metastases from colorectal cancer randomly assigned without stratification to treatment with either MWA after laparotomy (n=14) or hepatectomy (n=16).\cite{112} The study began with 40 patients, but 10 patients were excluded because the researchers discovered intraoperatively that these patients did not meet study criteria due to having extensive metastasis or equal to or
greater than 10 tumors. The treatment groups of MWA vs. hepatectomy were not significantly different in age (mean age 61 in both groups) number of tumors (mean 4.1 vs. 3.0, respectively) or tumor size (mean 27 mm vs. 34 mm, respectively). The authors reported no significant differences in survival rates following MWA or hepatectomy (27 months vs. 25 months, respectively) and mean disease-free survival (11.3 vs. 13.3 months, respectively). However, intraoperative blood loss was significantly lower and no blood transfusions were required in the MWA group whereas six patients in the hepatectomy group required blood transfusions. Complications in the microwave group consisted of one hepatic abscess and one bile duct fistula. In the hepatectomy group, complications were one intestinal obstruction, one bile duct fistula and one wound infection.

Nonrandomized Studies

Several nonrandomized trials regarding MWA treatment in patients with liver metastases were identified; however, these studies were limited by a lack of comparison group,[115-117] short-term follow-up[115, 116] and small sample size.[115, 117]

CRYOSURGICAL ABLATION

CRYOSURGICAL ABLATION AS A TREATMENT OF HEPATOCELLULAR CARCINOMA

The evidence regarding cryoablation as a treatment for hepatocellular carcinoma (HCC) remains controversial. However, use of cryotherapy for HCC became a standard of care and published research increased through the late 1990’s and early 2000’s. Awad published a systematic Cochrane Review in 2009, noting that the literature consisted of two prospective cohort studies and two retrospective cohort studies.[118] Overall, the Review concluded that the evidence is not sufficient to evaluate potential harms and benefits; large well-designed randomized clinical trials (RCTs) are feasible and necessary to define the role of cryotherapy in the treatment of HCC.

Since the 2009 Cochrane Systematic Review, Wang (2015) reported results from one RCT comparing the safety and efficacy of cryotherapy vs RFA.[1] One hundred eighty participants were randomized to each group, with no significant differences found at baseline between the arms, with the exception of number of tumors – 10.56% of the cryo group participants had two tumors at enrollment, compared to 5% in the RFA group. Participants were followed for five years, and there were no differences in local recurrence, new recurrence, overall survival, or tumor-free survival. At the end of follow-up, 52 patients (28.9%) in the CRYO group and 55 patients (30.6%) in the RFA group died. The causes of death included HCC progression in 44 (24.4%), hepatic failure in five (2.8%), and variceal bleeding in three (1.7%) in the CRYO group, and HCC progression in 47 (26.1%), hepatic failure in four (2.2%), variceal bleeding in two (1.1%), and refractory ascites-induced renal failure in two (1.1%) in the RFA group.

Overall, the authors concluded that patients with Child-Pugh class A-B cirrhosis and HCC lesions less than or equal to 4cm and no more than two lesions in total, percutaneous cryoablation and RFA are equally safe and effective ablation treatments. For HCC 3.1 to 4.0 cm, cryoablation was associated with a lower rate of local tumor progression than RFA.

CRYOSURGICAL ABLATION AS A TREATMENT OF LIVER METASTASES

A 2019 Cochrane SR was published by Bala evaluation the use of cryotherapy for the treatment of liver metastases.[119] The selection criteria included RCTs assessing effects of cryotherapy and its comparators for liver metastases. One RCT was identified. It compared
cryotherapy with conventional surgery for patients with liver metastases from the following primary sites: colon and rectum (66.6%), stomach (7.3%), breast (6.5%), skin (4.9%), ovaries (4.1%), uterus (3.3%), kidney (3.3%), intestines (1.6%), pancreas (1.6%), and unknown (0.8%). The SR authors were not able to calculate the risk of bias of the randomization process, allocation concealment, presence of blinding, incomplete outcome data, or selective outcome reporting bias due to insufficient reporting by the RCT authors. Follow-up was five months to 10 years. The trial reported mortality at 10 years (81% vs. 92% for cryotherapy vs. conventional therapy) and the SR authors calculated the relative risk (RR=0.88, 95% CI 0.77 to 1.02). The evidence regarding mortality was rated as low-certainty. The SR authors also calculated the chance of recurrence in the liver, which was 86% in the cryotherapy group and 95% in the conventional surgery group (RR 0.90, 95% CI 0.80 to 1.01; low-certainty evidence). The SR authors concluded that the evidence is limited and they cannot determine whether cryotherapy is beneficial or harmful compared to conventional surgery.

PERCUTANEOUS ETHANOL INJECTION

Like RFA, percutaneous ethanol injection (PEI) is most often considered a treatment option for patients with small HCC lesions who are not resection candidates. RFA and PEI are the most commonly performed ablation therapies.

Weis (2015) published a Cochrane Systematic Review that evaluated the harms and benefits of percutaneous ethanol injection (PEI) and percutaneous acetic acid injection (PAI) in adults with early HCC defined by Milam criteria, i.e., one cancer nodule up to 5 cm in diameter or up to three cancer nodules up to 3 cm in diameter compared with no intervention, sham intervention, each other, other percutaneous interventions, or surgery. One randomized trial compared PEI versus surgery; we included 76 participants in the analyses. There was no significant difference in the overall survival (HR 1.57; 95% CI 0.53 to 4.61) and recurrence-free survival (HR 1.35; 95% CI 0.69 to 2.63). No serious adverse events were reported in the PEI group while three postoperative deaths occurred in the surgery group. Given the data on PEI were available for only one RCT, the authors concluded there is insufficient evidence to determine whether PEI versus surgery was more effective for early HCC.

In a number of RCT’s, the safety and efficacy of RFA and PEI have been investigated in the treatment of Child-Pugh class A patients with early stage HCC tumors. Complication rates were relatively low for both methods.

PRACTICE GUIDELINE SUMMARY

NATIONAL COMPREHENSIVE CANCER NETWORK (NCCN)

The NCCN guidelines for hepatobiliary cancers (v.5.2021) recommend ablation be considered in patients who are not candidates for surgical curative treatments, or as part of a strategy to bridge patients for other curative therapies (category 2A). In addition, they state that "ablation alone may be curative in treating tumors ≤ 3 cm. In well-selected patients with small, properly located tumors, ablation should be considered as definitive treatment in the context of a multidisciplinary review. Lesions 3 to 5 cm may be treated to prolong survival using arterially directed therapies, alone or with combination of an arterially directed therapy and ablation as long as the tumor is accessible for ablation" (category 2A).
The NCCN guidelines for rectal (v.2.2021) and colon (v.3.2021) cancer metastatic to the liver state that “Ablative techniques may be considered alone or in conjunction with resection. All original sites of disease need to be amenable to ablation or resection.”[129, 130] (category 2A).

The NCCN guidelines for neuroendocrine tumors (v.4.2021) state that “percutaneous thermal ablation, often using microwave energy (radiofrequency and cryoablation are also acceptable), can be considered for oligometastatic liver disease, generally up to 4 lesions each smaller than 3 cm. Feasibility considerations include safe percutaneous imaging-guided approach to the target lesions, and proximity to vessels, bile ducts, or adjacent non-target structures that may require hydro- or aero-dissection for displacement [category 2B].”[131]

AMERICAN COLLEGE OF RADIOLOGY (ACR)

The 2014 ACR Appropriateness Criteria® for metastatic rectal cancer states that RFA “yields excellent local control of small (<3 cm) CRC liver metastases.”[132]

The 2011 ACR Appropriateness Criteria® considered RFA by percutaneous, open, or laparoscopic methods effective for treatment of small (≤5 cm) HCC tumors.[133] While ablative therapy is most effective for these small HCCs, moderate success has also been described with tumors <7 cm. With larger tumor number and/or size, “the operator may want to focus on arterial-based therapies and adjuvant or neoadjuvant therapy.” The 2016 guidelines were consistent with the previous recommendations.[134]

AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES

The American Association for the Study of Liver Diseases (2018) published a guideline on the treatment of hepatocellular carcinoma.[135] For adults with Child-Pugh class cirrhosis and resectable T1 or T2 hepatocellular carcinoma (HCC), the guideline suggests using resection over radiofrequency ablation (RFA; moderate quality/certainty of evidence; conditional strength of recommendation). Technical remarks in the guideline note that “Stage T1 and T2 HCC include a wide range of tumor sizes from <1 cm to 5 cm, and the effectiveness of available therapies depend in large part on the size, number, and location of the tumors. Whereas smaller, single tumors (<2.5 cm) that are favorably located may be equally well treated by either resection or ablation, tumors larger than 2.5-3 cm, multifocal, or near major vascular or biliary structures may have limited ablative options.” Additionally, the guideline highlighted that “[r]andomized trials performed to date comparing RFA to resection have been performed primarily in East Asian patients, in whom there is a higher etiologic prevalence of HBV [hepatitis B virus] (including noncirrhotic HBV-associated HCC) and a lower prevalence of other liver diseases such as NAFLD [non-alcoholic fatty liver disease] or HCV [hepatitis C virus] compared with Western patients. The impact of these demographic differences on oncologic outcomes of different therapies is unknown.”

SUMMARY

For primary tumors of the liver, and hepatic metastases from colorectal tumors or neuroendocrine tumors, there is limited research regarding locoregional ablative therapies; however, treatment options are limited in this population. Clinical practice guidelines based on research recommend ablative therapies in carefully selected patients. Therefore,
percutaneous ethanol injection, cryoablation, radiofrequency and microwave ablation may be considered medically necessary when policy criteria are met.

Due to a lack of research and clinical practice guidelines, percutaneous ethanol injection, cryoablation, radiofrequency and microwave ablation are considered investigational when the policy criteria are not met.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

69. TM Pawlik, JN Vauthey, EK Abdalla, RE Pollock, LM Ellis, SA Curley. Results of a single-center experience with resection and ablation for sarcoma metastatic to the liver. *Arch Surg.* 2006;141(6):537-43; discussion 43-4. PMID: 16785353

102. Y Xu, Q Shen, N Wang, et al. Percutaneous microwave ablation of 5-6 cm unresectable hepatocellular carcinoma: local efficacy and long-term outcomes. International journal of

124. SM Lin, CJ Lin, CC Lin, CW Hsu, YC Chen. Radiofrequency ablation improves prognosis compared with ethanol injection for hepatocellular carcinoma < or =4 cm. *Gastroenterology.* 2004;127(6):1714-23. PMID: 15578509

125. SM Lin, CJ Lin, CC Lin, CW Hsu, YC Chen. Randomised controlled trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less. *Gut.* 2005;54(8):1151-6. PMID: 16009687

SUR204 | 34

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>47370</td>
<td>Laparoscopy, surgical, ablation of one or more liver tumor(s); radiofrequency</td>
</tr>
<tr>
<td></td>
<td>47371</td>
<td>Laparoscopy, surgical, ablation of 1 or more liver tumor(s); cryosurgical</td>
</tr>
<tr>
<td></td>
<td>47380</td>
<td>Ablation, open, of one or more liver tumor(s); radiofrequency</td>
</tr>
<tr>
<td></td>
<td>47381</td>
<td>Ablation, open, of 1 or more liver tumor(s); cryosurgical</td>
</tr>
<tr>
<td></td>
<td>47382</td>
<td>Ablation, 1 or more liver tumor(s), percutaneous, radiofrequency</td>
</tr>
<tr>
<td></td>
<td>47383</td>
<td>Ablation, 1 or more liver tumor(s), percutaneous, cryoablation</td>
</tr>
<tr>
<td></td>
<td>47399</td>
<td>Unlisted procedure, liver</td>
</tr>
</tbody>
</table>

Date of Origin: June 2017

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Implantable peripheral nerve stimulation (PNS) for chronic pain of peripheral nerve origin is a type of neuromodulation therapy that involves the subcutaneous implantation of electrodes near or on a peripheral nerve that is considered to be the origin of pain. Peripheral subcutaneous field stimulation (PSFS) is a modification of PNS in which electrodes are implanted subcutaneously within the area of maximal pain with the intent of stimulating the nerves, cutaneous afferents, or the dermatomal distribution of the nerves communicating the pain. These procedures differ from other forms of electrical stimulation because the origin of pain is from a peripheral nerve or nerve field and the electrical impulses are delivered to the nerve or nerve field versus surrounding tissues or the spine.
stimulation (PSFS) for pain of peripheral nerve origin is considered **investigational** for all indications, including but not limited to chronic, postoperative, and post-traumatic pain.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

Peripheral nerve stimulation (PNS) systems vary from other electrical stimulation therapies.

- Transcutaneous electrical nerve stimulation (TENS) delivers impulses across the skin to alleviate pain. PNS is similar to TENS, except PNS requires electrodes to be inserted under the skin and targets a nerve considered to be the origin of the pain.

- Percutaneous neuromodulation therapy (PNT) is an electrical stimulation therapy in which fine filament electrodes are temporarily placed in the tissues near the area causing pain. PNS is similar to PNT, except PNS requires electrodes to be inserted under the skin and targets a nerve considered to be the origin of the pain.

- Occipital nerve stimulation (ONS) is related to PNS in that a subcutaneous electrode delivers stimulation to the occipital nerve in an attempt to prevent migraines and other headaches in patients who have not responded to medications.

CROSS REFERENCES

1. Percutaneous Neuromodulation Therapy (PNT) and Percutaneous Electrical Nerve Stimulation (PENS), Surgery, Policy No. 44
2. Spinal Cord and Dorsal Root Ganglion Stimulation, Surgery, Policy No. 45
3. Deep Brain Stimulation, Surgery, Policy No. 84
4. Occipital Nerve Stimulation, Surgery, Policy No. 174

BACKGROUND

Implantable peripheral nerve stimulation (PNS) is a type of neuromodulation that delivers electrical impulses **directly to a nerve**.

Implantable PNS therapies have been around since the 1960s. There are several implantable PNS neuromodulation therapies that use electrical stimulation for pain. Examples include, but are not limited to: occipital nerve stimulation (ONS) and spinal cord stimulation (SCS). The StimRouter®, an implantable PNS system, is being marketed specifically for chronic pain of peripheral nerve origin i.e. upper/lower limb pain, entrapment syndromes, intercostal neuralgias and other peripheral injuries or diseases. Although SCS addresses pain in the truck and limbs, the electrodes for SCS deliver electrical stimulation to the spine versus directly to the peripheral nerve pain site like the StimRouter®. The SPRINT® Peripheral Nerve Stimulation System (SPR Therapeutics, Inc) has been cleared for marketing for symptomatic relief of chronic pain, post-surgical, and post-traumatic pain of the back and extremities.

PNS systems include a neurostimulator (pulse generator), leads (thin wires with electrodes), a controller (device that allows the patient to control the device), and a programmer that allows a medical professional to make adjustments to the settings of the pulse generator. The leads are subcutaneously positioned and connected to the generator but the electrodes are not permanently implanted as in spinal cord stimulation. For example, the SPRINT® Peripheral...
Nerve Stimulation System is indicated for up to 60 days. A trial of PNS is indicated prior to permanent implantation of the generator. If the trial is successful (defined has >50% response rate in pain reduction), the generator is permanently implanted in the chest, abdomen or buttocks.

Peripheral subcutaneous field stimulation (PSFS) is a modification of peripheral nerve stimulation. In peripheral subcutaneous field stimulation, leads are placed subcutaneously within the area of maximal pain. The objective of peripheral subcutaneous field stimulation is to stimulate the region of affected nerves, cutaneous afferents, or the dermatomal distribution of the nerves, which then converge back on the spinal cord. Combination spinal cord stimulation plus peripheral subcutaneous field stimulation is also being evaluated.

REGULATORY STATUS

In July 2018, the SPRINT® Peripheral Nerve Stimulation System (SPR Therapeutics, Inc) was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process (K181422).

The SPRINT® PNS System is not intended to treat pain in the craniofacial region. The Bioness StimRouter® Neuromodulation System received FDA 510(k) approval in February 2015, October 2019, and March of 2020. The StimRouter® is not intended to treat pain in the craniofacial region.

In March of 2016, the StimQ Peripheral Nerve Stimulator (PNS) System received FDA 510(k) approval. The StimQ PNS System is not intended to treat pain in the craniofacial region.

No device has been approved specifically for peripheral subcutaneous field stimulation (PSFS) by the U.S. Food and Drug Administration (FDA). PSFS is an off-label use of spinal cord stimulation devices or peripheral nerve stimulation devices (e.g. the SPRINT® PNS System) that have been FDA approved for the treatment of pain.

EVIDENCE SUMMARY

The principal outcomes associated with treatment of pain due to any cause may include: relief of pain, improved functional level, and return to work. Relief of pain can be a subjective outcome associated with a placebo effect. Therefore, data from adequately powered, blinded, randomized controlled trials (RCT) are required to control for the placebo effect and determine if an implanted peripheral nerve stimulation (PNS) system provides a significant advantage over placebo.

Treatment with an implanted PNS system must also be evaluated in general groups of patients against the existing standard of care for the condition being treated. For example, in patients with pain symptoms, treatment with an implanted PNS system should be compared to other forms of conservative therapy such as rest, non-steroidal anti-inflammatory medications, physical therapy, or steroid injection.

IMPLANTED PERIPHERAL NERVE STIMULATION

Systematic Reviews

Ni (2021) published a systematic review with meta-analysis of 13 studies (N=221) in which PNS was evaluated for the treatment of trigeminal neuropathic pain (TNP). Eleven of the 13 studies examined effects of peripheral neuromodulation for TNP. Intractable facial pain of at least six months duration was an inclusion criterion for all included studies, with the exception...
of one study which evaluated temporary PNS for the treatment of TNP caused by herpes zoster ophthalmicus. Ten of 13 (76.9%) studies reported response rates (pain reduction over 50%) as the clinical measurement during follow-up and visual analog scale (VAS) scores were available pre- and post-treatment in eight studies (N=110). The overall estimated response rate was 60.2% (95% CI: 41.9–76.1%, I² = 70.733%, p < 0.0001) and the mean pain scores were significantly lower at follow-up compared to baseline (standard difference 2.363; 95% CI: 1.408–3.319, I² = 85.723%, p < 0.0001). Sub-analysis was conducted to evaluate outcomes by target site of stimulation. In the three studies targeting the Gasserian ganglion as the stimulation target for facial pain, the overall response rate was 29.3% (95% CI: 19.2–41.8%, I² = 0, p = 0.635) and in studies using peripheral branch stimulation, 77.6% of patients reported over 50% pain relief (p < 0.0001). Study quality review revealed most studies did not provide sufficient information to evaluate adequate blinding of outcomes assessment, and for none of the included studies was adequate information on sample size justification, power description, or variance and effect estimates provided. Improper location of electrodes, infection, and electrode defects were the most commonly reported complications. The authors conclude that "randomized, controlled, prospective studies are needed to further compare the clinical efficiency of PNS with other conventional treatments for TNP."

Randomized Controlled Trials

Ilfeld (2021) published the results of a randomized controlled pilot study of PNS for the treatment of acute postoperative pain.[11] In this study, an electrical lead was percutaneously implanted preoperatively to target the sciatic nerve for major foot/ankle surgery (e.g., hallux valgus correction), the femoral nerve for anterior cruciate ligament reconstruction, or the brachial plexus for rotator cuff repair, followed by a single injection of long-acting local anesthetic along the same nerve/plexus. Postoperatively, participants were randomized to 14 days of either electrical stimulation (n = 32) or sham stimulation (n = 34). Coprimary outcome measures were cumulative opioid consumption and mean average daily pain scores on a 0 to 10 Numeric Rating Scale within the first seven postoperative days. The authors found opioid use in the active stimulation group was a median (interquartile range) of 5 mg (0 to 30) and 48 mg (25 to 90) in the sham treatment group (ratio of geometric means, 0.20 [97.5% CI, 0.07 to 0.57]; p < 0.001). The average pain intensity in the active stimulation group was (mean ± SD) 1.1 ± 1.1 and 3.1 ± 1.7 in the sham group (difference, −1.8 [97.5% CI, −2.6 to −0.9]; p < 0.001). This pilot study is severely limited by the short follow-up time of seven days, precluding evaluation of mid- or longer-term safety and effectiveness of the intervention. A larger, longer-term randomized controlled trial is anticipated.

In an industry-sponsored randomized controlled trial (RCT) published by Gilmore (2019), 28 lower-extremity amputees with postamputation pain were randomized to PNS or placebo for four weeks.[12] A significantly greater proportion of subjects receiving peripheral nerve stimulation (PNS) (n=7/12, 58%, p=0.037) demonstrated ≥50% reductions in average postamputation pain up to four weeks compared with subjects receiving placebo (n=2/14, 14%). In addition, a significantly greater proportion of PNS subjects reported ≥50% reductions in pain and pain interference after eight weeks of therapy compared with subjects receiving placebo, however the partial crossover design of this study prevents evaluation of placebo effects beyond four weeks. Twelve-month follow-up is ongoing. Overall, the study is limited by a small sample size which limits generalizability.

The results of an RCT of PNS compared to usual care (UC) for hemiplegic shoulder pain was published by Wilson (2016).[13] The study included 25 participants (12 PNS and 12 UC).
Although pain reduction with PNS treatment group was reported as significantly greater than the UC group, the per-protocol analysis of 21 participants showed significant reductions in pain in both groups and no significant slope difference between groups during the study. In addition, no significant group differences were observed for secondary outcome measures including pain interference, physical functioning, and global success rates. The authors concluded that additional RCTs are needed to determine treatment effectiveness.

Deer (2015) published a multicenter, randomized, double-blinded, partial crossover study addressing the safety and efficacy of the StimRouter® neuromodulation system for 94 patients with chronic pain of peripheral nerve origin (upper or lower extremity or trunk).[14] The patients were assigned to the StimRouter® group (n=45) or the control group (n=49). Efficacy was evaluated for three months and safety for one year. Primary outcomes included pain relief and safety. At three months the StimRouter® group reported 27.2% pain reduction vs. the control group 2.3%. Fifty-one percent of patients did not follow-up at one year. No serious adverse events were reported related to the device. A significant limitation of the study is the small sample size and large loss to follow-up.

Nonrandomized Studies

Warner (2020) published a retrospective case series of 72 patients who had undergone PNS implantation for treatment of various indications including occipital neuralgia (47%) and lower-extremity neuropathies (17%).[15] Six-month outcomes were assessed by numerical rating scale pain scores, opioid utilization, and self-reported functioning. Infection and device-related complications were also assessed. PNS implantation was associated with reductions in pain scores (p<0.001) and opioid utilization (p<0.001). Postoperative surgical site infection was found in ten percent of patients leading to device removal in five patients. No comparison to standard of care was provided.

A retrospective chart review including data from 240 patients implanted with a PNS, 165 of whom were being treated for complex regional pain syndrome, was published by Chmiela in 2020.[16] Median length of follow-up was 74 months. Pain scores at 12-month follow-up were decreased by an estimated 1.87 points (95% CI: [1.29, 2.46], paired t-test p<0.001). The percentage of patients on chronic opioid therapy decreased over 12 months from 62% to 41%. Of the 126 patients who reported changes in functional status, 64 (51%) reported improvement, 27 (21%) reported worsening, and 35 (28%) did not report any meaningful change. Excluding end-of-life battery replacements, surgical revision was needed in 56 (34%) of patients. Thirteen patients (8%) underwent implantation of a second PNS due to symptomatic expansion outside of the original region and device explant was performed in 32 (19%) of patients.

A multi-center, prospective case series published by Oswald (2019) evaluated outcomes in 39 patients implanted with the StimRouter™ on various isolated mononeuropathies.[17] The authors report 78% of the participants noted an improvement in pain, 72% noted improvement in activity, and 89% experienced a greater than 50% reduction in opioid consumption. This was not a controlled trial and no information comparing these outcomes to outcomes achieved through standard of care was provided. Future RCTs addressing these limitations are required.

Ilfeld (2017) published a review evaluating the safety of lead types in clinical studies of percutaneous neurostimulation of the peripheral nervous system.[18] Forty-three studies were included and of these both coiled (n = 21) and noncoiled (n = 25) leads were studied. The infection rates were estimated to be 0.03 (95% CI 0.01 to 0.13) infections per 1,000 indwelling
days for coiled leads and 0.83 (95% CI 0.16 to 4.33) infections per 1,000 indwelling days for noncoiled leads. No information is provided in the publication regarding clinical outcomes other than infection rates and no control group is evaluated.

Deer and Rosenfeld (2010) published the results of a single-center open-label study in which eight patients with carpal tunnel syndrome were evaluated for pain relief from the StimRouter™.[19] Pain evaluation occurred before implant, during implant and after explant. The authors concluded the StimRouter™ was effective and safe for pain reduction from carpal tunnel syndrome, but the study had methodological limitations including a small sample size and no mention of follow-up after the StimRouter™ was explanted after five days of treatment.

Numerous additional case series and case studies been published on PNS for the treatment of conditions including complex regional pain syndrome,[20] chronic shoulder pain,[21] chronic low back pain,[22] peripheral neuralgia,[23] oncologic pain,[24] and trigeminal pain.[25] Case studies and small case series generally are not considered in evidence reviews as they do not provide sufficient sample sizes or comparison groups to determine the added benefit of the technology on health outcomes over standard of care for any patient population.

PERIPHERAL SUBCUTANEOUS FIELD STIMULATION

Systematic Review

Sarica (2022) published the results of a systematic review with meta-analysis of studies reporting pain outcomes (visual analogue scale [VAS]) in patients treated with peripheral nerve field stimulation for facial pain, with a focus on trigeminal nerve pain.[26] Data from eleven observational, single-site cohort studies (N=109) were included in the review, five of which were prospective. Nine studies included cohorts of mixed diagnoses, and the most common diagnoses were persistent idiopathic facial pain (PIFP; n = 26) and trigeminal neuropathic pain (TNP; n = 25), followed by postherpetic neuralgia (PHN; n = 19), symptomatic trigeminal neuralgia (STN; n = 14), trigeminal neuralgia type 2 (TN2; n = 12) and type 1 (TN1; n = 8), and trigeminal deafferentation pain (TDP; n = 5). The number of patients included in each study ranged from 7 to 19. Common previously trialed interventions included nerve blocks (56%, 37/66), microvascular decompression (MVD; 25%, 16/65), percutaneous gasserian ganglion procedures (PGPs; 18%, 10/57), and stereotactic radiosurgery (SRS; 7%, 4/57). Nine trials included pre-implantation trial of temporary lead placement, one trial used adhesive electrodes and one used nerve block injections. The mean study follow-up period ranged from one month to 63.7 months. Analysis of individual patient data available for 62 patients from eight studies found mean improvement in VAS pain score at last follow-up to be 6.3 (95% CI 5.5–7.1, paired t-test, p < 0.001), with 79% (49/62) having a postoperative pain score < 5. A total of 51 complications occurred across 105 implantation surgeries in 44 patients (49% per procedure). The rate of complications requiring a surgical intervention was 32% per procedure (range 0%–82% across studies). The most frequent complications that required surgical management were skin erosions (n = 13) and infection (n = 10). The risk of bias of the included studies ranged from 4 to 6 out of a possible 6 stars when assessed using the Newcastle-Ottawa Scale and statistical heterogeneity was considerable (I2 = 79%) across all studies. Although evidence of publication bias was not found (Egger’s test, p = 0.20), significant small-study effects were found; 4 of the 11 studies fell outside of the 95% CI of the effect summary estimate for pain reduction outcome. The considerable heterogeneity across studies with respect to follow-up periods, rating scales used, patient selection/trial methods, stimulation parameters and preoperative conditions, as well as small sample sizes and lack of

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
controlled/comparator groups are limitations to the available evidence regarding peripheral nerve field stimulation for the treatment of facial pain.

A systematic review (SR) by Hofmeister (2020) evaluating the effectiveness of neurostimulation technologies for the management of chronic pain included one study on peripheral subcutaneous field stimulation (PSFS). This study (Eldabe 2018) is discussed below.

Randomized Controlled Trials

Van Gorp (2019) published the 12-month follow-up of a multicenter RCT of patients with chronic low back pain in failed back surgery syndrome (FBSS) treated with spinal cord stimulation (SCS) alone and SCS with peripheral subcutaneous nerve field stimulation (PSFS). Although the initial RCT randomized patients to treatment (SCS with PSFS) or control (SCS alone), after the three-month study period, all patients in both groups received optimal SCS with PSFS during the open follow-up for the duration of the subsequent nine months. Thus, for the analysis of the follow-up data, both groups were combined and data from all patients at 12 months (n=50) were compared to their own baseline values. Back pain, measured on a 100-mm visual analog scale (VAS), significantly decreased by 30.0 mm (95% CI: 237.7/222.4; p<0.001), and leg pain decreased by 43.7 mm (95% CI: [251.5/236.2]; p<0.001). The authors also reported significant improvements across the 50 participants on secondary outcome measures including physical functioning, disability, pain, social functioning, anxiety, and medication indices. While this prospective, multicenter study provides valuable data on the efficacy of the simultaneous use of SCS and PSFS in a homogeneous, highly selected group of FBSS patients, the data do not permit conclusions regarding the added benefit of PSFS over SCS alone or the added benefit of this technology in other clinical populations. Additional long-term RCTs evaluating the added benefit of PSFS on health outcomes are needed.

Eldabe (2018) published a multi-site (21 sites) RCT comparing the effectiveness of subcutaneous peripheral nerve (field) stimulation (SQS) plus optimized medical management (SQS + OMM arm) compared to optimized medical management alone (OMM arm) in patients with back pain due to failed back surgery syndrome (FBSS). Those in the SQS arm were implanted with a neurostimulator and up to two subcutaneous percutaneous cylindrical leads in the area of pain. Patients were evaluated pre-randomization and at one, three, six, and nine months post-randomization. The primary endpoint was the proportion of subjects with a ≥50% reduction in back pain intensity (“responder”) from baseline to nine months. A total of 33.9% (19/56, missing: n = 20 [36%]) of subjects in the SQS + OMM arm and 1.7% (1/60, missing: n = 24 [40%]) in the OMM arm were responders at month nine (p < 0.0001). Although these results suggest that the addition of SQS to OMM is more effective than OMM alone in relieving low back pain at up to nine months in this study population, due to the slow rate of recruitment, the study was terminated early. Additional appropriately powered RCTs with longer-term follow-up are needed.

One small randomized double-blind crossover trial was published by McRoberts in 2013, however, this study did not include a control group or a comparison group of alternative treatment modalities. The aim of this two-phase study was “to obtain preliminary estimates of the safety and efficacy of PSFS therapy using equipment originally designed for spinal cord stimulation.” In the first phase of the study, patients (n=32) were initially randomized to one of the four stimulation groups, minimal, subthreshold, low frequency, and standard stimulation.
Participants then rotated through all four stimulation groups in four to eight-day intervals. Both the investigator and patient were blinded to the group assigned. Two patients exited the study during phase I due to device/procedure-related adverse effects. “Responders” (n=24), defined as patients in any of the three active stimulation groups reporting > 50% pain reduction, progressed to the second phase of permanent system implant (n=23). One responder did not receive permanent implantation due to non-device/procedure-related adverse effects.

Patients were followed for 52 weeks during which time reported mean visual analog scale (VAS), present pain index, and total scores on the Short Form McGill Pain Questionnaire were significantly improved from baseline at all follow-up visits (p<0.001). Excellent or good pain relief was reported in 16 (69.5%) patients at the 52-week follow-up visit. Opioid use decreased in 10 (43%) patients, remained stable in 8 (35%) patients, and increased in 5 (22%) patients. The most common adverse events were diminished or loss of therapy (n=10) and lead migration (n=7). Four patients had their systems explanted prior to completion of the study.

This study had a number of significant limitations that precluded conclusions, including but not limited to the small number of patients and the lack of an appropriate control group. Because this study did not include a control group, the methodologic strength of these results is similar to that of an uncontrolled study. Further data are needed from well-designed RCTs which include large sample sizes and an appropriate control group for comparison.

NONRANDOMIZED TRIALS

Kloimstein (2014) reported on a prospective study of 118 patients treated with PSFS for chronic low back pain.[32] Before patients were implanted with the permanent PSFS system, a trial of stimulation was given for at least seven days. The permanent stimulation system was implanted in 105 patients. Significant improvements occurred at one, three, and six months’ follow-up after implantation in the average pain VAS, Oswestry Disability Questionnaire, Becks Depression Inventory, and the Short Form-12 health survey. Significant reductions in opioid, nonsteroidal anti-inflammatory and anti-convulsant medications also occurred.

Verrills (2014) reported on PSFS for chronic headache conditions.[33] After a trial stimulation period, 60 patients underwent permanent implantation of the PSFS system and were followed for an average of 12.9 ± 9.4 months (range, 3-42 months). Ten patients required revision of the implant system. Significant reductions in pain were reported (p≤0.001). Additionally, use of analgesics or prophylactic medications was reduced in 83% of patients and disability and depression improved.

Verrills (2011) reported on a series of 100 patients treated PSFS for chronic neuropathic pain. Indications included chronic pain in occipital/craniofacial (n=40), lumbosacral (n=44), thoracic (n=8), groin/pelvis (n=5), or abdominal (n=3) regions.[34] Selection criteria included a clearly defined, discrete focal area of pain with a neuropathic component or combined somatic neuropathic pain component with characteristics of burning and increased sensitivity, and failure to respond to other conservative treatments including medications, psychological therapies, physical therapies, surgery, and pain management programs. Outcomes were assessed at a mean of 8.1 months after implantation (range, 1-23 months) with a combination of numerical pain scores, patient answered questionnaires, and patient medical histories. For the entire cohort, pain decreased from 7.4 at baseline to 4.2 at follow-up. About 34% of patients had at least a 75% improvement in pain scores and 69% improved by at least 50%. Analgesic use decreased in 40% of patients following PSFS. Adverse events were reported in 14% of patients, including unpleasant sensations, lead erosions and lead or battery migration.
Sator-Katzenschlager (2010) reported a retrospective multicenter study of the use of PSFS. A total of 111 patients with chronic pain were treated, including 29 patients with low back pain, 37 with failed back surgery syndrome, 15 with cervical neck pain, and 12 patients with postherpetic neuralgia. The median duration of chronic pain was 13 years and the median number of previous surgeries was 2.7. For permanent implantation of the leads, patients had to have achieved at least 50% improvement in pain on a numerical rating scale during the trial period. After permanent implantation, pain intensity decreased in 102 patients (92%). Mean pain intensity decreased from 8.2 at baseline to 4.0 at follow-up with a reduction in consumption for analgesics and antidepressants. Lead dislocation or fracture occurred in 20 patients (18%).

PRACTICE GUIDELINE SUMMARY

There are no evidence-based clinical practice guidelines that recommend the use of implanted subcutaneous peripheral nerve or nerve field stimulation for the treatment of pain of peripheral nerve origin.

The National Institute for Health and Care Excellence issued guidance in 2013 on peripheral subcutaneous field stimulation for chronic low back pain. The guidance stated: “Current evidence on the efficacy of peripheral nerve-field stimulation (PNFS) for chronic low back pain is limited in both quantity and quality, and duration of follow-up is limited. Evidence on safety is also limited and there is a risk of complications from any implanted device. Therefore, this procedure should only be used with special arrangements for clinical governance, consent and audit or research.”

SUMMARY

There is not enough research to show that implantable peripheral nerve stimulation (PNS) or peripheral subcutaneous field stimulation (PSFS) improves health outcomes for any indication, including for the treatment of chronic, postoperative, or post-traumatic pain of peripheral nerve origin. There are no evidence-based clinical practice guidelines that recommend the use of an implantable PNS system for treatment of pain of peripheral nerve origin. Therefore, the use of an implantable PNS system including peripheral subcutaneous field stimulation (PSFS) for treatment of pain of peripheral nerve origin is considered investigational including but not limited to the treatment of chronic pain, post-operative, or post-traumatic pain.

REFERENCES

mpaign=WP_StimRouter_Brand&gclid=EAIaIQobChMI5Nf3y_H61glVwSWBCh0C6A8JEAAYASAAEqLRRfD_BwE.

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>64555</td>
<td>Percutaneous implantation of neurostimulator electrode array; peripheral nerve (excludes sacral nerve)</td>
</tr>
<tr>
<td></td>
<td>64575</td>
<td>Open implantation of neurostimulator electrode array; peripheral nerve (excludes sacral nerve)</td>
</tr>
<tr>
<td></td>
<td>64585</td>
<td>Revision or removal of peripheral neurostimulator electrode array</td>
</tr>
<tr>
<td></td>
<td>64590</td>
<td>Insertion or replacement of peripheral or gastric neurostimulator pulse generator or receiver, direct or inductive coupling</td>
</tr>
<tr>
<td></td>
<td>64595</td>
<td>Revision or removal of peripheral or gastric neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td></td>
<td>64999</td>
<td>Unlisted procedure, nervous system</td>
</tr>
<tr>
<td></td>
<td>95970</td>
<td>Electronic analysis of implanted neurostimulator pulse generator/transmitter (eg, contact group[s], interleaving, amplitude, pulsedwidth, frequency [Hz], on/off cycling, burst, magnet mode, dose lockout, patient selectable parameters, responsive neurostimulation, detection algorithms, closed loop parameters, and passive parameters) by physician or other qualified health care professional; with brain, cranial nerve, spinal cord, peripheral nerve, or sacral nerve, neurostimulator pulse generator/transmitter, without programming</td>
</tr>
<tr>
<td></td>
<td>95971</td>
<td>;with simple spinal cord, or peripheral nerve (eg, sacral nerve) neurostimulator pulse generator/transmitter, t programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>95972</td>
<td>;with complex spinal cord, or peripheral nerve (eg, sacral nerve) neurostimulator pulse generator/transmitter programming by physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>97014</td>
<td>Application of a modality to 1 or more areas; electrical stimulation (unattended)</td>
</tr>
<tr>
<td></td>
<td>97032</td>
<td>Application of a modality to 1 or more areas; electrical stimulation (manual), each 15 minutes</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C1778</td>
<td>Lead, neurostimulator (implantable)</td>
</tr>
<tr>
<td></td>
<td>L8680</td>
<td>Implantable neurostimulator electrode, each</td>
</tr>
<tr>
<td></td>
<td>L8683</td>
<td>Radiofrequency transmitter (external) for use with implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td></td>
<td>L8679</td>
<td>Implantable neurostimulator, pulse generator, any type</td>
</tr>
</tbody>
</table>

Date of Origin: January 2018

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Balloon Dilation of the Eustachian Tube

Effective: June 1, 2022

Next Review: March 2023
Last Review: April 2022

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Balloon dilation of the Eustachian tube is a tuboplasty procedure intended to improve the patency of the cartilaginous Eustachian tube. During the procedure, a saline-filled balloon catheter is introduced into the Eustachian tube through the nose using a minimally invasive transnasal endoscopic method. Pressure is maintained for approximately two minutes after which the balloon is emptied and removed. The procedure is usually performed under general anesthesia.

MEDICAL POLICY CRITERIA

I. Balloon dilation of the eustachian tube for treatment of chronic obstructive eustachian tube dysfunction may be considered medically necessary when all of the following Criteria are met (A. – E.):
 A. Patient is 18 years and older;
 B. Patient has chronic signs and symptoms of obstructive eustachian tube dysfunction that impairs function and meets all of the following Criteria (1. – 4.):
 1. The patient does not have patulous eustachian tube dysfunction or another contraindication (See Policy Guidelines); and
2. Symptoms have occurred for at least 12 months including but not limited to aural fullness, aural pressure, otalgia, or hearing loss; and

3. The patient does not have other causes of aural fullness such as temporomandibular joint disorders, extrinsic obstruction of the eustachian tube, superior semicircular canal dehiscence, and endolymphatic hydrops; and

4. Symptoms are continuous rather than episodic (e.g., symptoms occur only in response to baro-challenge such as pressure changes while flying); and

C. The patient has undergone a comprehensive diagnostic assessment documenting all of the following findings:
 1. Abnormal tympanogram (Type B or C); and
 2. Abnormal tympanic membrane (retracted membrane, effusion, perforation, or any other abnormality identified on exam); and

D. Failure to respond to appropriate medical management of co-occurring conditions, including 4-6 weeks of a nasal steroid spray if indicated. Co-occurring conditions include but are not limited to allergic rhinitis, rhinosinusitis, and laryngopharyngeal reflux; and

E. If the patient had a history of tympanostomy tube placement, symptoms of obstructive eustachian tube dysfunction should have improved while tubes were patent.

II. Balloon dilation of the eustachian tube is considered **not medically necessary** when Criterion I. is not met.

III. Balloon dilation of the eustachian tube is considered **investigational** for repeat balloon dilation of the eustachian tube and all other indications.

NOTE: A **summary of the supporting rationale for the policy criteria is at the end of the policy.**

POLICY GUIDELINES

Contraindications to Balloon Dilation of the Eustachian Tube

The following patients should not be considered for balloon dilation of the eustachian tube:

- **Patients with patulous eustachian tube dysfunction**
 - A diagnosis of patulous ETD is suggested by symptoms of autophony of voice, audible respirations, pulsatile tinnitus, and/or aural fullness.

- **Patients with extrinsic reversible or irreversible causes of eustachian tube dysfunction including but not limited to:**
 - craniofacial syndromes, including cleft palate spectrum
 - neoplasms causing extrinsic obstruction of the eustachian tube
 - history of radiation therapy to the nasopharynx
 - enlarged adenoid pads
 - nasopharyngeal mass
 - neuromuscular disorders that lead to hypotonia/ineffective eustachian tube dynamic opening
- systemic mucosal or autoimmune inflammatory disease affecting the mucosa of the nasopharynx and eustachian tube (e.g. Samter’s triad, Wegener’s disease, mucosal pemphigus) that is ongoing/active (i.e. not in remission)
 - Patients with aural fullness but normal exam and tympanogram
 - Patients with chronic and severe atelectatic ears

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

The information below **must** be submitted for review to determine whether policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and physical/chart notes including length of time signs and specific symptoms of obstructive eustachian tube dysfunction have been present and have impaired function.
- Indication for the requested service.
- Documentation patulous eustachian tube dysfunction and other contraindications to the procedure have been ruled out.
- Diagnostic findings documenting abnormal tympanogram and an abnormal tympanic membrane.
- Documentation of failure of medical management for any co-occurring conditions and specify length of time it was trialed.
- If there is a history of tympanostomy tube placement, provide documentation that symptoms of obstructive eustachian tube dysfunction improved while tubes were patent.

CROSS REFERENCES

1. Balloon Ostial Dilation for Treatment of Sinusitis, Surgery, Policy No. 153

BACKGROUND

EUSTACHIAN TUBE FUNCTION

The Eustachian tube (ET) connects the middle ear space to the nasopharynx. It is approximately 36 mm long in adults. The ET ventilates the middle ear space to equalize pressure across the tympanic membrane, clears mucociliary secretions, and protects the middle ear from infection and reflux of nasopharyngeal contents.\(^1\) The tube opens during swallowing or yawning.

Eustachian tube dysfunction (ETD) occurs when the functional valve of the ET fails to open and/or close properly. This failure may be due to inflammation or anatomic abnormalities. ET dilatory dysfunction (ETDD) is most commonly caused by inflammation including rhinosinusitis and allergic rhinitis. ETDD can cause symptoms such as muffled hearing, ear fullness, tinnitus, and vertigo.\(^2\) Chronic ETDD can lead to hearing loss, otitis media, tympanic membrane perforation, and cholesteatomas.

Epidemiology of ETD

The epidemiology of ETD, including incidence and prevalence of the disorder and associated symptoms in the community, primary care, and referral populations, is not well-characterized.
Data are also lacking to describe the natural history of the disorder and impact on patient functioning.

DIAGNOSIS AND OUTCOME MEASURES

There are no comprehensive guidelines regarding the diagnosis of ETD. Schilder (2015) published a consensus statement from an international group of scientists and physicians with expertise in Eustachian tube disorders, prompted by a Health Technology Assessment from the UK National Institute of Health and Research stating that an important limitation with available evidence for treatments of ETD is a lack of consensus on the definition and diagnosis.[1] The meeting was funded by Acclarent, a manufacturer of a dilation technology. The following summarize relevant 2015 consensus statements from the group.

- There is no universally accepted set of patient-reported symptom scores, functional tests, or scoring systems to diagnose ETD.
- Diagnosis of ETDD should consider patient-reported symptoms along with evidence of negative pressure in the middle ear assessed by clinical assessment.
- Transient ETD is ETD with symptoms and signs lasting less than 3 months while chronic ETD is ETD with symptoms and signs lasting for more than 3 months.
- Future clinical trials should include outcomes related to patient-reported symptoms, otoscopy, tympanometry, and pure-tone audiometry, and outcomes should be assessed at baseline, in the short term (6 weeks to 3 months) and in the long term (6-12 months).
- The 7-item Eustachian Tube Dysfunction Questionnaire (ETDQ-7) is the only patient-reported outcome scale to have undergone initial validation studies.

Tympanometry is a frequently used outcome measure in ETD. Tympanometry measures the mobility of the tympanic membrane and graphically displays results in tympanograms. Tympanograms are classified by the height and location of the tympanometric peak. They are classified into three general patterns: type A indicates normal middle ear and ET function; type B indicates poor tympanic membrane mobility (“flat” tympanogram); and type C indicates the presence of negative middle ear pressure.[3]

The ETDQ-7 is used to assess ETD-related symptoms such as pressure, pain, “clogged” ears, and muffled hearing over the previous month. The 7 items are rated by patients on a 7-level scale from 1 (no problem) to 7 (severe problem). The overall score is reported as a mean item score with a range from 1.0 to 7.0. ETDQ-7 has been shown to be a valid and reliable symptom score for use in adults with ETD with overall score of 2.1 or higher having high accuracy to detect the presence of ETD.[4]

Other important outcomes for evaluating a treatment for ETD are hearing outcomes, otitis media, clearance of middle ear effusion, tympanic membrane retraction, and quality of life. Another important consideration is the need for additional treatment, e.g., additional surgical procedures (including reintervention).

TREATMENT OF ETDD

Medical management of ETDD is directed by the underlying etiology: treatment of viral or bacterial rhinosinusitis; systemic decongestants, antihistamines, or nasal steroid sprays for
allergic rhinitis; behavioral modifications and/or proton pump inhibitors for laryngopharyngeal reflux; and treatment of mass lesions. Although topical nasal steroids are commonly used for ETDD, triamcinolone acetonide failed to show benefit in patients ages six and older presenting with otitis media with effusion and/or negative middle ear pressure in a randomized, placebo-controlled, double-blind trial published in 2011.[5]

Patients who continue to have symptoms following medical management may be treated with surgery. Available surgical management includes myringotomy with placement of tympanostomy tubes or eustachian tuboplasty. There is limited evidence supporting use of these surgical techniques.[6] Norman (2014) reported that eustachian tuboplasty (other than balloon dilation) has been evaluated in seven case series and was associated with improvement in symptoms in 36% to 92% of patients with low rates (13%-36%) of conversion to type A tympanogram (which is normal). Myringotomy and tympanostomy have been evaluated in two case series and were associated with symptom alleviation in a subgroup of patients.[6]

REGULATORY STATUS

In December 2015, the AERA® (Acclarent) was granted a de novo 510(k) classification by the U.S. Food and Drug Administration (FDA) (class II, FDA product code: PNZ).[7] The new classification applies to this device and substantially equivalent devices of this generic type. The device was cleared for marketing by FDA through the 510(k) process (K163509) in January 2018. The AERA® is cleared for dilating the Eustachian tube in patients ages 22 and older with persistent ETD.

In April 2017, the XprESS™ ENT Dilation System (Entellus Medical, Plymouth, MN) was cleared for marketing by FDA through the 510(k) process (K163509).[8] FDA determined that this device was substantially equivalent to existing devices for use in Eustachian tube dysfunction. The predicate devices are XprESS™ Multi-Sinus Dilation System and AERA® Eustachian Tube Balloon Dilation System.

EVIDENCE SUMMARY

SCIENTIFIC EVIDENCE

Evaluating the safety and effectiveness of balloon dilation of the Eustachian tube requires randomized comparisons with standard treatments. These comparisons are necessary to determine whether the benefits of balloon dilation of the Eustachian tube outweigh any risks and whether they offer advantages over conventional methods with respect to increasing quality of life and decreasing long-term morbidity and mortality, or secondary outcomes such as improved Eustachian tube function. The evidence summary below is focused on systematic reviews and randomized controlled trials (RCTs).

Systematic Reviews

Aboueisha (2022) conducted a systematic review of balloon dilation for eustachian tube (BDET) dysfunction in pediatric populations which included seven studies and 408 participants with a mean age of 9.9 years.[9] The primary outcomes of interest were changes in tympanograms and air-bone gap. Type B tympanograms decreased after BDET from 64.2% (95%CI 53.3, 73.8) to 16.1% (95%CI 8.5, 28.4). Air-bone gap (ABG) decreased after BDET from a mean of 25.3 dB (95%CI 18.9, 31.6) to 10.2 dB (95%CI 8.9, 11.5). The pooled estimate
of adverse events after BDET was 5.1% (95% CI 3.2, 8.1), the majority being self-limited epistaxis with no major adverse events reported. This review is limited by the lack of high quality studies including randomized, comparative trials. Additional comparative trials are needed to establish the efficacy of BDET in pediatric populations.

Froehlich (2020) conducted a systematic review and meta-analysis of balloon dilation for eustachian tube dysfunction. Twelve studies were included in the meta-analysis, including three RCTs, five prospective observational studies, and four case series. One RCT (Liang 2016) that compared balloon dilation to tympanic paracentesis reported tympanometry and otoscopy scores but not symptoms. The other two RCTs compared balloon dilation plus medical management to medical management alone and used the ETDQ-7 to measure symptoms. Pooled analyses showed improvements in subjective and objective measures including ETDQ-7 scores, tympanograms, otoscopy exams, and ability to perform a Valsalva maneuver. Improvements appeared to be maintained in studies with longer-term follow up (3-12 months). Case series included in these reviews consistently reported that patients experienced improvement when comparing symptoms before and after balloon dilation. The studies varied in the type of medical management used to treat eustachian tube dysfunction before and after balloon dilation.

The results of two additional systematic reviews and meta-analyses for adults with ETD who were treated with balloon dilation are discussed here. Huisman (2018) provided pooled results for 15 case series (n=1,155) while Hwang (2016) provided qualitative summaries only, for nine case series (n=474). Most selected case series provided follow-up of less than a year. All case series reported that patients experienced improvement when comparing symptoms before and after balloon dilation. The selected studies differed with respect to other treatments for ETD used before and after balloon dilation. In Huisman (2018), revisions due to failure of the first ET balloon dilation procedure were reported in three of the 15 studies (n=714); 122 revisions were reported. Huisman (2018) also reported studies had methodological limitations including risk of bias and high heterogeneity and that high quality RCTs are needed.

Jufas (2016) published a SR that evaluated balloon dilation, with a transtympanic approach for Eustachian tube dysfunction (ETD). Three limited case series were included. The authors concluded there was a high risk of bias and safety and efficacy outcomes were conflicting.

Randrup (2015) published a SR evaluating balloon eustachian tuboplasty for ETD. The authors evaluated nine case series and health outcomes for 443 patients. All case series were poor quality and had a high risk of bias.

Randomized Controlled Trials

Meyer (2018) published the results of a one-year-follow-up-inclusive, prospective, multi-center RCT of balloon dilation as a treatment for persistent eustachian tube dysfunction (ETD) and compared the intervention to continued medical therapy (control). Inclusion criteria required patients be diagnosed with medically refractory, persistent ETD. Participants were randomly assigned (1:1) to intervention or control; however, control participants were offered the intervention after six weeks if their symptoms remained. The outcomes measured include primary efficacy endpoint using Eustachian Tube Dysfunction Questionnaire (ETDQ-7) scores and the rate of complications. The trial involved 60 randomized participants (31 intervention, 29 control). Mean (SD) change in overall ETDQ-7 score at six weeks was 2.9 (1.4) for balloon dilation compared with 0.6 (1.0) for control: balloon dilation was superior to control (p<0.0001).
No complications were reported in either study arm. Among participants with abnormal baseline assessments, improvements in tympanogram type (p < 0.006) and tympanic membrane position (p<0.001) were significantly better for balloon dilation than control. Improvements in the ETDQ-7 scores were maintained through 12 months after balloon dilation. Limitations of this RCT are its small sample size and the inability to blind the participants to their treatment.

Cutler (2019) reported longer-term follow-up data on a subset of patients from the treatment arm of the RCT reported by Meyer. Of 58 patients from the original study who were eligible for the extension study, 47 were enrolled in the follow up study. The mean follow-up time was 29.4 months post-procedure. Changes from baseline at the end of the longer-term follow-up period were similar to improvements observed at one year on outcome measures including the ETDQ-7, normalized tympanogram, ability to perform the Valsalva maneuver, and patient satisfaction. One patient underwent a revision ET dilation after 362 days, performed concurrently with balloon dilation for recurrent sinus disease. No other surgeries or adverse events were reported.

Poe (2017) published a randomized trial (n=323) comparing balloon dilation of the eustachian tube (BDET) with ET balloon catheter (ETBC) plus medical management versus medical management alone. Participants were 22 years or older, had persistent patient-reported symptoms of ETD (ETDQ-7; mean item score, ≥2.1), abnormal tympanometry (type B or type C), and failed medical management including either a minimum of four weeks of daily use of any intranasal steroid spray or a minimum of one course of an oral steroid. The balloon catheter used in the trial was a custom-designed ET balloon catheter (Acclarent). The RCT results are also described in the AERA (Acclarent) de novo summary from the Food and Drug Administration.

The investigators in this study were required to perform three successful ETBC procedures in nonrandomized “lead-in” patients who were then followed for durability and safety outcomes. Randomization and analyses were performed at the person-level regardless of whether the patient had unilateral or bilateral ETD. The primary efficacy outcome (normalization of tympanometry) was assessed by both site investigators and a blinded, independent evaluator; discrepancies were resolved by a second independent evaluator. For bilaterally treated patients, both ears had to be rated as normalized for that patient to be considered normalized for the primary outcome. Patients completed follow-up visits at 2, 6, 12, 24, and 52 weeks but data from the 52-week visit have not been reported. Patients in the medical management arm were allowed to receive BDET after the six-week visit. Trial enrollment was stopped early after the second preplanned look when the prespecified O’Brien-Fleming stopping boundary for the primary outcome was crossed.

At baseline, the mean ETDQ-7 score was 4.7, 43% of patients had allergic rhinitis, and 61% of patients had at least one prior ear tube surgery. By the second interim analysis, 162 patients had been assigned to ETBC and 141 were included in analysis; 80 had been assigned to medical management and 72 were included in analysis. Patients were included in analysis if they received the study treatment for which they were randomized and had 6-week follow-up data. Approximately 52% of ETBC patients experienced tympanogram normalization at 6 weeks compared with 14% of medical management patients (p<.001). The publication reported that sensitivity analysis was performed to test the robustness of results for the impact of missing data in the analysis cohort versus an intention-to-treat cohort, but the method of sensitivity analyses was not described. It was noted that there was a significant treatment by...
site interaction. Two sites had a higher percentage of tympanogram normalization for MM subjects than for ETBC subjects while the remaining sites had higher normalization for ETBC. The pre-specified secondary efficacy outcome (percentage with minimal clinically important difference change of 0.5 points on ETDQ-7) was not reported in the publication but was reported in the FDA summary. The minimal clinically important difference change in ETDQ-7 scores was observed for 91% of ETBC patients at 6 weeks compared with 45% of medical management patients (p not reported). Fifty-six percent of ETBC patients had an ETDQ-7 mean item score of less than 2.1 at six weeks compared with about 9% of medical management patients (p<0.001). See the summary of results in Table 2 below.

Comparative analyses were not possible after six weeks because 82% of medical management patients elected to ETBC after 6 weeks. Durability of the effect is supported by analysis of tympanogram normalization in 170 patients with week 24 data (98 randomized to ETBC and 74 from the lead-in); 62% of those randomized to ETBC and 58% of lead-in patients demonstrated tympanogram normalization at 24 weeks. Data from 52 weeks have not been reported.

This trial had methodological limitations, including the inability to blind patients, the exclusion of patients who did not receive the assigned treatment, and the premature ending of the study. In addition, there were relevance gaps that prevented the RCT from providing enough evidence to guide treatment for ETDD. These included but are not limited to:

- Patients continued nasal steroids and other medications prescribed prior to the study
- Hearing outcomes were not reported
- Short-term follow-up prevented evaluation of long-term outcomes.

Table 2. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Normalization of Tympanometry (% of patients)</th>
<th>ETDQ-7 Symptom Scores <2.1 (% of patients)</th>
<th>Change in MEAN ETDQ-7 Score (SD)</th>
<th>Change in Mucosal Inflammation</th>
<th>Positive modified Valsalva Maneuver (% ears)</th>
<th>SAEs (no. of events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poe (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>211</td>
<td>208</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>BDET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plus MM</td>
<td>52%</td>
<td>56%</td>
<td>+22%</td>
<td>33%</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MM</td>
<td>14%</td>
<td>9%</td>
<td>-5%</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx effect</td>
<td>RR=NR</td>
<td>RR=NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meyer (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plus MM</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BDET: balloon dilation of the Eustachian tube; BL: baseline; ETDQ-7: 7-item Eustachian Tube Dysfunction Questionnaire; MM: medical management; NR: not reported; RR: relative risk; SAE: serious adverse event; Tx: treatment.

a The prespecified secondary outcome was the proportion of subjects achieving an improvement of at least a minimal clinically important difference of 0.5 points; it was not reported.

Adverse events were only briefly described in the publication but are more fully described in the Food and Drug Administration summary. Two-hundred ninety-nine patients who were...
treated with ETBC were included in the safety analysis (80 lead-in patients, 149 patients randomized ETBC, 70 patients randomized to medical management who received ETBC). There were 16 nonserious device or procedure-related adverse events in 13 patients—most commonly, epistaxis and ETD. Two patients had three potentially device-related adverse events: mucosal tear, worsened ETD, and conductive hearing loss. The potentially device- or procedure-related adverse events were mild or moderate in severity and resolved without sequelae. Five serious adverse events were reported (four events in the BDET group, one event in the MM group); all were thought to be unrelated to device, procedure, or medication.

A 12-month follow-up on the treatment group was published by Anand (2019), which reported that the overall number of patient with normalized tympanograms and ETDQ-7 scores at one year were comparable to those reported after six weeks (71/128 vs. 73/143 and 71/124 vs. 79/142, respectively).[18] Results in the control group were not assessed.

Nonrandomized Studies

Satmis (2018) published a retrospective cohort study of 42 consecutive adult patients with chronic dilatory eustachian tube dysfunction. Patients in a tertiary referral hospital setting who received transnasal balloon dilation of the Eustachian tube were evaluated. Objective outcome measures included the ETDQ-7 score, bone conduction threshold, and tympanic membrane and middle ear conditions, which were pre and postoperatively collected. Mean ETDQ-7 scores improved from 4.28 to 3.09 and from 4.10 to 2.96 postoperatively at one and three months, respectively. There was a 62.0% improvement in tympanic membrane and middle ear condition. No serious procedure related complications were reported.

PRACTICE GUIDELINE SUMMARY

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE (NICE)

In 2019, The National Institute for Health and Care Excellence (NICE) published updated guidance on balloon dilation of the eustachian tube.[19] The guidance was based on a rapid review of the evidence and stated: “Evidence on the safety and efficacy of balloon dilation for eustachian tube dysfunction is adequate to support the use of this procedure provided that standard arrangements are in place for clinical governance, consent and audit.” NICE standard arrangements recommendations mean that there is enough evidence for doctors to consider the procedure as an option. The guidance also noted:

- The procedure was not effective in all patients, and there was little evidence on the benefit of repeat procedures.
- The procedure is only indicated for chronic eustachian tube dysfunction refractory to medical treatment.

AMERICAN ACADEMY OF OTOLARYNGOLOGY-HEAD AND NECK SURGERY FOUNDATION

In 2019, The American Academy of Otolaryngology published a clinical consensus statement on balloon dilation of the eustachian tube.[20] The target population was defined as adults ages 18 years or older who are candidates for BDET because of obstructive eustachian tube dysfunction (ETD) in 1 or both ears for 3 months or longer that significantly affects quality of life or functional health status. The expert panel concluded:

- BDET is an option for treatment of patients with obstructive ETD.
The diagnosis of obstructive ETD should not be made without a comprehensive and multifaceted assessment, including otoscopy, audiometry, and nasal endoscopy. BDET is contraindicated for patients diagnosed as having a patulous ETD. Further study will be needed to refine patient selection and outcome assessment.

The authors emphasized the importance of identifying other potentially treatable causes of ETD, including allergic rhinitis, rhinosinusitis, and laryngopharyngeal reflux, and noted that medical management of these disorders is indicated prior to offering BDET. They also noted that potential risks of BDET that are relevant to patient counseling include bleeding, scarring, infection, development of patulous ETD, and/or the need for additional procedures.

SUMMARY

There is enough research to show that balloon dilation of the Eustachian tube improves health outcomes in patients with chronic signs and symptoms under certain circumstances. Additionally, clinical practice guidelines recommend the use of balloon dilation of the Eustachian tube for select patients. Therefore, the use of balloon dilation of the Eustachian tube may be considered medically necessary for the treatment of Eustachian tube dysfunction when policy criteria are met.

Due to not showing positive health outcomes for patients who do meet patient selection criteria, the use of balloon dilation for the treatment of Eustachian tube dysfunction is considered not medically necessary when policy criteria are not met.

There is not enough research to show that balloon dilation of the Eustachian tube improves health outcomes for people with any other indication or for repeat balloon dilation procedures. Therefore, balloon dilation of the Eustachian tube is considered investigational for the treatment for any other indication or repeat balloon dilation procedures.

REFERENCES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>69705</td>
<td>Nasopharyngoscopy, surgical, with dilation of eustachian tube (ie, balloon dilation); unilateral</td>
</tr>
<tr>
<td></td>
<td>69706</td>
<td>Nasopharyngoscopy, surgical, with dilation of eustachian tube (ie, balloon dilation); bilateral</td>
</tr>
<tr>
<td></td>
<td>69799</td>
<td>Unlisted procedure, middle ear</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: June 2017
Medical Policy Manual

Surgery, Policy No. 210

Transurethral Water Vapor Thermal Therapy of the Prostate

Effective: May 1, 2021

Next Review: December 2021

Last Review: March 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Transurethral water vapor thermal therapy is a minimally invasive surgical therapy for the treatment of benign prostatic hypertrophy.

MEDICAL POLICY CRITERIA

I. Transurethral water vapor thermal therapy may be considered **medically necessary** for the treatment of benign prostatic hyperplasia (BPH) when all of the following criteria are met (A. – D.):

 A. Moderate to severe symptomatic BPH; and

 B. Patient is at least 50 years of age; and

 C. Prostate volume is 30 cc to 80 cc by ultrasound or other radiologic assessment; and

 D. A trial of conservative medical therapy (defined as one month of an alpha blocker, 3 months of a 5-alpha reductase inhibitor, or 3 months of an anticholinergic) for BPH has been unsuccessful, is contraindicated, or is not tolerated.
II. Transurethral water vapor thermal therapy of the prostate is considered **investigational** when the above criteria are not met.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

BENIGN PROSTATIC HYPERPLASIA SEVERITY

The American Urological Association Symptom Index (AUA-SI) is a validated clinical tool for measuring severity of benign prostatic hyperplasia (BPH).[1] BPH severity is reported as mild (AUA-SI score of 0 to 7), moderate (8 to 19), and severe (20 to 35). The IPSS is the same as the AUA-SI but includes an additional question regarding impact of symptoms on quality of life.

CONSERVATIVE MEDICAL THERAPY

The medications listed in Table 1 may be used for conservative treatment of BPH.

Table 1. Medications for conservative treatment of BPH

<table>
<thead>
<tr>
<th>Class</th>
<th>Common Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-1-receptor antagonists</td>
<td>Alfuzosin (Uroxatral, Xatral), doxazosin (Cardura), tamsulosin (Flomax), and terazosin (Hytrin)</td>
</tr>
<tr>
<td>5α-phareductase inhibitors</td>
<td>Finasteride, dutasteride</td>
</tr>
<tr>
<td>Anticholinergics</td>
<td>Fesoterodine (Toviaz), tolterodine (Detro, Detro LA), oxybutynin (Ditropan, Ditropan XL), darifenacin (Enablex), solifenacin (Vesicare), trospium (Sanquith, Sanctura XR)</td>
</tr>
</tbody>
</table>

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

The information below must be submitted for review to determine whether policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and physical/chart notes
- Conservative treatment provided, if any
 - If options for more conservative management are relatively or absolutely contraindicated, those contraindications should be specified.
 - If options for more conservative management previously have been tried and have been ineffective or not tolerated, clinical information regarding those previous treatments should be provided.
- Relevant imaging (ultrasound, etc) reports documenting prostate volume.

CROSS REFERENCES

None

BACKGROUND

Benign prostatic hyperplasia (BPH) is a diagnosis that describes the enlargement of the prostate often associated with a group of obstructive symptoms, termed lower urinary tract

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
symptoms (LUTS). These symptoms include decreased force of stream, hesitancy, straining, incomplete bladder emptying, and nocturia. The enlargement is caused by the proliferation of epithelial and smooth muscle cells in the transition zone of the prostate. Proliferation generally increases with age, and the initiation of BPH likely begins by the age of 30.[2] According to a multinational survey, 90% of men ages 50-80 experience BPH, although only 11% of men in the study received medical treatment.[3]

Standard management of BPH includes watchful waiting (active surveillance) in patients not bothered by their symptoms, medical management, surgery, and a number of new minimally invasive therapies. Surgical treatments include transurethral resection of the prostate (TURP), transurethral vaporization, holmium laser enucleation or resection of the prostate, prostatic artery embolization, and prostatectomy. Minimally invasive therapies include transurethral needle ablation of the prostate (TUNA) and transurethral microwave thermotherapy (TUMT), as well as transurethral water vapor thermal therapy.

Transurethral water vapor thermal therapy is a process by which water vapor is created outside of the body and delivered to the prostate with a needle. The treatment is repeated in multiple locations within the prostate. During the procedure, saline irrigation cools and protects the surface of the urethra. The heat from the vapor disrupts cell membranes in the prostate, which leads to cell death and necrosis.

REGULATORY STATUS

In 2015, the U.S. Food and Drug Administration (FDA) approved the Rezūm System® (NxThera, Inc.) under the 510(k) process for use in relieving symptoms and obstructions, and reducing prostate tissue associated with BPH.

EVIDENCE SUMMARY

The primary beneficial outcomes of interest are symptom reduction, measured in various ways, including the International Prostate Symptom Score (IPSS), the benign prostatic impact index (BPHII), and the maximum urinary flow rate (Qmax). Evaluating the safety and effectiveness of transurethral water vapor thermal therapy requires randomized comparisons with standard care. These comparisons are necessary to determine whether the benefits of implantable cardiac monitors outweigh any risks and whether they offer advantages over conventional methods with respect to increasing quality of life and decreasing symptoms.

SYSTEMATIC REVIEWS

A Cochrane systematic review (SR) was reported by Kang in 2020.[4] The search was limited to parallel-group randomized controlled trials (RCTs), cluster-RCTs, and non-randomized observational prospective studies with concurrent comparison groups, in which men with BPH underwent convective radiofrequency water vapor thermal therapy, another active therapy, or a sham procedure. Only the RCT described below met inclusion criteria. The authors concluded that both urologic symptom scores and quality of life appear to be improved by water vapor thermal therapy, but they were very uncertain about major adverse events and that study limitations and imprecision led to a downgrade of evidence, which ranged from moderate to very low.

RANDOMIZED CONTROLLED TRIALS

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
A single RCT was identified, with results published in five publications.[5-9] The trial began with a three month randomized phase followed by an uncontrolled, open-label crossover phase. One-hundred and ninety-seven men experiencing lower urinary tract symptoms associated with benign prostatic hyperplasia were randomized 2:1. The active treatment group received water vapor ablation therapy with the Rezūm® System and the control group underwent a control procedure including rigid cystoscopy with simulated active treatment sounds. After three months, 53 of 61 control subjects who met criteria elected to participate in a crossover active treatment study. The International Prostate Symptom Score (IPSS) was 10.8 (standard deviation [SD] = 6.5) and 17.5 (SD = 7.6) in the active therapy and sham groups, respectively (p<0.0001) at three months post-treatment. The peak flow-rate (Qmax) increased significantly more in the treatment group at three months, to 16.1 (SD ±7.3), compared with 10.8 (SD = 4) in the sham group (p<0.0001). Quality of life, as measured by the IPSS-QOL question, was statistically significantly better in the treatment group (2.3; SD = 1.4) than in the sham group (3.5; SD = 1.5; p<0.0001).

In the patients that crossed over to the treatment group after unblinding at three months, improvements in IPSS, IPSS-QOL, and Qmax were all reported to be statistically significant compared to baseline values at 3, 6, 12, 24, 36, and 48 months (p<0.0001). Sexual function scores (IIEF-EF and MSHQ function) remained unchanged at two years, but declined at four years (-7.6% change, p=0.0333 and -14.2% change, p=0.0038, respectively).

Adverse events reported include one treated patient each who experienced nausea, vomiting, and de-novo urinary retention. In addition, among active treatment patients, 17% reported dysuria, 15% reported hematuria, 7% reported urinary frequency, and 7% reported hematospermia. At four years, 45 subjects were excluded from the analysis. Of these, seven were excluded due to use of BPH medication. Additionally, further surgical intervention was performed in six patients. This study is limited by duration of follow-up, with no control group present after three months of follow-up, and a lack of comparison to alternative treatments. Additionally, there was a high loss to follow-up, with data available for the primary outcome at four years from 90 of 197 patients.

NONRANDOMIZED STUDIES

Garden (2021) published a retrospective analysis of Rezūm outcomes in men with prostates ≥ 80 cc (large prostate group; n=36) versus < 80 cc (small prostate group; n=168).[10] For individuals with large prostates, there were significant improvements in Qmax and post-void residual volume (PVR) postoperatively (p=0.039 and p=0.009, respectively), but no changes in AUA-Symptom Score (AUA-SS) or Sexual Health Inventory for Men (SHIM) were reported (p=0.29 and p=0.825, respectively). For men with prostates < 80 cc, the study reported improved PVR (89.51 to 62.72, p=0.027) and AUA-SS (16.59 to 11.21, p=0.003), but not in Qmax (9.47 to 10.90, p=0.187). Passing trial void (large prostate 94.44%, small prostate 93.45%), postoperative UTI (large prostate 19.44%, small prostate 10.12%), ED visits (large prostate 22.22%, small prostate 17.86%), readmissions (large prostate 8.33%, small prostate 4.76%), and retreatment (large prostate 8.33%, small prostate 4.76%) were not significantly different between groups. Mean days to foley removal (large prostate 9, small prostate 5.71, p=0.003) and urosepsis rates (large prostate 5.56%, small prostate 0.00%, p=0.002) were significantly different between groups. No Clavien grade ≥III complications were reported.

Bole (2020) reported a retrospective analysis of Rezūm for large prostates.[11] A total of 182 patients were identified as having undergone Rezūm, 25.8% of whom had prostate volume...
over 80cc. In this group, mean prostate volume was 119 cc and 55.3% were catheter dependent. AUA-SS improved from 22 pre-treatment to 13.4 following Rezūm (p=0.04). The improvement in peak flow rate was also statistically significant (7.7 to 12.7 mL/second; p=0.002).

Alegorides (2020) reported outcomes of 62 men with BPH treated with convective radiofrequency water vapor thermal therapy.[12] The IPSS decreased significantly from baseline at six months post-treatment, and the decrease persisted at one year (12-point decrease, p<0.001). Also at one year, the QoL score decreased by 3.2 points (p<0.001), the Qmax improved by 6mL/s (p<0.001), and there was a 2.1% rate of surgical retreatment. No serious side effects (>Clavien II) and no cases of de novo erectile dysfunction were reported.

McVary (2020) reported on a retrospective case series of water vapor thermal therapy for nonneurogenic complete urinary retention associated with BPH.[13] A total of 38 men with complete urinary retention and catheter-dependence were treated with water vapor thermal therapy using the Rezūm™ System. Of the 37 men available for follow-up, 26 voided spontaneously and were catheter free at a median of 26 days (range 4 to 65) following the procedure. Median follow-up for the catheter-free patients was 15.8 months. Adverse events included dysuria (n=5), gross hematuria (n=4), and UTIs in patients with indwelling catheters (n=2).

Mollengard (2018) published a retrospective review of 129 patients with BPH who underwent Rezūm. Minimum follow-up was four months. IPSS, and Qmax improved from baseline at the 91-180 day follow-up (18.3 to 6.9 and 10.5 to 16.8 mL/s, respectively; p<0.001). PVR also significantly improved over that time span (108.0 to 73.1, p=0.005). The most commonly reported adverse events were urinary tract infections (17%) and transient urinary retention (14%).

Darson (2017) reported the results of a case series of 131 patients treated with transurethral convective radiofrequency water-vapor thermal therapy with LUTS associated with BPH.[14] Not all values were reported for all patients at all time-points. Statistical significance of changes from baseline was determined using a longitudinal general estimation-equation model using an exchangeable working correlation structure, which takes into account the correlation within a subject over time. IPSS at baseline, three to six months, and 12 months was 19.9 (SD = 6.7), 9.8 (SD = 6.9), and 10.1 (SD = 7.2). The three to six- and 12-month values were significantly lower than baseline (p<0.001). Qmax values at baseline, three to six, and 12 months were 8.7 (SD = 4.7), 11.6 (SD = 7.7), and 10 (SD = 5). The three- to six-month value was significantly different from baseline, but the 12-month value was not (p=0.04 and p=0.4, respectively). Improvement in IPSS-QOL scores from baseline to three-month follow-up was statistically significant, from 4.3 (SD = 1.2) to 2.3 (SD = 1.5; p<0.0001), and this statistically significant improvement was maintained at the 12-month follow-up. Urinary frequency, urgency, frequency and urgency, hematuria and nocturia were reported in less or equal to 4% of patients.

Dixon (2015 and 2016) reported the results of a case series in two publications.[15, 16] A total of 65 men at or above the age of 45 experiencing LUTS secondary to BPH received convective radiofrequency thermal therapy. Results were gathered as self-administered questionnaires as well as measurements taken at scheduled follow-up visits over the following two years. Not all values were reported for all patients at all time-points. Statistical differences were calculated using a paired Student’s t-test for each measure. IPSS at one, three, 12, and 24 months was
14.8 (SD = 8.4), 8.3 (SD = 5.8), 9.2 (SD = 6.5), and 9.6 (SD = 6.5), respectively. All values were significantly improved compared to baseline (21.7 SD = 5.5; p<0.001). Qmax at one, three, 12, and 24 months was 9.9 (SD = 3.9), 12.8, 12.7 (SD = 6.3), and 12 (SD = 6.2). These values were also values were significantly improved compared to baseline (7.9 SD ± 3.2; p<0.001 except 24 months, where p=0.001). Improvement in IPSS-QOL scores from baseline to each time point reported were statistically significant (p<0.001). Adverse events reported were hematuria (14%), UTIs (20%), dysuria (22%), and urinary urgency (20%). All were mild to moderate transient events and 75% were reported within the first 30 days.

Section Summary

The evidence regarding transurethral water vapor thermal therapy of the prostate for the treatment of BPH includes one RCT and two case series. These studies report clinically significant improvements in several measures of urinary symptoms and quality of life. Limitations of the published evidence include limited comparative follow-up and lack of studies with no industry associations. Despite the limitations, water vapor thermal therapy appears to improve urologic symptom scores and quality of life.

PRACTICE GUIDELINE SUMMARY

American Urological Association

The American Urological Association (AUA) published a 2018 (updated in 2019 and 2020) evidence-based clinical practice guideline “Surgical Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA Guideline,” which includes the following recommendations:[17, 18]

- “Water vapor thermal therapy may be offered to patients with LUTS attributed to BPH provided prostate volume <80g (Moderate Recommendation; Evidence Level: Grade C).”
- “Water vapor thermal therapy may be offered to eligible patients who desire preservation of erectile and ejaculatory function. (Conditional Recommendation; Evidence Level: Grade C).”

A conditional recommendation is described as:

- Balance between Benefits & Risks/Burdens unclear
- Alternative strategies may be equally reasonable
- Better evidence likely to change confidence

SUMMARY

It appears that transurethral water vapor thermal therapy of the prostate may improve urinary symptoms for some people with benign prostatic hyperplasia. In addition, clinical practice guidelines based on evidence recommend transurethral water vapor thermal therapy of the prostate for certain individuals with benign prostatic hyperplasia. Therefore, transurethral water vapor thermal therapy of the prostate may be considered medically necessary when criteria are met. In all other situations, there is not enough evidence to show that transurethral water vapor thermal therapy of the prostate improves health outcomes.
Therefore, transurethral water vapor thermal therapy of the prostate is considered investigational when criteria are not met.

REFERENCES

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>53854</td>
<td>Transurethral destruction of prostate tissue; by radiofrequency generated water vapor thermotherapy</td>
</tr>
<tr>
<td></td>
<td>53899</td>
<td>Unlisted procedure, urinary system</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: December 2018
Phrenic Nerve Stimulation for Central Sleep Apnea

Effective: October 1, 2021

Next Review: June 2022
Last Review: August 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Central sleep apnea (CSA) is characterized by repetitive cessation or decrease in both airflow and ventilatory effort during sleep. The goal of phrenic nerve stimulation treatment is to normalize sleep-related breathing patterns.

MEDICAL POLICY CRITERIA

Note: This policy only addresses phrenic nerve stimulation for *central* sleep apnea (CSA). It does not address hypoglossal nerve stimulation for *obstructive* sleep apnea (OSA). See Cross References section below.

The use of phrenic nerve stimulation for central sleep apnea is considered *investigational*.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES

1. [Noninvasive Ventilators in the Home Setting](#), Durable Medical Equipment, Policy No. 87
2. [Surgeries for Snoring, Obstructive Sleep Apnea Syndrome, and Upper Airway Resistance Syndrome](#), Surgery, Policy No. 166
3. [Hypoglossal Nerve Stimulation](#), Surgery, Policy No. 215
BACKGROUND

CENTRAL SLEEP APNEA

Central sleep apnea (CSA) is characterized by repetitive cessation or decrease in both airflow and ventilatory effort during sleep. CSA may be idiopathic or secondary (associated with Cheyne-Stokes breathing, a medical condition, drugs, or high altitude breathing. Cheyne-Stokes breathing is common among patients with heart failure or who have had strokes, and accounts for about half of the population with CSA. CSA is less common than obstructive sleep apnea (OSA). Based on analyses of a large community-based cohort in the Sleep Heart Health Study, the estimated prevalences of CSA and OSA are 0.9% and 47.6%, respectively. Risk factors for CSA include age (>65 years), male gender, history of heart failure, history of stroke, other medical conditions (acromegaly, renal failure, atrial fibrillation, low cervical tetraplegia, and primary mitochondrial diseases), and opioid use. Individuals with CSA have difficulty maintaining sleep and therefore experience excessive daytime sleepiness, poor concentration, morning headaches, and are at higher risk for accidents and injuries.

TREATMENT

The goal of treatment is to normalize sleep-related breathing patterns. Because most cases of CSA are secondary to an underlying condition, central nervous system pathology, or medication side effects, treatment of the underlying condition or removal of the medication, may improve CSA.

Treatment recommendations differ depending on the classification of CSA as either hyperventilation-related (most common, including primary CSA and those relating to heart failure or high altitude breathing) or hypoventilation-related (less common, relating to central nervous system diseases or use of nervous system suppressing drugs such as opioids).

For patients with hyperventilation-related CSA, continuous positive airway pressure (CPAP) is considered first-line therapy. Due to CPAP discomfort, patient compliance may become an issue. Supplemental oxygen during sleep may be considered for patients experiencing hypoxia during sleep or who cannot tolerate CPAP. Patients with CSA due to heart failure and with an ejection fraction >45% and who are not responding with CPAP and oxygen therapy, may consider bilevel positive airway pressure (BPAP) or adaptive servo-ventilation (ASV) as second-line therapy. BPAP devices have two pressure settings, one for inhalation and one for exhalation. ASV uses both inspiratory and expiratory pressure, and titrates the pressure to maintain adequate air movement. However, a clinical trial reported increased cardiovascular mortality with ASV in patients with CSA due to heart failure and with an ejection fraction <45%, and therefore, ASV is not recommended for this group.

For patients with hypoventilation-related CSA, first-line therapy is BPAP.

Pharmacologic therapy with a respiratory stimulant may be recommended to patients with hyper- or hypoventilation CSA who do not benefit from positive airway pressure devices, though close monitoring is necessary due to the potential for adverse effects such as rapid heart rate, high blood pressure, and panic attacks.

PHRENIC NERVE STIMULATION

Currently, there is one phrenic nerve stimulation device approved by the Food and Drug Administration (FDA), the remedē System (Respicardia, Inc.). The remedē System is an...
implantable device that stimulates the phrenic nerve in the chest which sends signals to the diaphragm to restore a normal breathing pattern. A cardiologist implants the battery powered device under the skin in the right or left pectoral region. The procedure is conducted using local anesthesia. The device has two leads, one to stimulate a phrenic nerve (either the left pericardiophrenic or right brachiocephalic vein) and one to sense breathing. The device runs on an algorithm that activates automatically at night when the patient is in a sleeping position, and suspends therapy when the patient sits up. Patient-specific changes in programming can be conducted externally by a programmer.

REGULATORY STATUS

In October 2017, the FDA granted approval for the remedē System (Respicardia, Inc; Minnetonka, MN) through the premarket approval application process. The approved indication is for treatment of moderate to severe central sleep apnea in adults. Product code: PSR.

EVIDENCE SUMMARY

Outcomes of interest include sleep quality metrics and quality of life measures. The Apnea-Hypopnea Index (AHI) is the number of apnea and hypopnea (events per hour of sleep, in which the apnea events last at least 10 seconds and are associated with decreased blood oxygenation. In adults, the AHI scale is: <5 AHI (normal); 5<AH<15 (mild); 15<AH<30 (moderate); and>30 AH (severe). Additional sleep metrics include central apnea index (CAI, number of central apnea events per hour of sleep) and obstructive apnea index (OAI, number of obstructive apnea events per hour of sleep).

Quality of life outcomes can be measured by the Epworth Sleepiness Scale (ESS) or a Patient Global Assessment. The ESS is a short self-administered questionnaire that asks patients how likely they are to fall asleep (0="no chance" to 3="high chance") in 8 different situations (e.g., watching TV, sitting quietly in a car, or sitting and talking to someone). The scores are added, ranging from 0 to 24, with scores over 10 indicating excessive sleepiness and recommendation to seek medical attention.

SYSTEMATIC REVIEWS

Luni (2020) reported a meta-analysis of five studies (n=204) evaluating the efficacy of transvenous neurostimulation of the phrenic nerve for central sleep apnea.[3] An analysis of the pooled data demonstrated a reduction of mean AHI in the stimulation group compared to the control group by 26.7 events/hour (95% CI -31.99 to -21.46, p 0.00), and a mean AHI difference of -22.47. Compared with the control group, the mean reduction in the oxygen desaturation index of 4% or more was decreased in the stimulation group by -24.16 events/hour (95% CI -26.20 to -22.12, p 0.00).

RANDOMIZED CONTROLLED TRIAL

Costanzo (2015) provided background and methodologic details of the remedē System Pivotal Trial.[4] The trial is a prospective, multicenter, randomized, open-label controlled trial comparing transvenous unilateral phrenic nerve stimulation with no stimulation in patients with CSA of various etiologies (Table 1). All patients received implantation of the phrenic nerve stimulation system, with activation of the system after one month in the intervention group (n=73) and activation after six months in the control group (n=78). Activation is delayed one month after implantation to allow for lead healing. The primary efficacy endpoint is percentage of patients...
achieving a reduction in Apnea-Hypopnea Index (AHI) of 50%, as interpreted from polysomnography by an assessor blinded to treatment arm. The reduction of 50% was based on assessments showing that a 50% reduction in AHI is associated with reduced mortality risk and is therefore clinically meaningful. Secondary endpoints include mean reductions in CAI, AHI, arousal index, OD14, and Epworth Sleepiness Scale. Quality of life is measured by Patient Global Assessment (PGA), which consists of a 7-point scale (1=“markedly improved” to 7=“markedly worsened”). Of the 151 patients in the trial, 64% had heart failure, 42% had atrial fibrillation, and a mean left ventricular ejection fraction of 39.6. Six-month per protocol comparative results for the treatment and control groups were published in 2016 by Costanzo (Table 3).[5] Adverse events were reported in 9% of the intervention group and 8% of the control group (for example, implant site infection, implant site hematoma, and lead dislodgement). Non-serious therapy-related discomfort was reported in 27 (37%) of the intervention group, with all but one case resolved by system reprogramming.

Costanzo (2018) provided 12 months followup results for the intervention arm.[6] At six months followup, 15 of the 73 (21%) in the treatment group were excluded due to no six-month data (n=9: unrelated death, device explant, missed visit, study exit), failed inclusion criteria (n=3), unsuccessful implant (n=2), therapy programmed off (n=1). At 12 months followup, an additional four patients were lost due to unrelated death, device explant, patient refusal, and missed visit. Results from the remaining 54 patients in the intervention group are summarized in Table 3. Subgroup analyses showed consistent improvements in percent experiencing >50% AHI reductions from treatment across all of the following subgroups: age (<65, 65 to <75, and >75), gender, heart failure (yes/no), defibrillator (yes/no), AHI severity (moderate/severe), and atrial fibrillation (yes/no).

Another publication by Costanzo in 2018 provided 12-months follow-up results for the subgroup of patients in the Pivotal Trial who had heart failure.[7]Pooling of results was possible by using 6 and 12 month data from the intervention group and 12 and 18 month data from the control group (the phrenic nerve stimulator was activated in the control group six months after implantation). At baseline, 96 of the patients in the trial had heart failure. By the six-month followup, there had been four deaths, one explant, and five withdrew from the study. By the 12-month followup, there had been an additional five deaths, one implant, and one withdrawal, as well as four missing the final visit. Results at 6 and 12 months followup for the subgroup of patients with heart failure are summarized in Table 2.

Follow-up at 24 months was available for 42 patients in the treatment group, while 22 patients in the treatment group and 28 patients in the control arm had reached 36 month follow-up at the time of study closure.[8] Central apnea events remained low throughout follow-up with a median time to battery depletion of 39.4 months. Median AHI at 24 months and 36 months was 16 and 13, respectively. Serious adverse events related to the implant procedure, device, or delivered therapy occurred in 10% of patients through the 24-month visit. All were reported to be resolved with remedē System revisions or programming.

Five-year outcomes of the Pivotal Trial were published in 2021.[9] Patients in the treatment group and those in the control group, who had therapy activated after the primary endpoint assessment at the six-month visit, were pooled. The 42 patients evaluated for five-year outcomes had a change from baseline of -22 for AHI (p<0.001), -23 for CAI (p<0.001), 1 for OAI (p=0.003), and -5 for ESS (p=0.008). Serious adverse events related to the implant procedure, device, or delivered therapy occurred in 15% of patients through the five-year visit, none of which caused long-term harm.
An analysis of the pivotal trial data for safety and efficacy of TPNS in patients with concomitant cardiovascular implantable electronic devices (CIEDs) was reported by Nayak (2020). Of the 151 initially enrolled patients, 64 had a concomitant CIED. There was no difference in safety or efficacy between patients with and without CIEDs.

Table 1. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costanzo (2015)[4]</td>
<td>Germany, Poland, United States</td>
<td>31</td>
<td>2013-2015</td>
<td>Adult patients with moderate to severe CSA of various etiologies confirmed by PSGa and medically stableb</td>
<td>Implanted phrenic nerve stimulator (remede system) activated at 1 month postprocedure (n=73)</td>
</tr>
</tbody>
</table>

a AHI>20 events/hr; CAI>50% of all apneas, with>30 central apnea events; OAI<20% of all AHI
b For 30 days prior to baseline testing: no hospitalizations for illness, no breathing mask-based therapy, and on stable medications and therapies.

AHI: apnea-hypopnea index; CSA: central sleep apnea; PSG: polysomnography.

Table 2. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Baseline</th>
<th>6-Month</th>
<th>Change from Baseline</th>
<th>Between Group Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costanzo (2018)[5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>50% AHI reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment, n=58</td>
<td>NA</td>
<td>51% (39% to 64%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Control, n=73</td>
<td>NA</td>
<td>11% (5% to 20%)</td>
<td>NA</td>
<td>41% (25% to 54%)</td>
</tr>
<tr>
<td>AHI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment, n=58</td>
<td>49.7 ± 18.9</td>
<td>25.9 ± 20.5</td>
<td>-23.9 ± 18.6</td>
<td></td>
</tr>
<tr>
<td>Control, n=73</td>
<td>43.9 ± 17.3</td>
<td>45.0 ± 20.3</td>
<td>1.1 ± 17.6</td>
<td>-25.0 ± 18.1</td>
</tr>
<tr>
<td>CAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment, n=58</td>
<td>31.7 ± 18.6</td>
<td>6.0 ± 9.2</td>
<td>-25.7 ± 18.0</td>
<td></td>
</tr>
<tr>
<td>Control, n=73</td>
<td>26.2 ± 16.2</td>
<td>23.3 ± 17.4</td>
<td>-2.9 ± 17.7</td>
<td>-22.8 ± 17.8</td>
</tr>
<tr>
<td>PGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment, n=58</td>
<td>NA</td>
<td>60% (47% to 73%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Control, n=73</td>
<td>NA</td>
<td>6% (2% to 14%)</td>
<td>NA</td>
<td>55% (40% to 68%)</td>
</tr>
<tr>
<td>ESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment, n=58</td>
<td>10.7 ± 5.3</td>
<td>7.1 ± 4.1</td>
<td>-3.6 ± 5.6</td>
<td></td>
</tr>
<tr>
<td>Control, n=73</td>
<td>9.3 ± 5.7</td>
<td>9.4 ± 6.1</td>
<td>0.1 ± 4.5</td>
<td>-3.7 ± 5.0</td>
</tr>
</tbody>
</table>

Paired Change, Baseline to 12-Month Mean (95% CI)

<table>
<thead>
<tr>
<th>Study</th>
<th>Baseline</th>
<th>6-Month</th>
<th>12-Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costanzo (2018)[6]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment arm alone, N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHI</td>
<td>49.7 ± 18.9</td>
<td>25.9 ± 20.5</td>
<td>23.0 ± 21.9</td>
</tr>
<tr>
<td>CAI</td>
<td>31.7 ± 18.6</td>
<td>6.0 ± 9.2</td>
<td>3.4 ± 6.9</td>
</tr>
<tr>
<td>OAI</td>
<td>2.1 ± 2.2</td>
<td>6.3 ± 7.0</td>
<td>4.5 ± 5.1</td>
</tr>
<tr>
<td>PGAb</td>
<td>NA</td>
<td>60% (47% to 72%)</td>
<td>60% (47% to 72%)</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
An analysis of the Pivotal Trial data to compare PAP-naïve and prior PAP-treated patients was completed by Schwartz (2021). At baseline, CSA was more severe and symptomatic in the PAP-treated vs. PAP-naïve group (median AHI 52/h vs. 38, central apnea index (CAI) 32/h vs. 18, ESS 13 vs. 10, fatigue severity scale 5.2 vs. 4.5). Active therapy resulted in statistically significant improvements in polysomnographic metrics (p<0.001 for AHI, 4% ODI, arousal index, and CAI), with little or no change in the inactive control group. Of PAP-treated and PAP-naïve patients, 98% and 94% indicated they would undergo the implant again.

NON-COMPARATIVE STUDIES

Abraham (2015) and Jagielski (2016) presented 6-month and 12 month results from a cohort of 47 patients with CSA of various etiologies who received phrenic nerve stimulation with the remedē system (Table 3). Sleep disorder parameters were measured by polysomnography, through 12 months, with an optional sleep testing at 18 months (Table 3). Quality of life was measured on a seven-point scale, with patients answering the question, "How do you feel today compared with how you felt before having your device implanted?" CSA etiologies included heart failure (79%), other cardiac (13%), and opiate use (4%). Three deaths occurred during the study period, none attributed to the intervention. Five experienced serious adverse events, three at the beginning of the study (two [hematoma, migraine] due to implantation procedure and one chest pain), and two during 12-month followup (pocket perforation and lead failure). A summary of sleep metric and quality of life results are presented in Table 4.

Table 3. Summary of Non-Comparative Study Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Participants</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham (2015) and Jagielski (2016)</td>
<td>Germany, Italy, Poland, United States</td>
<td>Adult patients with a history of sleep apnea, predominantly CSA rather than OSA, and an AHI>20 events/hour</td>
<td>12 months (optional 18 months)</td>
</tr>
</tbody>
</table>

AHI: Apnea-Hypopnea Index; CSA: central sleep apnea; OSA: obstructive sleep apnea.

Table 4. Summary of Non-Comparative Study Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Participants</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham (2015) and Jagielski (2016)</td>
<td>Germany, Italy, Poland, United States</td>
<td>Adult patients with a history of sleep apnea, predominantly CSA rather than OSA, and an AHI>20 events/hour</td>
<td>12 months (optional 18 months)</td>
</tr>
<tr>
<td>Outcome</td>
<td>Baseline (n=47) mean± SD</td>
<td>3 months (n=47) mean± SD</td>
<td>6 months (n=41) mean± SD</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>AHI, events/hour</td>
<td>49.9± 14.6</td>
<td>22.4± 13.6</td>
<td>23.8± 13.1</td>
</tr>
<tr>
<td>CAI, events/hour</td>
<td>28.0± 14.2</td>
<td>4.7± 8.6</td>
<td>4.6± 7.4</td>
</tr>
<tr>
<td>OAI, events/hour</td>
<td>3.0± 2.9</td>
<td>3.9± 4.7</td>
<td>3.9± 5.4</td>
</tr>
<tr>
<td>4% ODI, events/hour</td>
<td>45.2± 18.7</td>
<td>21.6± 13.7</td>
<td>23.1± 13.1</td>
</tr>
<tr>
<td>Arousal index, events/hour</td>
<td>36.2± 18.8</td>
<td>23.7± 10.6</td>
<td>25.1± 12.5</td>
</tr>
<tr>
<td>QOL, % improvement from baseline</td>
<td>NA</td>
<td>70.8%</td>
<td>75.6%</td>
</tr>
</tbody>
</table>

a Patients with marked or moderate improvement in 7-point quality of life scale
b p<0.006 compared to baseline

AHI: Apnea-Hypopnea Index; CAI: central apnea index; NA: not applicable; NR: not reported; OAI: obstructive apnea index; ODI: oxygen desaturation index; QOL: quality of life; RCT: randomized controlled trial; SD: standard deviation.

Fox (2017) presented data on long term durability of the remedē System, measuring battery lifetime, device exchangeability, lead position stability, and surgical accessibility. Three consecutive patients, mean age 75.7 years, with CSA and HF with preserved ejection fraction were implanted with the remedē phrenic nerve stimulation device due to intolerability of conventional mask therapy. Implantation occurred in 2011 and the patients were followed for four years. Mean battery life duration was 4.2± 0.2 years. Therapy was well tolerated by the patients, with improvements sustained in AHI, oxygen desaturation index, and quality of life (measured by ESS). Mean device replacement procedure time was 23 minutes, under local anesthesia, with a two-day hospital stay.

SUMMARY OF EVIDENCE

For individuals with central sleep apnea who receive phrenic nerve stimulation, the evidence includes one randomized controlled trial (RCT) and observational studies. Relevant outcomes are change in disease status, functional outcomes, and quality of life. The RCT compared the use of phrenic nerve stimulation to no treatment among patients with central sleep apnea of various etiologies. All patients received implantation of the phrenic nerve stimulation system, with activation of the system after one month in the intervention group and activation after six months in the control group. Activation is delayed one month after implantation to allow for lead healing. At six months follow-up, the patients with the activated device experienced significant improvements in several sleep metrics and quality of life measures. At 12 months followup, patients in the activated device arm showed sustained significant improvements from baseline in sleep metrics and quality of life. A subgroup analysis of patients with heart failure combined 6 and 12 month data from patients in the intervention group and 12 and 18 month data from the control group. Results from this subgroup analyses showed significant improvements in sleep metrics and quality of life at 12 months compared with baseline. Results from observational studies supported the results of the RCT. No RCTs were identified in which phrenic nerve stimulation was compared with the current standard of care, positive airway pressure or respiratory stimulant medication. An invasive procedure would typically be considered appropriate only if non-surgical treatments had failed, but there is very limited data in which phrenic nerve stimulation was evaluated in patients who had failed the current
standard of care, positive airway pressure or respiratory stimulant medication. The evidence is insufficient to determine the effects of the technology on health outcomes.

PRACTICE GUIDELINE SUMMARY

No evidence-based clinical practice guidelines were identified with recommendations regarding the use of phrenic nerve stimulation for central sleep apnea.

SUMMARY

There is not enough research to know if or how well phrenic nerve stimulation works to treat central sleep apnea. This does not mean that it does not work, but more research is needed to know. There are no clinical practice guidelines based on research that recommend phrenic nerve stimulation for this population. Therefore, the use of phrenic nerve stimulation for the treatment of central sleep apnea is considered investigational.

REFERENCES

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.

11. AR Schwartz, LR Goldberg, S McKane, TI Morgenthaler. Transvenous phrenic nerve stimulation improves central sleep apnea, sleep quality, and quality of life regardless of prior positive airway pressure treatment. *Sleep Breath*. 2021. PMID: 33745107

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0424T</td>
<td>Insertion or replacement of neurostimulator system for treatment of central sleep apnea; complete system (transvenous placement of right or left stimulation lead, sensing lead, implantable pulse generator)</td>
</tr>
<tr>
<td></td>
<td>0425T</td>
<td>;sensing lead only</td>
</tr>
<tr>
<td></td>
<td>0426T</td>
<td>;stimulation lead only</td>
</tr>
<tr>
<td></td>
<td>0427T</td>
<td>;pulse generator only</td>
</tr>
<tr>
<td></td>
<td>0428T</td>
<td>Removal of neurostimulator system for treatment of central sleep apnea; pulse generator only</td>
</tr>
<tr>
<td></td>
<td>0429T</td>
<td>;sensing lead only</td>
</tr>
<tr>
<td></td>
<td>0430T</td>
<td>;stimulation lead only</td>
</tr>
<tr>
<td></td>
<td>0431T</td>
<td>Removal and replacement of neurostimulator system for treatment of central sleep apnea, pulse generator only</td>
</tr>
<tr>
<td></td>
<td>0432T</td>
<td>Repositioning of neurostimulator system for treatment of central sleep apnea; stimulation lead only</td>
</tr>
<tr>
<td></td>
<td>0433T</td>
<td>;sensing lead only</td>
</tr>
<tr>
<td></td>
<td>0434T</td>
<td>Interrogation device evaluation implanted neurostimulator pulse generator system for</td>
</tr>
<tr>
<td></td>
<td>0435T</td>
<td>Programming device evaluation of implanted neurostimulator pulse generator system for central sleep apnea; single session</td>
</tr>
<tr>
<td></td>
<td>0436T</td>
<td>;during sleep study</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C1823</td>
<td>Generator, neurostimulator (implantable), non-rechargeable, with transvenous sensing and stimulation leads</td>
</tr>
</tbody>
</table>

Date of Origin: December 2018

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
NOTE: This policy has been revised. The revised policy will be effective November 1, 2022. To view the revised policy, click here.

Medical Policy Manual
Surgery, Policy No. 215

Hypoglossal Nerve Stimulation

Effective: January 1, 2022

Next Review: June 2022
Last Review: December 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

When patients with obstructive sleep apnea cannot tolerate positive airway pressure, or when continuous positive airway pressure (CPAP) treatment has failed, hypoglossal nerve stimulation may be considered.

MEDICAL POLICY CRITERIA

Note: Contract language takes precedent over medical policy. Some member contracts have specific benefit limitations for orthognathic surgery.

I. Hypoglossal nerve stimulation may be considered medically necessary in adults with obstructive sleep apnea when all of the criteria below (A.-E.) are met:
 A. Age greater than or equal to 22 years; and
 B. AHI greater than or equal to 15 with less than 25% central apneas (see Policy Guidelines); and
 C. CPAP failure (residual AHI greater than or equal to 20 or failure to use CPAP greater than or equal to 4 hr per night for greater than or equal to 5 nights per week) or inability to tolerate CPAP; and
 D. Body mass index less than 35 kg/m2; and
E. Non-concentric retropalatal obstruction on drug-induced sleep endoscopy. Note: Concentric collapse decreases the success of hypoglossal nerve stimulation and is an exclusion criterion from the Food and Drug Administration.

II. Hypoglossal nerve stimulation may be considered medically necessary in adolescents or young adults with Down syndrome and obstructive sleep apnea when all of the criteria below (A.-E.) are met:

A. Age 10 to 21 years; and

B. AHI greater than 10 and less than 50 with less than 25% central apneas after prior adenotonsillectomy (see Policy Guidelines); and

C. Have either tracheotomy or be ineffectively treated with CPAP due to noncompliance, discomfort, un-desirable side effects, persistent symptoms despite compliance use, or refusal to use the device; and

D. Body mass index less than or equal to 95th percentile for age; and

E. Non-concentric retropalatal obstruction on drug-induced sleep endoscopy. Note: Concentric collapse decreases the success of hypoglossal nerve stimulation and is an exclusion criterion from the Food and Drug Administration.

III. Revisions to an existing hypoglossal nerve stimulator may be considered medically necessary after the device has been placed.

IV. The replacement of all or part of an existing hypoglossal nerve stimulator and/or generator is considered medically necessary when the existing hypoglossal nerve stimulator and/or generator is malfunctioning, cannot be repaired, or is no longer under warranty

V. The replacement of all or part of an existing hypoglossal nerve stimulator and/or generator is considered not medically necessary when Criterion IV is not met.

VI. Hypoglossal nerve stimulation is considered investigational for all other indications including but not limited to when policy Criteria I. or II. are not met.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

There is divergence on scoring rules for hypopneas between the recommendations of the American Academy of Sleep Medicine (AASM) and the Center for Medicare Services (CMS), the latter being more restrictive.[1] Policy Criteria are based on apnea-hypopnea index (AHI) scored with either the AASM or the CMS scoring rules,[2, 3] either of which are acceptable in this medical policy.

The most recent (2012) AASM rules define apnea in adults as a drop in the peak signal excursion by $\geq 90\%$ of pre-event baseline using an oronasal thermal sensor (diagnostic study), positive airway pressure (PAP) device flow (titration study), or an alternative apnea sensor, for ≥ 10 seconds. Hypopnea in adults is scored when the peak signal excursions drop by $\geq 30\%$ of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ 10 seconds in association with either $\geq 3\%$ arterial oxygen desaturation or an arousal.
The Center for Medicare Services (CMS) scoring rules state that apnea is defined as a cessation of airflow for at least 10 seconds. Hypopnea is defined as an abnormal respiratory event lasting at least 10 seconds with at least a 30% reduction in thoracoabdominal movement or airflow as compared to baseline, and with at least a 4% oxygen desaturation.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

The information below must be submitted for review to determine whether policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and physical/chart notes
- Current symptomology
- Conservative medical therapies failed
- CPAP Trial results
- Sleep Study results, including apnea-hypopnea index (AHI) scored either by the American Academy of Sleep Medicine (AASM) scoring rules or the Center for Medicare Services (CMS) scoring rules.
- Drug-induced sleep endoscopy (DISE) results
- If a replacement is being requested, documentation that the stimulator and/or generator is malfunctioning, cannot be repaired, or is no longer under warranty

CROSS REFERENCES

1. Prefabricated Oral Appliances for Obstructive Sleep Apnea, Allied Health, Policy No. 36
2. Orthognathic Surgery, Surgery, Policy No. 137
3. Surgeries for Snoring, Obstructive Sleep Apnea Syndrome, and Upper Airway Resistance Syndrome, Surgery, Policy No. 166
5. Phrenic Nerve Stimulation for Central Sleep Apnea, Surgery, Policy No. 212

BACKGROUND

OBSTRUCTIVE SLEEP APNEA (OSA)

Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction due to the collapse and obstruction of the upper airway during sleep. The hallmark symptom of OSA is excessive daytime sleepiness, and the typical clinical sign of OSA is snoring, which can abruptly cease and be followed by gasping associated with a brief arousal from sleep. The snoring resumes when the patient falls back to sleep, and the cycle of snoring/apnea/arousal may be repeated as frequently as every minute throughout the night.

Sleep fragmentation associated with the repeated arousal during sleep can impair daytime activity. For example, adults with OSA-associated daytime somnolence are thought to be at higher risk for accidents involving motorized vehicles (i.e., cars, trucks, heavy equipment). OSA in children may result in neurocognitive impairment and behavioral problems. In addition, OSA affects the cardiovascular and pulmonary systems. For example, apnea leads to periods of hypoxia, alveolar hypoventilation, hypercapnia, and acidosis. This, in turn, can cause systemic hypertension, cardiac arrhythmias, and cor pulmonale. Systemic hypertension is common in patients with OSA. Severe OSA is associated with decreased survival, presumably
related to severe hypoxemia, hypertension, or an increase in automobile accidents related to overwhelming sleepiness.

A polysomnogram performed in a sleep laboratory and, in adults, home sleep apnea testing with a technically adequate device, are considered the gold standard test used to diagnose OSA. Objective measures of OSA are compiled using polysomnography monitors, which document the number of apneic (cessation or near cessation of airflow) and hypopneic (reductions in airflow associated with certain physiological consequences) events per hour and combine them into the apnea-hypopnea index (AHI). AHI is a measure of severity of OSA. The American Academy of Sleep Medicine (AASM) provided an updated set of scoring rules in 2012. Based on the 2012 AASM rules, apnea in adults is scored when there is a drop in the peak signal excursion by ≥90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), positive airway pressure (PAP) device flow (titration study), or an alternative apnea sensor, for ≥10 seconds. Hypopnea in adults is scored when the peak signal excursions drop by ≥30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥10 seconds in association with either ≥3% arterial oxygen desaturation or an arousal. The Center for Medicare Services (CMS) also published a set of scoring rules. The CMS scoring rules state that apnea is defined as a cessation of airflow for at least 10 seconds. Hypopnea is defined as an abnormal respiratory event lasting at least 10 seconds with at least a 30% reduction in thoracoabdominal movement or airflow as compared to baseline, and with at least a 4% oxygen desaturation. The respiratory disturbance index (RDI) may be defined as the number of apneas, hypopneas and respiratory effort-related arousals (RERAs) per hour of sleep.

The final diagnosis of OSA rests on a combination of objective and subjective criteria (e.g. AHI or RDI and excessive daytime sleepiness) that seek to identify those levels of obstruction which are clinically significant. When sleep onset and offset are unknown (e.g., in home sleep studies) the AHI or RDI may be calculated based on the number of apneas, hypopneas, and/or RERAs per hour of recording time.

An increase in mortality is associated with an AHI greater than 15. More difficult to evaluate is the clinical significance of patients with mild sleep apnea. Mortality has not been shown to be increased in these patients, and frequently the most significant manifestations reported by the patient are snoring, excessive daytime sleepiness, witnessed breathing interruptions, awakenings due to gasping or choking, nocturia, morning headaches, memory loss, irritability, or hypertension. The hallmark clinical symptom of OSA is excessive snoring, although it is important to note that snoring can occur in the absence of OSA. Isolated snoring in the absence of medical complications, while troubling to the patient’s bed partner, is not considered a medical problem requiring surgical intervention.

Table 1. Definitions of Terms for Obstructive Sleep Apnea

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apnea</td>
<td>The frequency of apneas and hypopneas is measured from channels assessing oxygen desaturation, respiratory airflow, and respiratory effort. In adults, apnea is defined as a drop in airflow by ≥90% of pre-event baseline for at least 10 seconds. Due to faster respiratory rates in children, pediatric scoring criteria define an apnea as ≥2 missed breaths, regardless of its duration in seconds.</td>
</tr>
<tr>
<td>Hypopnea</td>
<td>Hypopnea in adults is scored when the peak airflow drops by at least 30% of pre-event baseline for at least 10 seconds in association with either at least 3% oxygen desaturation or an arousal or at least 4% oxygen desaturation (depending on the scoring criteria). Hypopneas in children are scored by a</td>
</tr>
</tbody>
</table>
Terms and Definitions

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
<td>Apnea/Hypopnea Index (AHI)</td>
</tr>
<tr>
<td>≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
<td>Obstructive sleep apnea (OSA)</td>
</tr>
<tr>
<td>≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
<td>Mild OSA</td>
</tr>
<tr>
<td>≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
<td>Moderate OSA</td>
</tr>
<tr>
<td>≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
<td>Severe OSA</td>
</tr>
<tr>
<td>≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
<td>Continuous positive airway pressure (CPAP)</td>
</tr>
<tr>
<td>≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
<td>CPAP Failure</td>
</tr>
<tr>
<td>≥50% drop in nasal pressure and either a ≥3% decrease in oxygen saturation or an associated arousal.</td>
<td>CPAP Intolerance</td>
</tr>
</tbody>
</table>

Apnea/Hypopnea Index (AHI)

The average number of apneas or hypopneas per hour of sleep

Obstructive sleep apnea (OSA)

Repetitive episodes of upper airway obstruction due to the collapse and obstruction of the upper airway during sleep

Mild OSA

- In adults: AHI of 5 to <15
- In children: AHI ≥1.5 is abnormal

Moderate OSA

- Adults: AHI ≥30
- Children: AHI of ≥15

Severe OSA

- Adults: AHI ≥30
- Children: AHI ≥15

Continuous positive airway pressure (CPAP)

Positive airway pressure may be continuous (CPAP) or auto-adjusting (APAP) or Bi-level (Bi-PAP). CPAP is a more familiar abbreviation and will refer to all types of PAP devices.

CPAP Failure

Usually defined as an AHI greater than 20 events per hour while using CPAP

CPAP Intolerance

CPAP use for less than 4 h per night for 5 nights or more per week, or refusal to use CPAP. CPAP intolerance may be observed in patients with mild, moderate, or severe OSA

IMPLANTABLE HYPOGLOSSAL NERVE STIMULATORS

Hypoglossal nerve stimulation involves the surgical implantation of a subcutaneous generator in the upper chest and an electrode tunneled from the generator to the hypoglossal nerve. The patient uses a hand-held remote to activate the device just prior to sleep and to turn it off upon waking. Some have sensors detect inspiratory efforts and the hypoglossal nerve is stimulated in a synchronized fashion. This stimulation is intended to maintain muscle tone of the tongue base to prevent airway occlusion.

Stimulation systems such as the Inspire II Upper Airway Stimulation System include respiratory sensing leads that permit intermittent stimulation during inspiration. Stimulation parameters are titrated during an in-laboratory polysomnography and can be adjusted by the patient during home use. The device is turned on only during sleep periods.

REGULATORY STATUS

The Inspire® II Upper Airway Stimulation System (Inspire Medical Systems) received FDA approval in 2014 (P130008) for a subset of patients age 22 years and older with moderate to severe obstructive sleep apnea. Product code: MNQ. The original approval was for patients with an Apnea Hypopnea Index (AHI) of greater or equal to 20 and less than or equal to 65. In 2017, approval was granted to expand the AHI range to 15 to 65 events per hour (S021). In 2020, Inspire received approval to expand the indications to include adolescent patients age 18 to 21 with moderate to severe OSA (15 ≤ AHI ≤ 65) who:

- Do not have complete concentric collapse at the soft palate level
- Are contraindicated for, or not effectively treated by, adenotonsillectomy
- Have been confirmed to fail, or cannot tolerate, PAP therapy despite attempts to improve compliance
- Have followed standard of care in considering all other alternative/adjunct therapies
For this approval, existing adult clinical data and interim data from a pediatric feasibility study in patients with Down’s syndrome were leveraged to support the reasonable assurance of safety and effectiveness of the proposed device in the pediatric sub-population of adolescents age 18 to 21.

There are hypoglossal nerve stimulation devices which have received an investigational device exemption (IDE) from the FDA. IDE allows the investigational device to be used in a clinical study in order to collect safety and effectiveness data, however, the device is still in the developmental phase and not considered to be in commercial distribution.

- In 2014, ImThera™ Medical received FDA approval for an IDE trial with the aura6000® hypoglossal nerve stimulator system.
- In 2011, Apnex Medical received FDA approval to conduct a randomized investigational device exemption (IDE) trial for the Hypoglossal Nerve Stimulation (HGNS®) System. The trial was terminated and Apnex Medical has ceased operations.
- In June 2020, the FDA approved an Investigational Device Exemption (IDE) trial for the Genio® system from Nyxoah. This is a battery-free, leadless and minimally invasive implanted hypoglossal nerve stimulator.

EVIDENCE SUMMARY

Continuous positive airway pressure (CPAP) is the most widely accepted medical therapy for treatment of obstructive sleep apnea (OSA) and improvement of primary health outcomes such as cardiovascular disease, type 2 diabetes, and overall mortality associated with OSA. Hypoglossal nerve stimulation (HNS), sometimes referred to as upper airway stimulation, is being proposed as a second line treatment for patients who have failed CPAP.

SYSTEMATIC REVIEWS

A systematic review (SR) with meta-analysis comparing outcomes of upper airway stimulation and other upper airway surgical procedures in the treatment of obstructive sleep apnea (OSA) was published by Neruntarat (2021). Five articles (N= 990) were included in the review and analysis. Patients in the “Stim” group underwent hypoglossal nerve stimulation (HNS, N=660) with the Inspire implant, and patients in the surgical intervention “Surg” group (N=330) underwent various surgical interventions including uvulopalatoplasty (UPPP), transoral robotic surgery, expansion sphincter pharyngoplasty, and palatal or tongue base surgery. Studies by Huntley, Shah, and Yu were included in the analysis. The follow-up time ranged from 2 to 13 months. The mean cure rates in the Stim group and the Surg group were 63% and 22%, respectively, and the mean success rates were 86% and 51% (p < 0.001). The apnea-hypopnea index (AHI) was significantly more reduced in the Stim group, -23.9 events/hour (MD, 95% CI -25.53, -22.29) compared to the Surg group, -15.5 events/hour (MD, 95% CI -17.50, -13.45), p < 0.001. Oxygen saturation nadir improvement was 8.5% (MD 95% CI 7.05%, 9.92%) in the Stim group and 2.2% (MD 95% CI 0.22%, 4.58%) in the Surg group, which is significantly higher in the Stim group (p < 0.001). No significant difference in Epworth Sleepiness Scale (ESS) between groups was found. High risk of bias in multiple domains, including selective outcome reporting, incomplete outcome data, blinding, and participant selection was found for all included studies. Noted limitations in available data include retrospective study designs, limited follow-up times, and heterogeneity in patient characteristics.
Costantino (2020) published a SR with meta-analysis of studies evaluating the clinical outcomes of HNS in the treatment of moderate to severe OSA. The SR included 12 prospective studies, excluding redundant cohorts of the same studies with varied follow-up lengths such as the STAR Trial and the German Post-Market studies. No randomized controlled trials comparing HNS to CPAP or other surgical interventions were identified. Of the 350 patients (median age 54.3 [IQR 53-56.25] years), 239 were implanted with the Inspire®, 59 were implanted with the ImThera™ system, and 52 were implanted with the Apnex system. All of the studies were considered to be of generally high quality, having satisfied at least six of the eight NICE quality assessment tool items. In all studies, the American Academy of Sleep Medicine (AASM) apnea and hypopnea definitions were used, except that a 4% oxygen desaturation was required for a hypopnea to determine AHI. Analyses of long-term outcomes were conducted with data from the nine studies which had follow-up timepoints of six- and 12-months separately from the STAR trial data, which reported longer-term follow-up timepoints of 18-, 36-, and 60-months. At 12 months, the mean AHI difference was - 17.50 (Inspire; 95% CI: - 20.01 to - 14.98, p < 0.001), - 24.20 (ImThera™; 95% CI: - 37.39 to 11.01, p < 0.001), and - 20.10 (Apnex; 95% CI: - 29.62 to - 10.58, p < 0.001). The mean AHI reduction after five years was - 18.00 (Inspire®, - 22.38 to - 13.62, p < 0.001). The Epworth sleepiness scale (ESS) mean reduction was - 5.27 (Inspire®), - 2.90 (ImThera™), and - 4.20 (Apnex) at 12 months and - 4.40 (Inspire) at 60 months, respectively. Five-year serious device-related adverse events requiring surgical intervention in the STAR trial were 6% (8/126 patients), and the other studies included in the meta-analysis (n=195) reported a comparable complication rate at six and 12 months. Among the nine studies included in the meta-analysis, the overall success rate at 12 months (defined as a 50% reduction in AHI and overall AHI less than 20), was 72.4% (Inspire®, n=211), 76.9% (ImThera™, n=13), and 55% (Apnex, n=31).

A 2015 SR identified six case series with a total of 200 patients treated with HNS. No controlled trials were identified. Two series were identified on the Inspire II System and included the STAR trial described below. Three series were identified with the HGNS system and included the study of 31 patients described above. One series of 13 patients was identified with the aura6000 System (ImThera Medical). When data were combined for meta-analysis, AHI and Oxygen Desaturation Index (ODI) improved by 50% (e.g., AHI from 44 to 20, ODI from 21 to 10), and the ESS improved from 12 to 7. All of the included studies described minor complications such as tongue weakness, tongue soreness, pain/swelling at the neck incision, fever, and lack of tongue response to stimulation. Of the 200 patients, nine (4.5%) had serious device-related adverse events that led to removal of the stimulator.

RANDOMIZED CONTROLLED TRIALS

Heiser (2021) published the results of a multicenter, double-blind, randomized, sham-controlled, crossover trial to examine the effect of implanted hypoglossal nerve stimulation (Stim, n=45) or sham stimulation (Sham, n=44) using the Inspire HNS. Inclusion criteria were moderate-to-severe OSA (AHI ≥ 15), CPAP intolerance, and the absence of complete concentric retropalatal collapse during drug-induced sleep endoscopy. The UAS devices implanted in the participants were programmed to the setting assigned to their respective groups, i.e., Stim (continued therapeutic stimulation, average amplitude 1.6 V ± 0.7) and Sham (stimulation voltage set at 0.1 V as a subtherapeutic stimulation level and a deception for the patient). All participants received therapeutic stimulation during the first visit (baseline visit), and once randomized, the Stim–Sham group received therapeutic stimulation while the Sham–Stim group received sham stimulation for one week. Crossover occurred during the second week, in which the Stim–Sham group received sham stimulation while the Sham–Stim group...
received therapeutic stimulation. Primary outcome measures were the proportion of AHI responders (defined as AHI ≤ 15/h) between parallel randomized groups and self-reported sleepiness measure using the ESS questionnaire at the one-week visit. At one week, the AHI response rate was 76.7% with Stim and 29.5% with Sham, a difference of 47.2% (95% CI: 24.4 to 64.9, p < 0.001). The average ESS change from the Stim–Sham group was 0.4 ± 2.3 and from the Sham–Stim group was 5.0 ± 4.6, with a significant difference of 4.6 (95% CI of 3.1 to 6.1, p = 0.001). The change of AHI and ESS from the baseline to the one-week and two-week visits between the Stim–Sham and Sham–Stim groups and found no statistical evidence of a carryover effect for AHI (p = 0.55) or ESS (p = 0.23). The homogenous study population (81% male, 100% Caucasian) limits the generalizability of the study findings. In addition, the authors note that most participants randomized to the sham arm became aware of the group allocation, which may impact study outcomes. Longer-term outcomes are not reported. This study was funded by the device manufacturer (Inspire Medical Systems, Inc) and study authors received fees and/or other funding from the device manufacture and no clear attempt to mitigate potential bias is provided.

NONRANDOMIZED STUDIES

Observational Comparative Studies

Nonrandomized evidence consists of comparative studies that compared HNS with historical controls treated with UPPP or a variant of UPPP (expansion sphincter pharyngoplasty, see Table 2) and a study that compared HNS with transoral robotic surgery. AHI success by the Sher criteria ranged from 87% to 100% in the HNS group compared with 40% to 64% in the UPPP group (see Table 3). Posttreatment ESS was below 10 in both groups. It is not clear from some studies whether the patients in the historical control group were similar to the subset of patients in the HNS group, particularly in regard to the pattern of palatal collapse and from patients who did not return for postoperative PSG (see Tables 4 and 5).

Several comparative studies have addressed these concerns by only including patients who meet the criteria for HNS in the control group. Yu (2019) compared outcomes for patients who met the criteria for both HNS (non-concentric collapse on drug-induced sleep endoscopy) and transoral robotic surgery (retroglossal obstruction).[12] When patients with similar anatomic criteria were compared, HNS led to significantly better improvements in AHI, cure rate (defined as AHI < 5), and the percentage of time that oxygen saturation fell below 90%. Huntley (2021) selected patients in the control group who met criteria for HNS (non-concentric collapse on drug-induced sleep endoscopy and body mass index [BMI] criteria) but had been treated at their institutions by single or multi-level palatal and lingual surgery.[8] There was no explanation of why the different treatments were given during the overlap period of 2010 to 2019, but the HNS patients were older and heavier. HNS resulted in a modestly greater decrease in AHI (HNS: -21.4 vs -15.9, p <.001), but not in ESS (HNS: -4.7 vs -5.8, p =.06). More patients in the HNS group achieved success by the Sher criteria (70% vs 48 to 49%) suggesting that there might be a clinical benefit for some patients.

Another report from the ADHERE registry investigators (Mehra 2020) compared outcomes from HNS patients with patients who met criteria but had been denied insurance coverage.[22] In a post-hoc multivariate analysis, previous use of PAP and prior surgical procedures were predictors of insurance approval. In the group of patients who received HNS, the average use downloaded from the device was 5.6 h/night and 92% of patients had usage greater than 20 h/week. Most of the comparator group (86%) were not using any therapy at follow-up. The
remaining 14% were using PAP, an oral appliance, or underwent OSA surgery. The AHI decreased to 15 events/h (moderate OSA) on the night of the sleep test in patients with HNS, with only modest improvement in patients who did not receive HNS. The hours of use on the night of the post-operative sleep study was not reported, and the HNS patients may have been more likely to use their device on the test night. In addition, the use of a home sleep test for follow-up may underestimate the AHI. The ESS improved in the HNS group but worsened in the controls. This suggests the possibility of bias in this subjective measure in patients who were denied coverage.

Table 2. Summary of Observational Comparative Study Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>HNS</th>
<th>Traditional Surgery</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehra (2020)</td>
<td>ADHERE registry</td>
<td>US, EU</td>
<td>2017-2019</td>
<td>OSA patients who were intolerant to CPAP and met HNS criteria of AHI 15 to 65, BMI < 35, and favorable pattern of palatal collapse</td>
<td>250 registry patients treated with HNS</td>
<td>100 patients who qualified for HNS but were denied insurance coverage</td>
<td>6 to 24 months</td>
</tr>
</tbody>
</table>
| Huntley (2021) | ADHERE registry compared to retrospective controls | US, EU | • HNS 2010-2019
• Modified UPPP 2003-2019 | OSA patients who were intolerant to CPAP and met HNS criteria of AHI 15 to 65, BMI < 35, and favorable pattern of palatal collapse | 465 registry patients treated with HNS who had 12 mo follow-up | 233 patients who would have qualified for HNS and were treated by single level (68%) or multilevel (31%) surgery | 173 days after surgery 383 days after HNS |
• TORS 2011-NR | OSA patients with AHI >20 and <65, BMI ≤32, failed CPAP, favorable pattern of palatal collapse | 27 patients age 62 with retroglossal collapse amenable to TORS | 20 patients age 53 y who would have qualified for HNS and were treated by TORS | NR |
| Shah (2018) | Retrospective series with historical controls | U.S. | HNS 2015-2016 | 40 OSA patients with AHI >20 and <65, BMI ≤32, failed CPAP, | 35% had previously had surgery for OSA | UPPP 50% of patients had additional surgical | 2-13 mo |

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>HNS</th>
<th>Traditional Surgery</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huntley (2018)[10]</td>
<td>Retrospective series with historical controls</td>
<td>U.S.</td>
<td>HNS2014 - 2016 Modified UPPP 2011-2016</td>
<td>Retrospective review included treated patients who had a postoperative PSG</td>
<td>75 patients age 61.67 y with a favorable pattern of palatal collapse ³</td>
<td>ESP</td>
<td>To post-operative PSG</td>
</tr>
</tbody>
</table>

BMI: body mass index; CPAP: continuous positive airway pressure; ESP: expansion sphincter pharyngoplasty; HNS: hypoglossal nerve stimulation; OSA: obstructive sleep apnea; PSG: polysomnography; UPPP: uvulopalatopharyngoplasty.
³ A favorable pattern of palatal collapse is not concentric retropalatal obstruction on drug-induced sleep endoscopy.

Table 3. Summary of Key Observational Comparative Study Results

<table>
<thead>
<tr>
<th>Header Row</th>
<th>Baseline AHI (SD)</th>
<th>Posttreatment AHI (SD)</th>
<th>AHI Success (%) Sher Criteria</th>
<th>Baseline ESS (SD)</th>
<th>Posttreatment ESS (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huntley (2021)[8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNS</td>
<td>35.5 (15.0)</td>
<td>14.1 (14.4)</td>
<td>70</td>
<td>11.9 (5.5)</td>
<td>7.3 (4.7)</td>
</tr>
<tr>
<td>Single or multi-level UPPP</td>
<td>35.0 (13.1)</td>
<td>19.3 (16.3)</td>
<td>48 to 49</td>
<td>11.3 (5.1)</td>
<td>5.9 (4.0)</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.88</td>
<td><0.001</td>
<td><0.001</td>
<td>0.22</td>
<td>0.06</td>
</tr>
<tr>
<td>Mehra (2020)[22]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNS</td>
<td>33.7 (13.4)</td>
<td>14.7 (13.8)</td>
<td></td>
<td>12.3 (5.5)</td>
<td>7.2 (4.8)</td>
</tr>
<tr>
<td>No HNS</td>
<td>34.9 (16.4)</td>
<td>26.8 (17.6)</td>
<td></td>
<td>10.9 (5.4)</td>
<td>12.8 (5.2)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.95</td>
<td><0.001</td>
<td></td>
<td>0.06</td>
<td><0.001</td>
</tr>
<tr>
<td>Yu (2019)[12]</td>
<td></td>
<td></td>
<td>Average AHI Reduction</td>
<td>% Cure Rate</td>
<td>Change in SaO2</td>
</tr>
<tr>
<td>HNS</td>
<td>33.3</td>
<td>70.4%</td>
<td>14.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TORS</td>
<td>12.7</td>
<td>10.0%</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.002</td>
<td><0.001</td>
<td></td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Shah (2018)[11]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNS</td>
<td>38.9 (12.5)</td>
<td>4.5 (4.8)b</td>
<td>20 (100%)</td>
<td>13 (4.7)</td>
<td>8 (5.0)b</td>
</tr>
<tr>
<td>UPPP</td>
<td>40.3 (12.4)</td>
<td>28.8 (25.4)a</td>
<td>8 (40%)</td>
<td>11 (4.9)</td>
<td>7 (3.4)b</td>
</tr>
<tr>
<td>Huntley (2018)[10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNS</td>
<td>36.8 (20.7)</td>
<td>7.3 (11.2)</td>
<td>86.7</td>
<td>11.2 (4.2)</td>
<td>5.4 (3.4)</td>
</tr>
<tr>
<td>ESP</td>
<td>26.7 (20.3)</td>
<td>13.5 (19.0)</td>
<td>63.6</td>
<td>10.7 (4.5)</td>
<td>7.0 (6.0)</td>
</tr>
<tr>
<td>p</td>
<td>0.003</td>
<td>0.003</td>
<td>0.008</td>
<td>0.565</td>
<td>NS</td>
</tr>
</tbody>
</table>

AHI: Apnea/Hypopnea Index; ESP: expansion sphincter pharyngoplasty; HNS: hypoglossal nerve stimulation; NS: not significant; Sher criteria: 50% decrease in AHI and final AHI <20; SD: standard deviation; UPPP: uvulopalatopharyngoplasty.

³ Baseline vs posttreatment p<0.05.

b Baseline vs posttreatment p<0.001.
Table 4. Relevance Gaps

<table>
<thead>
<tr>
<th>Study</th>
<th>Population<sup>a</sup></th>
<th>Intervention<sup>b</sup></th>
<th>Comparator<sup>c</sup></th>
<th>Outcomes<sup>d</sup></th>
<th>Follow-Up<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Huntley (2021)<sup>[8]</sup></td>
<td>4. Study populations not comparable</td>
<td></td>
<td></td>
<td>1. The timing of follow-up was different (173 days after surgery and 383 days after HNS)</td>
<td></td>
</tr>
<tr>
<td>Mehra (2020)<sup>[22]</sup></td>
<td>4. Study populations not comparable</td>
<td>3. Hours of use on the test night was not reported. This may not represent the normal use of the device.</td>
<td></td>
<td>1. The timing of follow-up was different</td>
<td></td>
</tr>
<tr>
<td>Yu (2019)<sup>[12]</sup></td>
<td></td>
<td></td>
<td></td>
<td>1, 2. Duration of follow-up unclear</td>
<td></td>
</tr>
<tr>
<td>Huntley (2018)<sup>[10]</sup></td>
<td>4. Study populations not comparable</td>
<td>1. Not clearly defined, few ESP patients had follow-up PSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steffen (2018)<sup>[18]</sup></td>
<td></td>
<td></td>
<td>2. No comparator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAR trial<sup>[14-17, 23, 24]</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence gaps stated in this table are those notable in the current review; this is not a comprehensive gaps assessment. ESP: expansion sphincter pharyngoplasty; PSG: polysomnography; STAR: Stimulation Therapy for Apnea Reduction; UPPP: uvulopalatopharyngoplasty.

^a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.

^b Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.

^c Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.

^d Outcomes key: 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not establish and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.

^e Follow-Up key: 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.
Table 5. Study Design and Conduct Gaps

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocationa</th>
<th>Blindingb</th>
<th>Selective Reportingd</th>
<th>Data Completenessd</th>
<th>Powerd</th>
<th>Statisticalf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huntley (2021)[8]</td>
<td>1. Not randomized (retrospective)</td>
<td>1.-3. No blinding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu (2019)[12]</td>
<td>1. Not randomized (retrospective)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Inadequate control for selection bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAR trial[14-17, 23, 24]</td>
<td>1. Not randomized</td>
<td>1.-3. No blinding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence gaps stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

STAR: Stimulation Therapy for Apnea Reduction.

d Follow-Up key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).

e Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.

f Statistical key: 1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Prospective Single Arm Studies

Results of prospective single-arm studies show success rates in 66% to 68% of patients who had moderate-to-severe sleep apnea and a favorable pattern of palatal collapse (see Tables 6 and 7). Mean AHI was 31 to 32 at baseline, decreasing to 14 to 15 at 12 months. ESS scores decreased to 6.5 to 7.0. All improvements were maintained through 5 years of follow-up. Discomfort due to the electrical stimulation and tongue abrasion were initially common but were decreased when stimulation levels were reduced (see Table 8). In the post-market study, a normal ESS score (< 10) was obtained in 73% of patients. A FOSQ score of at least 19 was observed in 59% of patients compared to 13% at baseline. At the 12-month follow-up, 8% of bed partners regularly left the room due to snoring, compared to 75% of bed partners at baseline. The average use was 5.6 ± 2.1 h per night. Use was correlated with the subjective

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
outcomes, but not with AHI response. Two- and three-year follow-up of this study were reported by Steffen (2020)[25] but the percentage of patients at follow-up was only 68% at two years and 63% at 3 years, limiting conclusions about the longer-term efficacy of the procedure. A comparison of the populations who had 12-month versus two- or three-year results showed several differences between the patients who followed up and those who dropped out, including higher baseline AHI, higher baseline ODI, and trends towards lower usage per night and a lower responder rate at 12 months.

Table 6. Summary of Prospective Single-Arm Study Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Participants</th>
<th>Treatment Delivery</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR trial[14-17, 23, 24]</td>
<td>EU, U.S.</td>
<td>126 patients with AHI >20 and <50, BMI ≤32 kg/m2, failed CPAP, favorable pattern of palatal collapse(^a)</td>
<td>Stimulation parameters titrated with full PSG</td>
<td>5 y</td>
</tr>
<tr>
<td>Postmarket studies:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heiser (2017)[19]</td>
<td>3 sites in Germany</td>
<td>60 patients with AHI ≥15 and ≤65 on home sleep study, BMI ≤35 kg/m2, failed CPAP; favorable pattern of palatal collapse(^a)</td>
<td></td>
<td>12 mo</td>
</tr>
<tr>
<td>Steffen (2018, 2020)[18, 25]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hasselbacher (2018)[26]</td>
<td></td>
<td>600 adults with moderate to severe OSA (AHI, 15-65), <25% central and mixed apneas, CPAP nonadherence or intolerance, absence of concentric collapse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withrow (2019)[27]</td>
<td>Thirteen US hospitals and 3 German hospitals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AHI: apnea/hypopnea index; BMI: body mass index; CPAP: continuous positive airway pressure; STAR: Stimulation Therapy for Apnea Reduction.
\(^a\) A favorable pattern of palatal collapse is non-concentric retropalatal obstruction on drug-induced sleep endoscopy.

Table 7. Summary of Prospective Single-Arm Study Results

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Percent of Patients with AHI Success (Sher criteria)</th>
<th>Mean AHI Score (SD)</th>
<th>Mean ODI Score (SD)</th>
<th>FOSQ Score (SD)</th>
<th>ESS Score (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR trial[14-17, 23, 24]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>126</td>
<td></td>
<td>32.0 (11.8)</td>
<td>28.9 (12.0)</td>
<td>14.3 (3.2)</td>
<td>11.6 (5.0)</td>
</tr>
<tr>
<td>12 months</td>
<td>124</td>
<td>66%</td>
<td>15.3 (16.1)</td>
<td>13.9 (15.7)</td>
<td>17.3 (2.9)</td>
<td>7.0 (4.2)</td>
</tr>
<tr>
<td>3 years</td>
<td>116(^a)</td>
<td>65%</td>
<td>14.2 (15.9)</td>
<td>9.1 (11.7)</td>
<td>17.4 (3.5)</td>
<td>7.0 (5.0)</td>
</tr>
<tr>
<td>5 years</td>
<td>97(^c)</td>
<td>63%</td>
<td>12.4 (16.3)</td>
<td>9.9 (14.5)</td>
<td>18.0 (2.2)</td>
<td>6.9 (4.7)</td>
</tr>
<tr>
<td>Postmarket studies:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heiser (2017)[19]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steffen (2018, 2020)[18, 25]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Percent of Patients with AHI Success (Sher criteria)</th>
<th>Mean AHI Score (SD)</th>
<th>Mean ODI Score (SD)</th>
<th>FOSQ Score (SD)</th>
<th>ESS Score (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasselbacher (2018)[26]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>60</td>
<td>31.2 (13.2)</td>
<td>27.6 (16.4)</td>
<td>13.7 (3.6)</td>
<td>12.8 (5.3)</td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>56<sup>f</sup></td>
<td>68%</td>
<td>13.8 (14.8)<sup>e</sup></td>
<td>13.7 (14.9)<sup>e</sup></td>
<td>17.5 (3)<sup>e</sup></td>
<td>6.5 (4.5)<sup>e</sup></td>
</tr>
<tr>
<td>2 years</td>
<td>41</td>
<td>76%<sup>h</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 years</td>
<td>38</td>
<td>68%<sup>h</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withrow (2019)<sup>[27]</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age < 65</td>
<td>365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td>36.2 (34.6-37.8)<sup>l</sup></td>
<td></td>
<td>12.3 (11.7-12.9)<sup>l</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td></td>
<td>11.9 (9.9-13.9)<sup>l</sup></td>
<td></td>
<td>7.1 (6.4-7.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age ≥ 65</td>
<td>235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td>36.1 (34.2-38.0)<sup>l</sup></td>
<td></td>
<td>10.7 (9.9-11.5)<sup>l</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td></td>
<td>7.6 (6.1-9.1)<sup>l</sup></td>
<td></td>
<td>6.3 (5.4-7.2)<sup>l</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AHI: Apnea/Hypopnea Index; ESS: Epworth Sleepiness Scale; FOSQ: Functional Outcomes of Sleep Questionnaire; ODI: Oxygen Desaturation Index; PSG: polysomnography; SD: standard deviation; STAR: Stimulation Therapy for Apnea Reduction.

^a Ninety-eight participants agreed to undergo PSG at 36 months, of the 17 participants who did not undergo PSG at 36 months, 54% were nonresponders and their PSG results at 12 or 18 months were carried forward.

^b The change from baseline was significant at p<0.001.

^c Seventy-one participants agreed to a PSG.

^d p<0.001.

^e p<0.05.

^f Four patients lost to follow-up were analyzed as treatment failures.

^g Range

^h defined as AHI below 15/h

Table 8. Device-Related Adverse Events from Prospective Single-Arm Studies

<table>
<thead>
<tr>
<th>Header Row</th>
<th>N</th>
<th>Discomfort due to Electrical Stimulation<sup>a</sup></th>
<th>Tongue Abrasion</th>
<th>Dry Mouth</th>
<th>Mechanical Pain from Device</th>
<th>Internal Device Usability</th>
<th>External Device Usability</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR trial<sup>[17]</sup></td>
<td>126</td>
<td>81</td>
<td>28</td>
<td>10</td>
<td>7</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>0 to 12 months</td>
<td>124</td>
<td>23</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>12 to 24 months</td>
<td>116</td>
<td>26</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>24 to 36 months</td>
<td>97</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>36 to 48 months</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>> 48 months</td>
<td>76 (60.3)</td>
<td>34 (27.0)</td>
<td>19 (15.1)</td>
<td>14 (11.1)</td>
<td>21 (16.7)</td>
<td>33 (26.2)</td>
<td></td>
</tr>
<tr>
<td>Participants with event, n of 126 (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Stimulation levels were adjusted to reduce discomfort

Down Syndrome

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Caloway (2020) reported a safety study of HNS in 20 children with Down Syndrome and severe OSA (AHI of 10 or greater) treated at three tertiary care centers.[28] Included were non-obese (BMI < 95%) children and adolescents aged 10-21 years who were refractory to tonsillectomy and either unable to tolerate CPAP or dependent on a tracheostomy. Patients who were included had an AHI between 10 and 50 on baseline PSG; the median baseline AHI was 24.15 (interquartile range [IQR] of 19.88 to 35.10). All of the patients tolerated the stimulation, and at 2 months after implantation, the median AHI was 3.56 (IQR 2.61 to 4.40). Success, defined as an AHI of 5 or less (mild) with HNS, was achieved in 14 of 20 patients (70%). The median percent reduction in AHI was 85% with a median usage of 9.21 h (IQR: 8.29 to 9.50) per night. The OSA-18 score improved by 1.15 (IQR: 0.02 to 1.97), indicating a moderate but clinically significant change. There were two adverse events related to extrusion or connectivity of the stimulation or sensation leads, which were both corrected with wound exploration surgery. Study in a larger population of children with Down Syndrome is ongoing.

Registry

A retrospective review of the US Food and Drug Administration (FDA) Manufacturer and User Facility Device Experience (MAUDE) database, a publicly available voluntary reporting system, was published by Bellamkonda in 2021.[29] This search was specific to the Inspire system and for adverse events reported between May 2014 and September 2019. Over the five-year period, 132 patient reports containing 134 adverse events were identified, including 32 device revision procedures and 17 device explantations. Complications noted to have not been reported in large-scale clinical trials included pneumothorax, pleural effusion, and lead migration into the pleural space.

Kent (2019) pooled data from the ADHERE registry plus data from three other studies to evaluate factors predicting success.[30] Over 80% of the 584 patients were men, and most were overweight. Seventy-seven percent of patients achieved treatment success, defined as a decrease in AHI by at least 50% and below 20 events/ per hour. AHI decreased to below 5 in 41.8% of patients. Greater efficacy was observed in patients with a higher preoperative AHI, older patient age, and lower BMI. A report of data from the ADHERE registry by Thaler (2020) included 640 patients with 6-month follow-up and 382 with 12-month follow-up.[31] AHI was reduced from 35.8 at baseline to 14.2 at 12 months (p <0.001), although the number of hours of use during the sleep test was not reported and home sleep studies may underestimate AHI. ESS was reduced from 11.4 at baseline to 7.2 at 12 months (p <0.001), and patient satisfaction was high. In a multivariate model, only female sex (odds ratio: 3.634, p =0.004) and lower BMI (odds ratio: 0.913, p =0.011) were significant predictors of response according to the Sher criteria. In sensitivity analysis, higher baseline AHI was also found to be a negative predictor of success.

Boon (2018) reported results from 301 patients in the multicenter Adherence and Outcome of Upper Airway Stimulation for OSA International Registry (ADHERE).[32] The ADHERE registry included both retrospective and prospectively collected data from the U.S. and Germany between October 2016 and September 2017. Data were collected from PSG prior to implantation and between 2 and 6 months after implantation, or from home sleep tests which were often performed at 6 and 12 months after implantation as part of routine care. Mean AHI decreased from 35.6 (SD: 15.3) to 10.2 (SD: 12.9) post-titration with 48% of patients achieving an AHI of 5 or less. ESS decreased from 11.9 (5.5) to 7.5 (4.7) (p <0.001).

Body Mass Index
A 2020 publication by Sarber reported on outcomes of 18 patients implanted with HNS as a salvage procedure despite being outside of FDA trial data. Of these patients, 12 had a BMI >32 kg/m2 (range 32.1–39.1). Positive outcomes across the 18 subjects were found, with (83.3%) patients achieving surgical success (decrease in AHI >50% and AHI <20 events/hour). This study is limited by the retrospective design and very small sample size. In addition, a retrospective analysis by Huntley (2018) found patients with a BMI of greater than 32 (N=40) did not have lower success rates than patients with a BMI less than 32 (N=113). Only patients who had palpable cervical landmarks and carried most of their weight in the waist and hips were offered HNS.

PRACTICE GUIDELINE SUMMARY

AMERICAN ACADEMY OF OTOLARYNGOLOGY - HEAD AND NECK SURGERY

In a position statement, the American Academy of Otolaryngology - Head and Neck Surgery (2019) supported hypoglossal nerve stimulation as an effective second-line treatment of moderate-to-severe obstructive sleep apnea in patients who are intolerant or unable to achieve benefit with positive pressure therapy.

SUMMARY

Evidence for hypoglossal nerve stimulation (HNS) as a treatment of obstructive sleep apnea (OSA) is limited. However, HNS has become generally accepted in medical practice, and is recommended as an effective second-line treatment in a consensus statement by the American Academy of Otolaryngology - Head and Neck Surgery. Therefore, hypoglossal nerve stimulation may be considered medically necessary for some patients with OSA when policy criteria are met.

A hypoglossal nerve stimulation device may require revision after it has been placed. In these cases, revision may be medically appropriate to allow for the proper functioning of the device. Therefore, revision(s) to an existing hypoglossal nerve stimulation device may be considered medically necessary after the device has been placed.

In certain situations, a hypoglossal nerve stimulation device may no longer be able to perform its basic function due to damage or wear. When a stimulator is out of its warranty period and cannot be repaired adequately to meet the patient’s medical needs, replacement of the device may be medically appropriate. Therefore, replacement of all or part of a hypoglossal nerve stimulation device and/or generator may be considered medically necessary when device replacement Criteria are met.

When a hypoglossal nerve stimulation device is in its warranty period or can be repaired or adapted adequately to meet the patient’s medical needs, replacement of the device is not medically appropriate. Therefore, replacement of all or part of a hypoglossal nerve stimulation device and/or generator is considered not medically necessary when device replacement Criteria are not met.

There is not enough research to know if or how well hypoglossal nerve stimulation (HNS) works to treat people when policy criteria are not met. This does not mean that it does not work, but more research is needed to know. No clinical guidelines based on research...
address HNS for indications other than for those listed in the policy criteria. Therefore, hypoglossal nerve stimulation is considered investigational when policy criteria are not met.

REFERENCES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>64568</td>
<td>Open implantation of cranial nerve (eg, vagus nerve) neurostimulator electrode array and pulse generator</td>
</tr>
<tr>
<td></td>
<td>64582</td>
<td>Hypoglossal nerve neurostimulator implantation; open</td>
</tr>
<tr>
<td></td>
<td>64583</td>
<td>Hypoglossal nerve neurostimulator revision or replacement</td>
</tr>
<tr>
<td></td>
<td>64584</td>
<td>Hypoglossal nerve neurostimulator removal</td>
</tr>
<tr>
<td>0466T</td>
<td></td>
<td>Insertion of chest wall respiratory sensor electrode or electrode array, including connection to pulse generator (List separately in addition to code for primary procedure) (Deleted 01/01/2022)</td>
</tr>
<tr>
<td>0467T</td>
<td></td>
<td>Revision or replacement of chest wall respiratory sensor electrode or electrode array, including connection to existing pulse generator (Deleted 01/01/2022)</td>
</tr>
<tr>
<td>0468T</td>
<td></td>
<td>Removal of chest wall respiratory sensor electrode or electrode array (Deleted 01/01/2022)</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Responsive Neurostimulation

Effective: January 1, 2022

Next Review: September 2022
Last Review: November 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Responsive neurostimulation (RNS) provides cortical stimulation in response to detection of specific seizure-related electrical signals. RNS shares some features with deep brain stimulation, but is differentiated by its use of direct cortical stimulation and by its use in both monitoring and stimulation. RNS is used in individuals with refractory focal epilepsies to provide a treatment option that is an alternative to or an improvement on existing therapies.

MEDICAL POLICY CRITERIA

I. Responsive neurostimulation may be considered medically necessary for patients with focal epilepsy who meet ALL of the following criteria:
 A. 18 years or older; and
 B. Device is FDA approved (PMA or 510k only); and
 C. Diagnosis of focal seizures with 1 or 2 localized seizure foci identified; and
 D. Average of 3 or more disabling seizures (e.g., motor focal seizures, complex focal seizures, or secondary generalized seizures) per month for 3 consecutive months; and
 E. Failed greater than or equal to 2 antiepileptic medications; and
F. Not a candidate for focal resective epilepsy surgery (e.g., have an epileptic focus near the eloquent cerebral cortex; have bilateral temporal epilepsy); and

G. Do not have any of the following contraindications for responsive neurostimulation device placement:
 1. 3 or more specific seizure foci
 2. Presence of primary generalized epilepsy
 3. Presence of a rapidly progressive neurologic disorder

II. Responsive neurostimulator revision(s) or replacement(s) may be considered medically necessary after the device has been placed.

III. Responsive neurostimulation is considered investigational for all other indications, including but not limited to patients with focal epilepsy who do not meet the above criteria.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

The information below must be submitted for review to determine whether policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and physical exam, including requirements as outlined by the policy criteria
- Number of seizure foci
- Documentation of seizure occurrence over the prior 3 months
- Clinical documentation demonstrating medicine-refractory symptoms
- Clinical documentation demonstrating that the patient is not a candidate for focal resective epilepsy surgery
- Presence of other conditions, such as a neurological disorder

CROSS REFERENCES

1. Vagus Nerve Stimulation, Surgery, Policy No. 74
2. Deep Brain Stimulation, Surgery, Policy No. 84

BACKGROUND

Focal seizures (previously referred to as partial seizures) arise from a discrete area of the brain and can cause a range of symptoms, depending on the seizure type and the brain area involved.

Note that the term focal seizure in older literature may be referred to as “partial seizure.” A position paper from the International League Against Epilepsy (2017) outlined updated terminology for seizure and epilepsy subtypes. For example, focal-onset seizures are subdivided based on the associated level of consciousness, and subsequently into whether they are motor or non-motor-onset.
Seizure disorders may be grouped into epileptic syndromes based on a number of factors, including the types of seizures that occur and their localization, the age of onset, patterns on electroencephalogram, associated clinical or neuroimaging findings, and genetic factors. Temporal lobe epilepsy is the most common syndrome associated with focal seizures. Of those with focal seizures, 30% to 40% have intractable epilepsy, defined as a failure to control seizures after two seizure medications have been appropriately chosen and used.\[2\]

EPILEPSY TREATMENT

Medical Therapy for Seizures

Standard therapy for seizures, including focal seizures, includes treatment with one or more of various antiepileptic drugs (AEDs), which include newer AEDs, like oxcarbazepine, lamotrigine, topiramate, gabapentin, pregabalin, levetiracetam, tiagabine, and zonisamide.\[2\] Currently, response to AEDs is less than ideal: one systematic review comparing newer AEDs for refractory focal epilepsy reported an overall average responder rate in treatment groups of 34.8%.\[2\] As a result, a substantial number of patients do not achieve good seizure control with medications alone.

Surgical Therapy for Seizures

When a discrete seizure focus can be identified, seizure control may be achieved through resection of the seizure focus (epilepsy surgery). For temporal lobe epilepsy, a randomized controlled trial has demonstrated that surgery for epilepsy was superior to prolonged medical therapy in reducing seizures associated with impaired awareness and in improving quality of life.\[3\] Surgery for refractory focal epilepsy (excluding simple focal seizures) is associated with five-year freedom from seizure rates of 52%, with 28% of seizure-free individuals able to discontinue AEDs.\[4\] Selection of appropriate patients for epilepsy surgery is important, because those with nonlesional extratemporal lobe epilepsy have worse outcomes after surgery than those with nonlesional temporal lobe epilepsy.\[5\] Some patients are not candidates for epilepsy surgery if the seizure focus is located in an eloquent area of the brain or other region that cannot be removed without risk of significant neurologic deficit.

Neurostimulation for Neurologic Disorders

Electrical stimulation at one of several locations in the brain has been used as therapy for epilepsy, either as an adjunct to or as an alternative to medical or surgical therapy. Vagus nerve stimulation (VNS) has been widely used for refractory epilepsy, following Food and Drug Administration (FDA) approval of a VNS device in 1997 and two randomized controlled trials evaluating VNS in epilepsy.\[6\] Although the mechanism of action for VNS is not fully understood, VNS is thought to reduce seizure activity through activation of vagal visceral afferents with diffuse central nervous system projections, leading to a widespread effect on neuronal excitability.

Stimulation of other locations in the neuroaxis has been studied for a variety of neurologic disorders. Electrical stimulation of deep brain nuclei (deep brain stimulation [DBS]) involves the use of chronic, continuous stimulation of a target. It has been most widely used in the treatment of Parkinson disease and other movement disorders, and has been investigated for treating epilepsy. DBS of the anterior thalamic nuclei was studied in a randomized control trial, the Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy trial, but DBS is not currently approved by FDA for stimulation of the anterior thalamic nucleus.\[7\] Stimulation of the
Responsive Neurostimulation for Epilepsy

Responsive neurostimulation (RNS) shares some features with DBS, but is differentiated by its use of direct cortical stimulation and by its use in both monitoring and stimulation. The RNS system provides stimulation in response to detection of specific epileptiform patterns, while DBS provides continuous or intermittent stimulation at preprogrammed settings.

Development of the RNS system arose from observations related to the effects of cortical electrical stimulation for seizure localization. It has been observed that electrical cortical stimulation can terminate induced and spontaneous electrographic seizure activity in humans and animals. Patients with epilepsy may undergo implantation of subdural monitoring electrodes for the purposes of seizure localization, which at times have been used for neurostimulation to identify eloquent brain regions. Epileptiform discharges that occur during stimulation for localization can be stopped by a train of neighboring brief electrical stimulations.

In tandem with the recognition that cortical stimulation can stop epileptiform discharges was development of fast pre-ictal seizure prediction algorithms. These algorithms interpret electrocorticographic data from detection leads situated over the cortex. The RNS process thus includes electrocorticographic monitoring via cortical electrodes, analysis of data through a proprietary seizure detection algorithm, and delivery of electrical stimulation via both cortical and deep implanted electrodes in an attempt to halt a detected epileptiform discharge.

One device, the NeuroPace RNS System, is currently approved by FDA and is commercially available.

RNS FOR SEIZURE MONITORING

Although the intent of the electrocorticography component of the RNS system is to provide input as a trigger for neurostimulation, it also provides continuous seizure mapping data (chronic unlimited cortical electrocorticography) that may be used by practitioners to evaluate patients’ seizures. In particular, the seizure mapping data have been used for surgical planning of patients who do not experience adequate seizure reduction with RNS placement. Several studies have described the use of RNS in evaluating seizure foci for epilepsy surgery or for identifying whether seizure foci are unilateral.

This review does not further address use of RNS exclusively for seizure monitoring.

REGULATORY STATUS

In November 2013, the NeuroPace RNS® System (NeuroPace) was approved by FDA through the premarket approval process for the following indication:

“The RNS® System is an adjunctive therapy in reducing the frequency of seizures in individuals 18 years of age or older with partial onset seizures who have undergone diagnostic testing that localized no more than two epileptogenic foci, are refractory to two or more antiepileptic medications, and currently have frequent and disabling seizures (motor partial seizures, complex partial seizures and/or secondarily generalized seizures). The RNS® System has demonstrated safety and effectiveness in patients who average three or more seizures per week.”

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
disabling seizures per month over the three most recent months (with no month with fewer than two seizures), and has not been evaluated in patients with less frequent seizures.”

FDA product code: PFN.

EVIDENCE SUMMARY

RNS FOR TREATMENT OF REFRACTORY FOCAL EPILEPSY

The body of evidence addressing whether RNS is associated with improved health outcomes for patients with focal epilepsy includes an industry-sponsored RCT, which was used for the device’s U.S. Food and Drug Administration (FDA) approval, as well as multiple case series and case reports.

Pivotal Trial

RNS for epilepsy was evaluated in the RNS System Pivotal Trial, a multicenter, double-blinded, sham-controlled trial that served as the basis of FDA’s approval of the device.[14] Published by Morrell (2011), this RCT included 191 patients with medically intractable focal epilepsy who were implanted with the RNS device and randomized to treatment or sham control after a one-month postimplant period during which time no subjects had the device activated. Eligible patients were adults with focal seizures whose epilepsy had not been controlled with at least two trials of antiepileptic drugs (AEDs), who had at least three disabling seizures (motor focal seizures, complex focal seizures, or secondary generalized seizures) per month on average, and who had standard diagnostic testing that localized one or two epileptogenic foci. Thirty-two percent of those implanted had prior epilepsy surgery, and 34% had a prior vagal nerve stimulator.

Patients were randomized to active stimulation (n=97) or sham stimulation (n=94). After the four-week postoperative period, patients received either sham or active stimulation according to group assignment. There was a four-week stimulation optimization period, followed by a three-month blinded evaluation period. In the evaluation period, all outcome data were gathered by a physician blinded to group assignment, and the neurostimulator was managed by a nonblinded physician. One patient in each group did not complete the stimulus optimization period (one due to subject preference in the active stimulation group; one due to death in the sham stimulation group). An additional patient in each group did not complete the blinded evaluation phase due to emergent explant of the device. After the three-month blinded evaluation period, all patients received active stimulation during an open-label follow-up period. At the time of the Morrell publication, 98 subjects had completed the open-label period and 78 had not. Eleven patients did not complete the open-label follow-up period (five due to death, two to emergent explant, four to study withdrawal).

The trial's primary effectiveness objective was to demonstrate a significantly greater reduction in the frequency of total disabling seizures in the treatment group compared with the sham group during the blinded evaluation period relative to baseline (preimplant). The mean preimplant seizure frequency per month in the treatment group was 33.5 (range, 3-295) and 34.9 (range, 3-338) in the sham group.[13] Mean seizure frequency modeled using generalized estimating equations was significantly reduced in the treatment group compared with the sham group (p=0.012). During the blinded evaluation period, the mean seizure frequency in the treatment group was 22.4 (range, 0.0-227) and 29.8 (range, 0.3-447) in the sham group. The treatment group experienced a -37.9% change in seizure frequency (95% confidence interval...
[CI], -46.7% to -27.7%), while the sham group experienced a -17.3% change in seizure frequency (95% CI, -29.9% to -2.3%).

By the third month of the blinded evaluation period, the treatment group had 27% fewer days with seizures while the sham group experienced 16% fewer days (p=0.048). There were no significant differences between groups over the blinded evaluation period for secondary end points of responder rate (proportion of subjects who experienced a ≥50% reduction in mean disabling seizure frequency vs the preimplant period), change in average frequency of disabling seizures, or change in seizure severity.

During the open-label period, subjects in the sham group demonstrated significant improvements in mean seizure frequency compared with the preimplant period (p=0.04). For all subjects (treatment and sham control), the responder rate at one-year postimplant was 43%. Overall quality of life scores improved for both groups compared with baseline at one year (p=0.001) and two years postimplant (p=0.016).

For the study’s primary safety end point, the significant adverse event rate over the first 28 days postimplant was 12%, which did not differ significantly from the prespecified literature-derived comparator of 15% for implantation of intracranial electrodes for seizure localization and epilepsy surgery. During the implant period and the blinded evaluation period, the significant adverse event rate was 18.3%, which did not differ significantly from the prespecified literature-derived comparator of 36% for implantation and treatment with deep brain stimulation for Parkinson disease. The treatment and sham groups did not differ significantly in terms of mild or serious adverse events during the blinded evaluation period. Intracranial hemorrhage occurred in 9 (4.7%) of 191 subjects; implant or incision site infection occurred in 10 (5.2%) of 191 subjects, and the devices were explanted from 4 of these subjects.

Follow-Up Analyses to the Pivotal Trial Subjects

In a follow-up to the RNS System Pivotal Trial, Heck (2014) compared outcomes at one and two years postimplant with baseline for patients in both groups (sham and control) who had the RNS stimulation device implanted during the RNS System Pivotal Trial.[15] Of the 191 subjects implanted, 182 subjects completed follow-up to one year postimplant and 175 subjects completed follow-up to two years postimplant. Six patients withdrew from the trial, four underwent device explantation due to infection, and five died, with one due to sudden unexplained death in epilepsy. During the open-label period, at two years of follow-up, median percent reduction in seizures was 53% compared with the preimplant baseline (p<0.001), and the responder rate was 55%.

Loring (2015) analyzed one of the trial’s prespecified safety end points (neuropsychologic function) during the trial’s open-label period.[16] Neuropsychological testing focused on language and verbal memory, measured by the Boston Naming Test and the Rey Auditory Verbal Learning Test. One hundred seventy-five subjects had cognitive assessment scores at baseline and at one or two years or both and were included in this analysis. The authors used reliable change indices (RCIs) to identify patients with changes in test scores beyond that attributed to practice effects or measurement error in the test-retest setting, with 90% RCIs used for classification. Overall, no significant group-level declines in any neuropsychological outcomes were detected. On the Boston Naming Test, 23.5% of subjects demonstrated RCI improvements while 6.7% had declines; on the Rey Auditory Verbal Learning Test, 6.9% of subjects demonstrated RCI improvements and 1.4% demonstrated declines.
Meador (2015) reported on quality of life and mood outcomes for individuals in the RNS pivotal trial. At the end of the blinded study period, both groups reported improvements in Quality of Life in Epilepsy Inventory-89 (QOLIE-89) scores, with no statistically significant differences between groups. In analysis of those with follow-up to two years post-enrollment, implanted patients had statistically significant improvements in QOLIE-89 scores from enrollment to one- and two-year follow-up. Mood, as assessed by the Beck Depression Inventory and the Profile of Mood States, did not worsen over time.

Systematic Reviews

A systematic review published by Khan (2021) evaluated the available evidence on the use of deep brain stimulation (DBS) or RNS for the treatment of drug-resistant epilepsy in pediatric patients. A total of 35 studies in 72 and 46 patients who underwent DBS and RNS, respectively, were included in the review. The patient age ranged from 4 to 18 years. At a median (range) follow-up of 22 (5 to 39) months, 73.2% of patients treated with RNS had seizure reduction of at least 50%. Serious risks of overall bias were found in all included studies. The authors conclude that high-quality clinical trials are needed to determine the impact of these interventions on net health outcomes in pediatric patients.

Cox (2014) reported on a systematic review of implantable neurostimulation devices, including RNS, along with vagus nerve stimulation and deep brain stimulation for refractory epilepsy. The evidence on RNS in this review was primarily from the pivotal RCT described previously. Reviewers concluded that RNS is “promising,” but that improvements in the accuracy of the seizure prediction method and standardization of electrical stimulation parameters were needed.

Gooneratne (2016) performed a systematic review comparing neurostimulation technologies in refractory focal epilepsy. They performed a literature search for studies with long-term efficacy data (≥5 years) and at least 30 patients evaluating vagus nerve stimulation, cortical responsive stimulation, or deep brain stimulation in refractory focal or focal epilepsy through November 2015. No direct comparisons of the technologies were found. The previously described pivotal trial of RNS was the only RNS study included. Indirect comparisons of the technologies were limited by differences in RCT inclusion criteria, definitions of response, and methods of data collection between studies. Reviewers concluded that all three neurostimulation technologies showed long-term efficacy, with progressively better seizure control over time.

Noncomparative Studies

Before and during conduct of the pivotal RCT to evaluate the RNS system, short- and long-term outcomes following the use of the device have been described in case series. Bercu (2020) published a case series of six pediatric patients with drug-resistant focal epilepsy who were not amenable to other therapies (eg, resection or ablation) and were implanted with the RNS® System. The patients were aged 8 to 17 years at the time of implantation and had epilepsy of durations between 2 and 12 years. Follow-up occurred for periods ranging from 5 to 39 months. All patients experienced a decrease in total number of daily clinical seizures, with a median seizure reduction reported by parents between 50% and 75%. One patient underwent removal of the RNS® System at approximately five months due to increased seizure frequency, wound dehiscence and infection.
Nair (2020) published a long-term prospective open-label study that included patients who participated in the two-year feasibility or pivotal studies of the RNS® System between 2004 and 2018. Patients were followed for an additional seven years. Overall, 230 patients enrolled in the study and 162 completed all nine years of follow-up, providing a total of 1,895 patient-implantation years. Among 68 patients who discontinued the study, four experienced emergent explant, five were lost to follow up, nine were deceased, and 50 withdrew (five transferred care to a nonstudy center, seven were noncompliant, eight experienced insufficient efficacy, 10 pursued other treatments, and 20 chose not to replace neurostimulator). The mean follow-up period was 7.5 years. At nine years, the median percent reduction in seizure frequency was 75% (p<0.0001), 73% of patients were considered responders, and 35% had a ≥90% reduction in seizure frequency. Overall, 18.4% of patients experienced at least one year free of seizures. Overall scores for quality of life and epilepsy-targeted and cognitive domains of the Quality of Life in Epilepsy-89 (QOLIE-89) inventory remained significantly improved at year nine (p<0.05). The only device-related serious adverse events that were reported in ≥5% of patients were implantation site infection and elective explantation of the neurostimulator, leads, or both. Overall, serious device-related implantation site infection occurred in 12.1% of patients. No serious adverse events occurred related to stimulation.

The Long-Term Treatment (LTT) Study was a seven-year, multicenter, prospective, open-label study to evaluate the RNS system’s long-term efficacy and safety in individuals who participated in device’s feasibility or pivotal trials. Bergey (2015) reported on follow-up for 191 participants in the LTT Study (of a total of 230 originally enrolled in the LTT Study) for a median 5.4 years. Of those who discontinued, three were lost to follow-up, 28 patients withdrew (nine to pursue other treatments, five due to insufficient efficacy, five decided not to replace the RNS system after expected battery depletion, five after infection resolved, three for noncompliance, one for elective explant, one due to ongoing suicidality/noncompliance), four underwent emergent explant, and four died. For follow-up at years three and six, the median percent reductions in seizures were 60% and 66%, respectively. Statistically significant quality of life improved at four years, with a trend toward improvement at five years. The most common adverse events were implant site infection (n=24 [9.4%]) and increase in complex focal seizures (n=20 [7.8%]).

Since device approval, a single-center study by Lee (2015) has reported on outcomes after RNS implantation (40 surgeries) in 10 patients. In this series, one patient had an implant site infection requiring device explantation and another had multiple lead breakages.

Earlier studies have reported that the RNS implant was well-tolerated in small numbers of patients. Anderson (2008) reported on procedural details and clinical outcomes for four patients treated with the RNS device (as part of the device’s pivotal clinical trial) and noted that the device implant was well-tolerated and qualitatively reduced the frequency of seizures. Kossoff (2004) reported qualitative reduction in seizure frequency in four patients with intractable seizures who received neurostimulation with an external RNS (a precursor to the FDA-approved implantable RNS device) during intracranial monitoring to localize seizure onset for surgery mapping.

Cases in which chronic (i.e., not responsive to detected seizure activity) focal cortical stimulation was used to treat medically refractive epilepsy have also been described. In these cases, cortical electrodes were placed during planned neurosurgical intervention for seizure mapping and were connected to a pulse generator.
Section Summary: RNS for Treatment of Refractory Focal Epilepsy

The most direct and rigorous evidence related to the effectiveness of RNS in the treatment of refractory focal seizures is from the RNS System Pivotal Trial, in which patients who had focal epilepsy refractory to at least two medications and received RNS treatment demonstrated a significantly greater reduction in their rates of seizures compared with sham-control patients. Although this single RCT was relatively small (97 patients in the treatment group), it was adequately powered for its primary outcome and all patients were treated with the device during the open-label period (97 in the original treatment group, 94 in the original sham group) and demonstrated a significant improvement in seizure rates compared with baseline. However, there were no differences in the percentage of patients who responded to RNS, and no difference on most of the other secondary outcomes. Follow-up has been reported to five years postimplantation, without major increases in rates of adverse events.

ADVERSE EVENTS WITH THE RNS SYSTEM

As a surgical procedure, implantation of the RNS system is associated with the risks that should be balanced against the risks of alternative treatments, including AEDs and other invasive treatments (vagal nerve stimulator and epilepsy surgery), and the risks of uncontrolled epilepsy. During the RNS System Pivotal Trial, rates of serious adverse events were relatively low: 3.7% of patients had implant site infections, 6% had lead revisions or damage, and 2.1% percent had intracranial hemorrhages during initial implantation.[15]

FDA’s summary of safety and effectiveness data for the RNS system summarized deaths and adverse events. As reported in the safety and effectiveness data, as of October 24, 2012, there were 11 deaths in the RNS System trials, including the pivotal trial and the ongoing long-term treatment study. Two of the deaths were suicides (one each in the pivotal and LTT studies), one due to lymphoma and another to complications of status epilepticus, and seven were attributed to possible, probable, or definite sudden unexplained death in epilepsy. With 1195 patient implant years, the estimated sudden unexplained death in epilepsy rate is 5.9 per 1000 implant years, which is comparable with the expected rate for patients with refractory epilepsy.[13]

Additional safety outcomes have been reported to five years postimplantation through the device’s LTT study (see above).

As of March 9, 2021, there were 318 reports in the FDA Manufacturer and User Facility Device Experience database for product code PFN. Thirty-two were labeled as event type “Malfunction,” one was extended hospitalization due to aphasia, and all remaining reports were labeled as “Injury.” Among the “Injury” event narratives, 21 mentioned hemorrhages, three stroke, six fluid leakage, 132 infection, 15 swelling or edema, and nine wound dehiscence.

SUMMARY OF EVIDENCE

For individuals who have refractory focal epilepsy who receive RNS, the evidence includes an industry-sponsored RCT, which was used for Food and Drug Administration approval of the NeuroPace RNS System, as well as case series. Relevant outcomes are symptoms, morbid events, quality of life, and treatment-related mortality and morbidity. The pivotal trial was well-designed and well-conducted; it reported that RNS is associated with improvements in mean seizure frequency in patients with refractory focal epilepsy, with an absolute difference in change in seizure frequency of about 20% between groups, though the percentage of
treatment responders with at least a 50% reduction in seizures did not differ from sham control. Overall, the results suggested a modest reduction in seizure frequency in a subset of patients. The number of adverse events reported in the available studies is low, although the data on adverse events were limited because of small study samples. Generally, patients who are candidates for RNS are severely debilitated and have few other treatment options, so the benefits are likely high relative to the risks. In particular, patients who are not candidates for resective epilepsy surgery and have few treatment options may benefit from RNS. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

PRACTICE GUIDELINE SUMMARY

The American Academy of Neurology has published guidelines on specific treatments for epilepsy, which were reaffirmed in 2019. It has not published any guidelines with recommendations regarding responsive neurostimulation.

SUMMARY

It appears that in patients with refractory focal epilepsy, responsive neurostimulation (RNS) may improve health outcomes, including a reduction in seizure frequency in some patients. In particular, patients who are not candidates for resective epilepsy surgery and have few treatment options may benefit from RNS. Therefore, RNS may be considered medically necessary in patients with medication-refractory focal epilepsy when criteria are met.

In certain situations, a responsive neurostimulation device may no longer be able to perform its basic function due to damage or wear. When a stimulator is out of its warranty period and cannot be repaired adequately to meet the patient’s medical needs, replacement of the device may be medically appropriate. Therefore, responsive neurostimulator revision(s) or replacement(s) may be considered medically necessary after the device has been placed.

There is not enough research to show that responsive neurostimulation (RNS) improves health outcomes for all other indications not meeting the criteria, including but not limited to patients with focal epilepsy who do not meet the criteria. Therefore, RNS is considered investigational when criteria are not met.

REFERENCES

27. BlueCross BlueShield Association Medical Policy Reference Manual "Responsive Neurostimulation for the Treatment of Refractory Focal Epilepsy." Policy No. 7.01.143

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>61850</td>
<td>Twist drill or burr hole(s) for implantation of neurostimulator electrodes, cortical</td>
</tr>
<tr>
<td></td>
<td>61860</td>
<td>Craniectomy or craniotomy for implantation of neurostimulator electrodes, cerebral, cortical</td>
</tr>
<tr>
<td></td>
<td>61863</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation of neurostimulator electrode array in subcortical site (eg, thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of intraoperative microelectrode recording; first array</td>
</tr>
<tr>
<td></td>
<td>61864</td>
<td>;each additional array (List separately in addition to primary procedure)</td>
</tr>
<tr>
<td></td>
<td>61868</td>
<td>Revision or removal of intracranial neurostimulator electrodes</td>
</tr>
<tr>
<td></td>
<td>61885</td>
<td>Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to a single electrode array</td>
</tr>
<tr>
<td></td>
<td>61886</td>
<td>;with connection to 2 or more electrode arrays</td>
</tr>
<tr>
<td></td>
<td>61888</td>
<td>Revision or removal of cranial neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td></td>
<td>95970</td>
<td>Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude, pulse duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient compliance measurements); simple or complex brain, spinal cord, or peripheral (ie, cranial nerve, peripheral nerve, sacral nerve, neuromuscular) neurostimulator pulse generator/transmitter, without reprogramming</td>
</tr>
<tr>
<td></td>
<td>95971</td>
<td>;simple spinal cord, or peripheral (ie, peripheral nerve, sacral nerve, neuromuscular) neurostimulator pulse generator/transmitter, with intraoperative or subsequent programming</td>
</tr>
<tr>
<td>HCPCS</td>
<td>L8680</td>
<td>Implantable neurostimulator electrode, each</td>
</tr>
<tr>
<td></td>
<td>L8686</td>
<td>Implantable neurostimulator pulse generator, single array, non-rechargeable, includes extension</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L8688</td>
<td>Implantable neurostimulator pulse generator, dual array, non-rechargeable, includes extension</td>
</tr>
</tbody>
</table>

Date of Origin: September 2019
NOTE: This policy has been revised. The revised policy will be effective October 1, 2022. To view the revised policy, click here.

Medical Policy Manual

Surgery, Policy No. 217

Leadless Cardiac Pacemakers

Effective: December 1, 2021

Next Review: September 2022

Last Review: October 2021

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Conventional pacemakers consist of two components: a pulse generator and electrodes (or leads). Although the efficacy and safety profile of conventional pacemakers are excellent, some patients are medically ineligible for conventional pacemakers due to lack of venous access and recurrent infection. Leadless pacemakers are single-unit devices that are implanted in the heart via femoral access.

MEDICAL POLICY CRITERIA

Notes: See Policy Guidelines for contraindications for the Micra leadless pacemaker system.

I. An FDA-approved leadless cardiac pacing system (e.g. the Micra transcatheter system) may be considered **medically necessary** in patients when both Criteria A. and B. below are met:

A. The patient has one or more of the following:

1. Symptomatic paroxysmal or permanent high-grade arteriovenous block; or
2. Symptomatic bradycardia-tachycardia syndrome; or
3. Sinus node dysfunction (sinus bradycardia or sinus pauses).

B. The patient has a significant contraindication precluding placement of conventional single-chamber ventricular pacemaker leads, including but not limited to a history or high risk of infection, limited venous access, or presence of a bioprosthetic tricuspid valve.

II. A leadless cardiac pacing system is considered **investigational** for all other indications when Criterion I. is not met, including but not limited to the use of non-FDA-approved devices.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

MICRA SYSTEM CONTRAINDICATIONS

Devices

As per the FDA label, the Micra Model MC1VR01 pacemaker is contraindicated for patients who have the following types of devices implanted:

- An implanted device that would interfere with the implant of the Micra device in the judgment of the implanting physician
- An implanted inferior vena cava filter
- A mechanical tricuspid valve
- An implanted cardiac device providing active cardiac therapy which may interfere with the sensing performance of the Micra device

Conditions

As per the FDA label, the Micra Model MC1VR01 pacemaker is also contraindicated for patients who have the following conditions:

- Femoral venous anatomy unable to accommodate a 7.8 mm (23 French) introducer sheath or implant on the right side of the heart (for example, due to obstructions or severe tortuosity)
- Morbid obesity that prevents the implanted device to obtain telemetry communication within <12.5 cm (4.9 in)
- Known intolerance to titanium, titanium nitride, parylene C, primer for parylene C, polyether ether ketone, siloxane, nitinol, platinum, iridium, liquid silicone rubber, silicone medical adhesive, and heparin or sensitivity to contrast medical which cannot be adequately premedicated

Other Contraindications

As per the FDA label, the Micra Model MC1VR01 pacemaker should not be used in patients for whom a single dose of 1.0 mg dexamethasone acetate cannot be tolerated because the device contains a molded and cured mixture of dexamethasone acetate with the target dosage of 272 μg dexamethasone acetate. It is intended to deliver the steroid to reduce inflammation and fibrosis.
For the MRI contraindications for patients with a Micra MRI device, refer to the Medtronic MRI Technical Manual.

LIST OF INFORMATION NEEDED FOR REVIEW

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome.

- History and Physical/Chart Notes
- Documentation of symptoms, associated diagnoses and treatments
- Name of FDA-approved leadless device
- Documentation that supports contraindication of placement of conventional single-chamber ventricular pacemaker leads

CROSS REFERENCES

1. Implantable Cardioverter Defibrillator, Surgery, Policy No. 17
2. Intracardiac Ischemia Monitoring, Surgery, Policy No. 208

BACKGROUND

CONVENTIONAL PACEMAKERS

Pacemakers are intended to be used as a substitute for the heart’s intrinsic pacing system to correct cardiac rhythm disorders. By providing an appropriate heart rate and heart rate response, cardiac pacemakers can reestablish effective circulation and more normal hemodynamics that are compromised by a slow heart rate. Pacemakers vary in system complexity and can have multiple functions as a result of the ability to sense and/or stimulate both the atria and the ventricles.

Transvenous pacemakers or pacemakers with leads (hereinafter referred as conventional pacemakers) consist of two components: a pulse generator (i.e., battery component) and electrodes (i.e., leads). The pulse generator consists of a power supply and electronics that can provide periodic electrical pulses to stimulate the heart. The generator is commonly implanted in the infraclavicular region of the anterior chest wall and placed in a pre-pectoral position; in some cases, a subpectoral position is advantageous. The unit generates an electrical impulse, which is transmitted to the myocardium via the electrodes affixed to the myocardium to sense and pace the heart as needed.

Conventional pacemakers are also referred to as single-chamber or dual-chamber systems. In single-chamber systems, only one lead is placed, typically in the right ventricle. In dual-chamber pacemakers, two leads are placed: one in the right atrium and the other in the right ventricle. Single-chamber ventricular pacemakers are more common.

Annually, approximately 200,000 pacemakers are implanted in the United States and one million worldwide.[1] Implantable pacemakers are considered life-sustaining, life-supporting class III devices for patients with a variety of bradyarrhythmias. Pacemaker systems have matured over the years with well-established, acceptable performance standards. As per the Food and Drug Administration (FDA), the early performance of conventional pacemaker systems from implantation through 60 to 90 days has usually demonstrated acceptable pacing capture thresholds and sensing. Intermediate performance (90 days through more than five
years) has usually demonstrated the reliability of the pulse generator and lead technology. Chronic performance (5 to 10 years) includes a predictable decline in battery life and mechanical reliability, but a vast majority of patients receive excellent pacing and sensing free of operative or mechanical reliability failures.

Even though the safety profile of conventional pacemakers is excellent, they are associated with complications particularly related to leads. Most safety data on the use of conventional pacemakers comes from registries from Europe, particularly from Denmark where all pacemaker implants are recorded in a national registry. These data are summarized in Table 1. It is important to recognize that valid comparison of complication rates is limited by differences in definitions of complications, which results in a wide variance of outcomes, as well as by the large variance in follow-up times, use of single-chamber or dual-chamber systems, and data reported over more than two decades.[2] As such, the following data are contemporary and limited to single-chamber systems when reported separately.

In many cases when conventional pectoral approach is not possible, alternate approaches such as epicardial pacemaker implantation and trans-iliac approaches have been used.[3] Cohen (2001) reported outcomes from a retrospective analysis of 123 patients who underwent 207 epicardial lead implantations.[4] Congenital heart disease was present in 103 (84%) of the patients. Epicardial leads were followed for 29 months (range 1 to 207 months). Lead failure was defined as the need for replacement or abandonment due to pacing or sensing problems, lead fracture, or phrenic/muscle stimulation. The one-, two-, and five-year lead survival was 96%, 90%, and 74%, respectively. Epicardial lead survival in those placed by a subxiphoid approach was 100% at one year and at 10 years, by the sternotomy approach (93.9% at one year and 75.9% at 10 years) and lateral thoracotomy approach (94.1% at one year and 62.4% at 10 years).

Doll (2008) reported results of a randomized trial comparing epicardial implantation to conventional pacemaker implantation in 80 patients with indications for cardiac resynchronization therapy.[5] The authors reported that the conventional pacemaker group had significantly shorter intensive care unit stay, less blood loss, and shorter ventilation times while the epicardial group had less exposure to radiation and less use of contrast medium. The left ventricular pacing threshold was similar in the two groups at discharge but longer in the epicardial group during follow-up. Adverse events were also similar in the two groups. The following events were experienced by one (3%) patient each in the epicardial group: pleural puncture, pneumothorax, wound infection, acute respiratory distress syndrome, and hospital mortality.

As a less invasive alternate to epicardial approach, trans-iliac approach has also been utilized. Data using trans-iliac approach is limited. Multiple other studies with smaller sample size report a wide range of lead longevity.

Harake (2018) reported a retrospective analysis of five patients who underwent a transvenous iliac approach (median age 26.9 years).[6] Pacing indications included AV block in three patients and sinus node dysfunction in two. After a median follow-up of 4.1 years (range 1.0-16.7 years), outcomes were reported for four patients. One patient underwent device revision for lead position-related groin discomfort; a second patient developed atrial lead failure following a Maze operation and underwent lead replacement by the iliac approach. One patient underwent heart transplantation six months after implant with only partial resolution of pacing-induced cardiomyopathy.
Tsutsumi (2010) reported a case series of four patients from Japan in whom conventional pectoral approach was precluded due to recurrent lead infections (n=1), superior vena cava obstruction following cardiac surgery (n=2) and a postoperative dermal scar (n=1). The mean follow-up was 24 months and authors concluded iliac vein approach was satisfactory and less invasive alternative to epicardial lead implantation. However, the authors reported that incidence of atrial lead dislodgement using this approach in the literature ranged from 7% to 21%. Experts who provided clinical input reported that trans-iliac or surgical epicardial approach require special expertise and long term performance is suboptimal.[7]

Table 1. Reported Complication Rates with Conventional Pacemakers

<table>
<thead>
<tr>
<th>Complications</th>
<th>Rates, % [^{0-10}a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traumatic complications</td>
<td></td>
</tr>
<tr>
<td>RV perforation</td>
<td>0.2-0.8</td>
</tr>
<tr>
<td>RV perforation with tamponade</td>
<td>0.07-0.4</td>
</tr>
<tr>
<td>Pneumo(hemo)thorax</td>
<td>0.7-2.2</td>
</tr>
<tr>
<td>Pocket complications</td>
<td></td>
</tr>
<tr>
<td>Including all hematomas, difficult to control bleeding, infection, discomfort, skin erosion</td>
<td>4.75</td>
</tr>
<tr>
<td>Including only those requiring invasive correction or reoperation</td>
<td>0.66-1.0</td>
</tr>
<tr>
<td>Lead-related complications</td>
<td></td>
</tr>
<tr>
<td>Including lead fracture, dislodgement, insulation problem, infection, stimulation threshold problem, diaphragm or pocket stimulation, other</td>
<td>1.6-3.8</td>
</tr>
<tr>
<td>All system related infections requiring reoperation or extraction</td>
<td>0.5-0.7</td>
</tr>
</tbody>
</table>

Adapted from Food and Drug Administration executive summary memorandum (2016).\[^{11}\]
\[^{0}\] Rates are for new implants only and ventricular single-chamber devices when data were available. Some rates listed in this column are for single- and dual-chamber devices when data were not separated in the publication. Note that Micra transcatheter pacing system is a single-chamber device.

POTENTIAL ADVANTAGES OF LEADLESS CARDIAC PACEMAKERS OVER CONVENTIONAL PACEMAKERS

The potential advantages of leadless pacemakers fall into three categories: avoidance of risks associated with intravascular leads in conventional pacemakers, avoidance of risks associated with pocket creation for placement of conventional pacemakers, and an additional option for patients who require a single-chamber pacer.[12]

Lead complications include lead failure, lead fracture, insulation defect, pneumothorax, infections requiring lead extractions and replacements that can result in a torn subclavian vein or tricuspid valve. In addition, there are risks of venous thrombosis and occlusion of the subclavian system from the leads. Use of a leadless system eliminates such risks with the added advantage that a patient has vascular access preserved for other medical conditions (e.g., dialysis, chemotherapy).

Pocket complications include infections, erosions, and pain that can be eliminated with leadless pacemakers. Further, a leadless cardiac pacemaker may be more comfortable and appealing because, unlike conventional pacemakers, patients are unable to see or feel the device or have an implant scar on the chest wall.

Leadless pacemakers may also be a better option than surgical endocardial pacemakers for patients with no vascular access due to renal failure or congenital heart disease.

LEADLESS CARDIAC PACEMAKERS IN CLINICAL DEVELOPMENT
Leadless pacemakers are self-contained in a hermetically sealed capsule. The capsule houses a battery and electronics to operate the system. Similar to most pacing leads, the tip of the capsule includes a fixation mechanism and a monolithic controlled-release device. The controlled-release device elutes glucocorticosteroid to reduce acute inflammation at the implantation site. Leadless pacemakers have rate-responsive functionality, and current device longevity estimates are based on bench data. Estimates have suggested that these devices may last over 10 years, depending on the programmed parameters.[11]

Three systems are currently being evaluated in clinical trials: (1) the Micra Transcatheter Pacing System (Medtronic), (2) the Nanostim leadless pacemaker (St. Jude Medical); and (3) the WiCS Wireless Cardiac Stimulation System (EBR Systems). The first two devices are free-standing capsule-sized devices that are delivered via femoral venous access using a steerable delivery sheath. However, the fixing mechanism differs between the two devices. In the Micra Transcatheter Pacing System, the fixation system consists of four self-expanding nitinol tines, which anchor into the myocardium; for the Nanostim device, there is a screw-in helix that penetrates about 1 mm into the myocardium, with nylon tines that provide secondary fixation. In both devices, the cathode is steroid eluting and delivers pacing current; the anode is located in a titanium case. The third device, WiCS system differs from the other devices; this system requires implanting a pulse generator subcutaneously near the heart, which then wirelessly transmits ultrasound energy to a receiver electrode implanted in the left ventricle. The receiver electrode converts the ultrasound energy and delivers electrical stimulation to the heart sufficient to pace the left ventricle synchronously with the right.[11]

Of these three, only the Micra transcatheter pacing system is approved by FDA and commercially available in the United States. Multiple clinical studies of Nanostim have been published[1, 13-18] but trials have been halted due to the migration of the docking button in the device. Evidence on Nanostim is not reviewed further because the device is not yet FDA approved.

The Micra is about 26 mm in length and introduced using a 23 French catheter via the femoral vein to the right ventricle. It weighs about two grams and has an accelerometer-based rate response.

Nanostim is about 40 mm in length and introduced using an 18 French catheter to the right ventricle. It also weighs about two grams and uses a temperature-based rate response sensor.[19]

REGULATORY STATUS

In April 2016, the Micra™ transcatheter pacing system (Medtronic) was approved by FDA through the premarket approval process for use in patients who have experienced one or more of the following conditions:

- symptomatic paroxysmal or permanent high-grade arteriovenous block in the presence of atrial fibrillation
- paroxysmal or permanent high-grade arteriovenous block in the absence of atrial fibrillation, as an alternative to dual-chamber pacing, when atrial lead placement is considered difficult, high risk, or not deemed necessary for effective therapy
- symptomatic bradycardia-tachycardia syndrome or sinus node dysfunction (sinus bradycardia or sinus pauses), as an alternative to atrial or dual-chamber pacing, when...
atrial lead placement is considered difficult, high risk, or not deemed necessary for effective therapy.

EVIDENCE SUMMARY

Conventional pacemaker systems have been in use for over 50 years and current technology has matured with significant similarities in designs across models. Extensive bench testing data with conventional pacemakers and a good understanding of operative and early postimplant safety and effectiveness are available, which limits the need for clinical data collection to understand their safety and effectiveness with regard to implantation, tip fixation, electrical measures, and rate response. As such, a randomized controlled trial comparing the leadless pacemakers with conventional pacemakers was not required by the Food and Drug Administration (FDA).

VENTRICULAR PACING FOR INDIVIDUALS WHO ARE MEDICALLY ELIGIBLE FOR A CONVENTIONAL PACING SYSTEM

Pivotal Trial

The pivotal investigational device exemption (IDE) trial was a prospective single cohort study enrolled 744 patients with a class I or II indications for implantation of a single-chamber ventricular pacemaker based on national guidelines. Details on the design,[20] and results of the IDE trial have been published.[21-23] Trial characteristics and results at six months are summarized in Tables 2 and 3, respectively. System performance from the pivotal trial has been published,[24] but results are not discussed further.

Of the 744 patients enrolled, implantation of the Micra transcatheter pacing system was successful in 719 (99.2%) of the 725 patients who underwent the procedure. The demographics of the trial population were typical for a single-chamber pacemaker study performed in the U. S., with 42% being female and the average age was 76 years. Sixty-four percent had a pacing indication associated with persistent or permanent atrial arrhythmias, 72.6% had any atrial fibrillation at baseline, and 27.4% did not have a history of atrial fibrillation. Among those 27.4% (n=199) without atrial fibrillation, 16.1% (n=32) had a primary indication of sinus bradycardia and 3.5% (n=7) had a primary indication of tachycardia-bradycardia.[23]

The IDE trial had two primary endpoints related to safety and efficacy. The trial would meet its safety endpoint if the lower bound of the 95% confidence interval (CI) for the rate of freedom from major complications related to the Micra transcatheter pacing system or implantation procedure exceeded 83% at six months. Major complications were defined as those resulting in any of the following; death, permanent loss of device function due to mechanical or electrical dysfunction of the device (e.g., pacing function disabled, leaving device abandoned electrically), hospitalization, prolonged hospitalization by at least 48 hours, or system revision (reposition, replacement, explant).[25] The trial would meet its efficacy endpoint if the lower bound of the 95% CI for the proportion of patients with adequate pacing capture thresholds (PCT) exceeded 80% at six months. PCT as an effectiveness objective is a common electrical measure of pacing efficacy and is consistent with recent studies. Pacing capture threshold measured in volts is defined as the minimum amount of energy needed to capture the myocardial tissue electrically. Unnecessary high pacing output adversely shortens the battery life of the pacemaker and is influenced by physiologic and pharmacologic factors.[25] As per the FDA, demonstrating that “PCT is less than 2 Volts for the vast majority of subjects will imply

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage.

Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
that the Micra system will have longevity similar to current pacing systems since Micra’s
capture management feature will nominally set the safety margin to 0.5 Volts above the PCT
with hourly confirmation of the PCT.[25]

Safety and efficacy results of the IDE trial are summarized in Table 3. At six months, the trial
met both of its efficacy and safety primary endpoints including freedom from major
complications related to the system or procedure in 96.0\% of the patients (95\% CI 93.9\% to
97.3\%), compared with a performance goal of 83\%, and an adequate pacing capture threshold
in 98.3\% of the patients (95\% CI 96.1\% to 99.5\%), compared with a performance goal of
80\%.[23]

Quality of life results of the IDE trial were published in 2018. At baseline and 12 months, 702
(98\%) and 635 (88\%) participants completed the 36-Item Short Form questionnaire,
respectively.[22] The mean 36-Item Short Form Physical Component Scale at baseline was
36.3 (standard deviation [SD] 9.0) and the mean 36-Item Short Form Mental Component Scale
was 47.3 (SD 12.5); the general population mean for both scores is 50. Both the Physical
Component Scale and Mental Component Scale improved at 12 months post-implant to a
mean Physical Component Scale score of 38.6 (SD 9.4, p< 0.001) and a mean Mental
Component Scale score of 50.7 (SD 12.2, p< 0.001) compared with baseline.

IDE trial results were compared post hoc with a historical cohort of 2,667 patients generated
from six previous pacemaker studies, conducted between 2005 and 2012 by Medtronic, that
evaluated the performance requirement at six months postimplant of right ventricle pacing
leads (single-chamber rates obtained by excluding any adverse events only related to the right
atrial lead from the analysis). The Micra device was associated with fewer complications than
the historical control (4.0\% vs 7.4\%, hazard ratio [HR], 0.49, 95\% CI 0.33 to 0.75, p=0.001).[23]
Because there were differences in baseline patient characteristics between the two cohorts
(patients in the historical cohort were younger and had a lower prevalence of coexisting
conditions vs the IDE trial), an additional propensity-matched analysis was conducted. It
showed similar results (HR 0.46, 95\% CI 0.28 to 0.74). As per the FDA, the lower rate of major
complications with the Micra device was driven by reductions in access site events (primarily
implant site hematoma and implant site infections), pacing issues (primarily device capture and
device pacing issues), and fixation events (there was no device or lead dislodgements in the
Micra IDE trial).[11]

While the overall rate of complications was low, the rate of major complications related to
cardiac injury (i.e., pericardial effusion or perforation) was higher in the Micra IDE trial than in
the six reference Medtronic pacemaker studies (1.6\% vs. 1.1\%, p=0.288).[11] Thus, there
appears to be a trade-off between types of adverse events with the Micra transcatheter pacing
system and conventional pacemakers. While adverse events related to leads and pocket are
eliminated or minimized with the Micra device, certain adverse events (e.g., groin vascular
complications, vascular or cardiac bleeding) occur at a higher frequency or are additive (new
events) compared with conventional pacemakers. Of these, procedural complications (e.g.,
acute cardiac perforations) that were severe enough to result in tamponade and emergency
surgery were most concerning.[11]

In addition to lack of adequate data on long-term safety, effectiveness, reliability, and incidence
of late device failures and battery longevity, there is also inadequate clinical experience with
issues related to devices that have reached end-of-life, including whether to extract or leave
the device in situ and possible device-device interactions.[26] There are limited data on device-
device interactions (both electrical and mechanical) that may occur when there is a deactivated Micra device alongside another leadless pacemaker or when a leadless pacemaker and transvenous device are both present. Even though there have only been few device retrievals and very limited experience with the time course of encapsulation of these devices in humans, it is highly likely that these devices will be fully encapsulated by the end of its typical battery life, and therefore device retrieval is unlikely. Current recommendations for end-of-device-life care for a Micra device may include the addition of a replacement device with or without explantation of the Micra device, which should be turned off.

Grubman (2017) reported on system revisions including patients from the IDE study (n=720) and the Micra Transcatheter Pacing System Continued Access Study (n=269). The Continued Access study was conducted to allow for continued access of the Micra in the same centers as the IDE study while the device was pending the FDA approval. The mean follow-up duration was 13 months (16 months in the IDE patients and two months in the continued access patients). There were 11 system revisions in 10 patients, corresponding to a 1.4% (95% CI 0.7% to 2.6%) actuarial rate of revisions through 24 months. Micra was disabled and left in situ in 7 of 11 revisions including five patients in which there was no retrieval attempt, one patient in which retrieval was aborted because of fluoroscopy failure, and one patient in which retrieval was unsuccessful because of inability to dislodge the device. There were three percutaneous retrievals and one retrieval during surgical valve replacement. There were no complications associated with retrievals. The report indicates that there when a transvenous system was implanted with a deactivated Micra, there were no reported interactions between the two systems, although it is not clear how often this occurred. In the historical controls from the IDE study, there were 123 revisions in 117 patients through 24 months (actuarial rate 5.3%, 95% CI 4.4% to 6.4%). Using propensity score matching, the reduction in system revisions for Micra compared to historical controls was significant (HR 0.27, 95% CI 0.14 to 0.54, p<0.001).

Post-approval Study

The FDA approval of the Micra transcatheter pacing system was contingent on multiple post-approval studies to provide reasonable assurance of continued safety and effectiveness of the device. Among these, the Micra Transcatheter Pacing System Post-Approval Study, a global, prospective, observational, multicenter study, enrolled 1,830 patients to collect data on 1,741 patients to estimate the acute complication rate within 30 days of the implant, 500 patients to estimate the nine-year complication-free survival rate, and a minimum of 200 patients with a Micra device revision for characterizing device end of service. As per the protocol, if a subsequent device is placed and the Micra is deactivated or explanted, Medtronic would contact the implanting center and request the patient's clinical data concerning the revision. All such data would be summarized, including the type of system revision, how the extraction was attempted, success rate, and any associated complications.

Study characteristics and results at one year (reported in the FDA documents and published) are summarized in Table 2 and 3, respectively. The post-approval study completed enrollment in early March 2018. The definition of a major complication in the post-approval study was the same as the Micra IDE trial. Although some patients who participated in the IDE study consented to also participate in the PAR study, the publication excludes those patients from analysis and therefore includes an independent population. Results summarized in Table 3 summarize the data at 30 days published by Roberts (2017) and El-Chami (2018), with
a mean follow-up of 6.8 months for 1,817 patients, of whom 465 patients had a follow-up for
more than one year.

At 30 days, the major complication rate was 1.51% (95% CI 0.78 to 2.62%). The major
complication rate was lower in the post-approval study than in the IDE trial (odds ratio, 0.58,
95% CI 0.27 to 1.25) although this did not reach statistical difference. The lower rate of major
complications was associated with a decrease in events that led to hospitalization, prolonged
hospitalization, or loss of device function in the post-approval study compared with the IDE
trial. [29]

After a mean follow-up of 6.8 months, the estimated major complication rate at 12 months was
2.7% (95% CI 2.0% to 3.7%), corresponding to 46 major complications in 41 patients, the
majority of which (89%) occurred within 30 days of implantation. The major complications
included 14 device pacing issue events, 11 events at the groin puncture site, eight cardiac
effusion/perforation events, three infections, one cardiac failure event, one cardiomyopathy
event, and one pacemaker syndrome event. Authors compared these results with the same
historical cohort of 2,667 patients used in the IDE trial and reported a 63% reduction in the risk
for major complications through 12 months with the Micra transcatheter pacing system relative
to conventional pacemakers (HR 0.37, 95% CI 0.27 to 0.52). Additionally, the risk for major
complications was lower in the Micra post-approval study than in the IDE trial but it was a
statistically significant difference (HR 0.71, 95% CI 0.44 to 1.1). [30] The reduction in major
complications compared to historical controls was primarily driven by a significant 74% (95%
CI 54 to 85, p=0.0001) relative risk reduction in system revisions and 71% (95% CI 51 to 83,
p=0.0001) relative risk reduction in hospitalizations. The reduction in risk compared to the IDE
trial was driven by significantly lower pericardial effusion rates in the post-approval study.

Longitudinal Coverage with Evidence Development Study

The Longitudinal Coverage with Evidence Development Study on Micra Leadless Pacemakers
(Micra CED) was initiated in 2017 by the U.S. Centers for Medicare and Medicaid Services
(CMS) with mandated enrollment of all Medicare beneficiaries to evaluate the outcomes with
the device in practice. The primary outcomes of interest were the 30-day complication rate and
two-year survival, and secondary objectives included comparisons of acute and six-moth
complication rates and revision rates between the leadless system and transvenous
pacemakers. [32]

An initial assessment of outcomes from this study was published by Piccini (2021) and
compared the safety and complication outcomes for patients treated with leadless pacing to a
contemporary cohort of patients that received transvenous single-chamber pacemakers. [33]
Patient characteristics, comorbidities, and outcomes were extracted from CMS claims data.
Study characteristics and outcomes are listed in Table 2 and 3, respectively. There were 5,746
patients with leadless pacemakers and 9,622 patients with transvenous pacemakers that were
included in the analysis. Leadless pacemaker patients were more likely to have kidney
dysfunction and end-stage kidney disease than transvenous pacemaker patients, and they
also had a higher mean SD Charles Comorbidity Index score.

The overall acute (30-day) complication rate was significantly higher in the leadless group
compared to the transvenous group (8.4% vs. 7.3%, p=0.020), but after adjustment for
baseline and encounter characteristics, this difference was not statistically significant (7.7% vs.
7.4%, p=0.49). There were differences in the types of complications between devices, with
cardiac effusion and/or perforation significantly higher in the leadless group and device-related
complications (e.g., dislodgment, infection) more common in the transvenous group, both before and after adjustment. The 30-day all-cause mortality rate was not significantly different between groups.

The complications at six-months were significantly reduced for the leadless group compared with the transvenous group after adjustment (HR 0.77, 95% CI 0.62 to 0.96, p=0.2). Overall survival and the rate of device revision through six months were not significantly different between groups.

Table 2. Summary of Key Nonrandomized Trial Characteristics

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Study; Type</th>
<th>Country Description</th>
<th>Dates</th>
<th>1. Participants</th>
<th>Treatment Description</th>
<th>Follow-Up, mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds (2016)</td>
<td>Prospective single cohort</td>
<td>19 countries in North America, Europe, Asia, and Africa</td>
<td>2013-2015</td>
<td>Patients who met a class I or II guidelines-based indication for pacing and suitable candidates for single-chamber ventricular demand pacing</td>
<td>Micra pacemaker (n=744)</td>
<td>6</td>
</tr>
<tr>
<td>NCT02004873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberts (2017)</td>
<td>Prospective single cohort</td>
<td>23 countries in North America, Europe, Asia, and Africa</td>
<td>2016-2018</td>
<td>Any patient to be implanted with a Micra pacemaker</td>
<td>Micra pacemaker (n=795 and 1830)</td>
<td>1.8(^a)</td>
</tr>
<tr>
<td>El-Chami (2018)</td>
<td>(Micra Post-Approval Study)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.8(^b)</td>
</tr>
<tr>
<td>NCT02536118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piccini (2021)</td>
<td>Prospective single cohort with contemporaneous control group (Micra CED study)</td>
<td>U.S.</td>
<td>2017-2018</td>
<td>Medicare beneficiaries implanted with a Micra device or transvenous device</td>
<td>Micra pacemaker (n=5,746) Transvenous pacemaker (n=9,662)</td>
<td>6</td>
</tr>
<tr>
<td>NCT03039712</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) 30-day results reported by Roberts (2017).
\(^b\) Results after a mean follow-up of 6.8 months reported by El-Chami (2018).

Table 3. Summary of Key Nonrandomized Trial Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Freedom from System- or Procedure-Related Major Complications</th>
<th>Percentage of Patients with Adequate Pacing Capture Thresholds</th>
<th>Major Complications Criteria, n (%)</th>
<th>Major Complications, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE Trial</td>
<td>6 Months</td>
<td>6 Months</td>
<td>6 Months</td>
<td>6 Months</td>
</tr>
<tr>
<td>Reynolds (2016)</td>
<td>719(^a), 300(^b)</td>
<td>719</td>
<td>725</td>
<td>725</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Study</th>
<th>Freedom from System- or Procedure-Related Major Complications</th>
<th>Percentage of Patients with Adequate Pacing Capture Thresholds</th>
<th>Major Complications Criteria, n (%)</th>
<th>Major Complications, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micra</td>
<td>96.0%</td>
<td>98.3% (≤2.0 V)</td>
<td>Death: 1 (0.1)</td>
<td>TMCs: 28 in 25 patients (3.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Loss of device function: 1 (0.1)</td>
<td>• DVT: 1 (0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hospitalization: 13 (2.3)</td>
<td>• Pulmonary TE: 1 (0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prolonged hospitalization (≥48 h): 16 (2.6)</td>
<td>• Events at groin puncture site: 5 (0.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>System revision: 3 (0.4)</td>
<td>• Cardiac perforation: 11 (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pacing issues: 2 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Others: 8 (1.7)</td>
</tr>
<tr>
<td>95% CI</td>
<td>93.9% to 97.3%</td>
<td>95.4% to 99.6%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>12 Months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duray (2017)[34]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>726</td>
<td>NA</td>
<td>726</td>
<td>726</td>
</tr>
<tr>
<td>Micra</td>
<td>96.0%</td>
<td>NR (93%)</td>
<td>Death: NR (0.1)</td>
<td>TMCs: 32 in 29 patients (4.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Loss of device function: NR (0.1)</td>
<td>• DVT: 1 (0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hospitalization: NR (2.3)</td>
<td>• Pulmonary TE: 1 (0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prolonged hospitalization (≥48 h): NR (2.2)</td>
<td>• Events at groin puncture site: 5 (0.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>System revision: NR (0.7)</td>
<td>• Cardiac perforation: 11 (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Loss of device function: NR (0.3)</td>
<td>• Pacing issues: 2 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Others: 11 (1.7)</td>
</tr>
<tr>
<td>95% CI</td>
<td>94.2% to 97.2%</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micra Post-Approval Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberts (2017)[29]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>795</td>
<td>NA</td>
<td>795</td>
<td>795</td>
</tr>
</tbody>
</table>

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
<table>
<thead>
<tr>
<th>Study</th>
<th>Freedom from System- or Procedure-Related Major Complications</th>
<th>Percentage of Patients with Adequate Pacing Capture Thresholds</th>
<th>Major Complications Criteria, n (%)</th>
<th>Major Complications, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micra</td>
<td>97.3%<sup>d</sup></td>
<td>87.2% (≤1.0 V)</td>
<td>Death: 1 (0.13%)</td>
<td>TMCs: 13 in 12 patients (1.51% [95% CI 0.78% to 2.62%])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.0% (≤2.0 V)</td>
<td>Hospitalization: 4 (0.50)</td>
<td>• DVT: 1 (0.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prolonged hospitalization (≥48 h): 9 (1.01)</td>
<td>• Events at groin puncture site: 6 (0.75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>System revision<sup>c</sup>: 2 (0.25)</td>
<td>• Cardiac effusion/perforation: 1 (0.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Device dislodgement: 1 (0.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pacing issues: 1 (0.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Others: 3 (0.38)</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>0.58 (0.27 to 1.25)<sup>e</sup></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Year</td>
<td>1 Year</td>
</tr>
<tr>
<td>El-Chami</td>
<td></td>
<td></td>
<td>1 Year</td>
<td>1 Year</td>
</tr>
<tr>
<td>(2018)<sup>[30, 31]</sup></td>
<td></td>
<td></td>
<td>1 Year</td>
<td>1 Year</td>
</tr>
<tr>
<td>N</td>
<td>1,817</td>
<td>NA</td>
<td>NA</td>
<td>1,817</td>
</tr>
<tr>
<td>Micra</td>
<td>97.3%<sup>d</sup></td>
<td>NA</td>
<td>NA</td>
<td>TMCs: 46 in 41 patients (2.7% [95% CI 2.0% to 3.6%])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pericardial effusions: 8 (0.44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Dislodgement: 1 (0.06)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Procedure-related infections: 3 (0.17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Procedure-related deaths: 5 (0.28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>As per FDA:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Complications<sup>f</sup>: 61 in 53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(deaths: 4 procedure-related; 3 unknown relatedness; 3 pending adjudication)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Freedom from System- or Procedure-Related Major Complications</td>
<td>Percentage of Patients with Adequate Pacing Capture Thresholds</td>
<td>Major Complications Criteria, n (%)</td>
<td>Major Complications, n (%)</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.71 (0.44 to 1.1)<sup>e</sup></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>0.37 (0.27 to 0.52)<sup>g</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micra CED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piccini (2021)<sup>[33]</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Days</td>
<td>30 Days</td>
<td>30 Days</td>
<td>30 Days</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Micra: 5,746</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control: 9,662</td>
</tr>
<tr>
<td>Micra</td>
<td>N/A</td>
<td>NA</td>
<td>N/A</td>
<td>Overall: 484 (8.4, 7.7)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• DVT: 145 (2.5, 2.2)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PE: 202 (3.5, 1.2)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Events at puncture site: 78 (1.4, 1.2)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cardiac effusion/perforation: 47 (0.8, 0.8)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Device-related: 81 (1.4, 1.4)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other: 136 (2.4, 2.1)<sup>h</sup></td>
</tr>
<tr>
<td>Control</td>
<td>N/A</td>
<td>NA</td>
<td>N/A</td>
<td>Overall: 707 (7.3, 7.4)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• DVT: 176 (1.8, 2.0)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PE: 128 (1.3, 1.3)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Events at puncture site: 31(0.3, 0.3)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cardiac effusion/perforation: 38 (0.4, 0.4)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Device-related: 247 (2.6, 2.5)<sup>h</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other: 169 (1.8, 1.7)<sup>h</sup></td>
</tr>
<tr>
<td>Risk Difference (95% CI)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.3% (-0.6% to 1.3%)<sup>h</sup>, p=0.49</td>
</tr>
<tr>
<td>6 Months</td>
<td>6 Months</td>
<td>6 Months</td>
<td>6 Months</td>
<td>6 Months</td>
</tr>
<tr>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Micra: 3,726</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control: 7,256</td>
</tr>
<tr>
<td>Micra</td>
<td>N/A</td>
<td>NA</td>
<td>N/A</td>
<td>Overall: (3.2)<sup>h</sup></td>
</tr>
<tr>
<td>Study</td>
<td>Freedom from System- or Procedure-Related Major Complications</td>
<td>Percentage of Patients with Adequate Pacing Capture Thresholds</td>
<td>Major Complications Criteria, n (%)</td>
<td>Major Complications, n (%)</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Control</td>
<td>N/A</td>
<td>NA</td>
<td>N/A</td>
<td>Overall: (4.1(^{h}))</td>
</tr>
<tr>
<td>Relative risk reduction (95% CI)</td>
<td>N/A</td>
<td>NA</td>
<td>N/A</td>
<td>23% (4% to 38%)(^{h})</td>
</tr>
</tbody>
</table>

CED: coverage with evidence development; CI: confidence interval; DVT: deep vein thrombosis; FDA: Food and Drug Administration; HR: hazard ratio; IDE: investigational device exemption; NA: not available; NR: not reported; OR: odds ratio; PE: pulmonary embolism; TE: thromboembolism; TMC: Total major complication.

\(^{a}\) Total number of patients who received the implant successfully.

\(^{b}\) Number of patients for whom data were available for six-month evaluation.

\(^{c}\) Device explant, reposition, or replacement.

\(^{d}\) Calculations based on the major complication rate (2.7%, 95% CI 2.0 to 3.6%) reported by El-Chami (2018).

\(^{e}\) Major complication vs IDE trial.

\(^{f}\) Unclear if the complications met the definition of a major complication as events leading to death, hospitalization, prolonged hospitalization by 48 hours, system revision, or loss of device therapy.

\(^{g}\) Major complication vs historical controls.

\(^{h}\) % after adjustment for baseline/encounter variables

Section Summary: Ventricular Pacing for Individuals Who Are Medically Eligible for a Conventional Pacing System

The evidence for use of the Micra transcatheter pacing system consists of a pivotal prospective cohort study, a post-approval prospective cohort study, and a CMS database study. Results at six months and one year for the pivotal study reported high procedural success (>99%) and device effectiveness (pacing capture threshold met in 98% patients). Most of the system- or procedural-related complications occurred within 30 days. At one year, the incidence of major complications did not increase substantially from six months (3.5% at six months vs 4% at one year). Results of the post-approval study were consistent with a pivotal study and showed a lower incidence of major complications up to 30 days post-implantation and one year (1.5% and 2.7%, respectively). In both studies, the point estimates of major complication were lower than the pooled estimates from six studies of conventional pacemakers used as a historical comparator. Results of the CMS study indicated that acute complication rates were similar for the Micra and transvenous pacemakers, after adjustment for baseline and encounter differences, and there was a slightly lower six-month complication rate for the leadless system. While the Micra transcatheter pacing system eliminates adverse events associated with lead and pocket issue, its use results in additional complications related...
to the femoral access site (groin hematomas, access site bleeding) and implantation and release of the device (traumatic cardiac injury). Considerable uncertainties and unknowns remain in terms of the durability of device and end-of-life device issues. Early and limited experience has suggested that retrieval of these devices is unlikely because in due course of time, the devices will be encapsulated. There are limited data on device-device interactions (both electrical and mechanical), which might occur when there is a deactivated Micra device alongside another leadless pacemaker or when a leadless pacemaker and transvenous device are both present.

VENTRICULAR PACING FOR INDIVIDUALS WHO ARE MEDICALLY INELIGIBLE FOR A CONVENTIONAL PACING SYSTEM

Nonrandomized Controlled Trials

No studies that exclusively enrolled patients who were medically ineligible to receive a conventional pacing system were identified.

In the IDE trial, 6.2% or 45 patients received the Micra Transcatheter Pacing System because they were medically ineligible for a conventional pacing system due to compromised venous access, the need to preserve veins for hemodialysis, thrombosis, a history of infection, or the need for an indwelling venous catheter. A stratified analysis of these 45 patients was not presented in the published paper\[23\] or the FDA documents.\[11, 19, 25, 26\]

In the postapproval registry as an abstract, the authors reported stratified results for 105 of 1,820 patients who had previous cardiac implantable electronic device (CIED) infection.\[30, 35\] Of these, 83 patients (79%) were classified as medically ineligible to receive a conventional pacemaker in the opinion of the physician. A stratified analysis of these 83 patients was not presented in the publication. Trial characteristics and results are summarized in Tables 4 and 5, respectively. In this cohort of patients with CIED infection, the Micra device was implanted successfully in 104 patients and the previous CIED was explanted the same day as the Micra device was implanted in 37% of patients. Major complications were reported in 3.8% of patients with an average follow-up of 8.5 months. Ten deaths were reported (14% at 12 months) but none were related to the Micra transcatheter pacing system or the implantation procedure.

Table 4. Summary of Key Nonrandomized Trial Characteristics in Patients Ineligible for a Conventional Pacing System and/or Previous CIED Infection

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>Treatment</th>
<th>Follow-Up, mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>El-Chami (2018)[30, 35]</td>
<td>Prospective single cohort (Micra Post-Approval Registry)</td>
<td>23 countries in North America, Europe, Asia, Australia, and Africa</td>
<td>2016-2018</td>
<td>Any patient to be implanted with a Micra with a CIED infection</td>
<td>Micra pacemaker (n=105)</td>
<td>8.5 (range 0 to 28.5)</td>
</tr>
</tbody>
</table>

CIED: cardiac implantable electronic device.
Table 5. Summary of Key Nonrandomized Trial Results in Patients Ineligible for a Conventional Pacing System and/or Previous Cardiac Implantable Electronic Device Infection

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients With System- or Procedure-Related Major Complications at One Year</th>
<th>Average Pacing Threshold at One Year</th>
<th>Major Complications at 1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>El-Chami (2018)</td>
<td>105</td>
<td>82</td>
<td>105</td>
</tr>
</tbody>
</table>
| N | 4 (4/105) | 0.6 V | Total major complications: 6 in 4 patients
(patient 1: effusion requiring pericardiocentesis; patient 2: elevated thresholds, complication of device removal [IVC filter entanglement], and subsequent abdominal wall infection, patients 3 and 4: pacemaker syndrome) |
| Micra | | | |

IVC: in cava filter.

Garg (2020) performed a stratified analysis of data from the Micra clinical trials (Micra Post-Approval Registry, Micra Continued Access Study, Micra Transcatheter Pacing Study, Medtronic Product Surveillance Registry) based on whether the patient was deemed to be ineligible to receive a conventional pacemaker by the implanter. Of the 2,817 patients that underwent an attempted implantation of a Micra device, 546 (19%) were considered to be precluded from receiving a transvenous permanent pacemaker, for reasons that included venous access issues or previous device infections. Compared with individuals that were not precluded from a transvenous device, the precluded patients had significantly higher acute mortality and total mortality at 36 months (2.75% vs 1.32%, p=0.022; and 38.1% vs 20.6%, p<0.001; respectively). The major complication rate was not significantly different between the groups.

Section Summary: Ventricular Pacing for Individuals Who Are Medically Ineligible for a Conventional Pacing System

No studies that exclusively enrolled patients who were medically ineligible for a conventional pacing system were identified. However, a subgroup of patients in whom the use of conventional pacemakers was precluded was enrolled in the pivotal and the postapproval trials. Information on the outcomes in these subgroups of patients from the postapproval study showed that Micra was successfully implanted in 98% of cases and safety outcomes were similar to the original cohort. Even though the evidence is limited, and long-term effectiveness and safety are unknown, the short-term benefits may outweigh the risks in the context of the life-saving potential of pacing systems in patients that are ineligible for conventional pacing systems.

PRACTICE GUIDELINE SUMMARY

AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION, AMERICAN HEART ASSOCIATION, AND HEART RHYTHM SOCIETY
The American College of Cardiology Foundation, American Heart Association, and Heart Rhythm Society’s (2012) focused update on device-based therapy of cardiac rhythm abnormalities incorporated into their joint 2008 guidelines for device-based therapy of cardiac rhythm abnormalities does not include recommendations on leadless cardiac pacemakers.[37]

In 2020, the Heart Rhythm Society (HRS), along with the International Society for Cardiovascular Infectious Diseases (ISCVID) and several other Asian, European and Latin American societies, endorsed the European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections.[38] The consensus states that for patients at high risk of device-related infections, avoiding a transvenous system, and implanting an epicardial system, may be preferential. It makes the following statements regarding leadless pacemakers:

- “There is hope that ‘leadless’ pacemakers will be less prone to infection and can be used in a similar manner [as epicardial systems] in high-risk patients.”
- “In selected high-risk patients, the risk of infection with leadless pacemakers appears low. The device also seems safe and feasible in patients with pre-existing CIED infection and after extraction of infected leads.”

The Heart Rhythm Society and American College of Cardiology Foundation (2012) expert consensus statement on pacemaker device and mode selection did not include recommendations on leadless cardiac pacemakers.[39]

SUMMARY

There is enough research to show that an FDA-approved leadless pacing system may improve health outcomes for patients with a guidelines-based indication for a ventricular pacing system who are medically ineligible for a conventional pacing system. Although evidence is limited and long-term effectiveness and safety are unknown, the short-term benefits may outweigh the risks, in the context of the life-saving potential of pacing systems for patients who are ineligible for conventional pacing systems. Therefore, a leadless pacemaker system may be considered medically necessary for patients who meet the policy criteria.

There is not enough research to show that a leadless pacing system can improve health outcomes for patients who do not meet medical necessity criteria, including the use of a non-FDA-approved system, or in patients who are eligible for a conventional pacing system. There is little evidence regarding the durability of devices, device end-of-life issues, and device-device interactions (both electrical and mechanical), which may occur when there is a deactivated leadless device alongside another leadless pacemaker or when a leadless pacemaker and transvenous device are both present. Therefore, a leadless pacemaker is considered investigational when criteria are not met.

REFERENCES

38. C Blomström-Lundqvist, V Traykov, PA Erba, et al. European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections-endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Latin American Heart Rhythm Society (LAHRS), International Society for Cardiovascular Infectious Diseases (ISCVID) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). *Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology*. 2020;22(4):515-49. PMID: 31702000

40. BlueCross BlueShield Association Medical Policy Reference Manual "Leadless Cardiac Pacemakers." Policy No. 2.02.32

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>33274</td>
<td>Transcatheter insertion or replacement of permanent leadless pacemaker, right ventricular, including imaging guidance (eg, fluoroscopy, venous ultrasound, ventriculography, femoral venography) and device evaluation (eg, interrogation or programming), when performed (new eff 1/1/19)</td>
</tr>
<tr>
<td></td>
<td>33275</td>
<td>Transcatheter removal of permanent leadless pacemaker, right ventricular, including imaging guidance (eg, fluoroscopy, venous ultrasound, ventriculography, femoral venography), when performed</td>
</tr>
</tbody>
</table>

Date of Origin: December 2018

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
Gender Affirming Interventions for Gender Dysphoria: Clinical Criteria and Policy

Document Number: 54-0006
Issued: January 1, 2017
Effective: January 1, 2017
Revised: September 16, 2019

UMP members should refer to Regence medical policy 153 for information about UMP’s coverage of transgender services, with the exception of information in the "Medical Policy Criteria" box in policy 153. Instead of the criteria listed in that box, the UMP-specific clinical criteria outlined below must be met to receive transgender surgical services.

I. Medical Treatments for Gender Dysphoria
 A. Psychotherapy may be considered medically necessary as a treatment of gender dysphoria.
 B. Continuous hormone therapy may be considered medically necessary as a treatment of gender dysphoria when all of the following criteria are met:
 1. Clinical records document that the patient has the capacity to make fully informed decisions and consent for treatment; and hormone therapy is part of a comprehensive, patient-centered treatment plan; and
 2. A licensed behavioral health practitioner or a licensed physician, advanced registered nurse practitioner (ARNP), physician’s assistant (PA) or psychologist is treating the patient for primary care or transgender services and:
 a) Assesses the patient and makes or confirms the diagnosis of gender dysphoria as defined by the DSM-V criteria, and
 b) Determines or confirms that the gender dysphoria is not due to another mental or physical health condition.

II. Surgical Treatments of Gender Dysphoria
 A. Gender reassignment surgery (see UMP clinical criteria policy and Regence medical policy 153 guidelines) may be considered medically necessary in the treatment of gender dysphoria when all of the following criteria are met:
 1. Age at least 18 years. For patients younger than 18 years of age, mastectomy may be considered a medically necessary surgical procedures. Other requirements outlined in this section must be met to proceed with mastectomy in those younger than 18 years of age.
 2. Clinical records document that the patient has the capacity to make fully informed decisions and consent for treatment as part of a comprehensive, patient-centered treatment plan; and that any other mental health condition, if present, is adequately controlled; and
 3. At least 2 licensed mental health professionals have diagnosed gender dysphoria, and recommend surgical treatment (*Only one mental health professional referral is required for mastectomy); and
 a) Assesses the patient and makes or confirms the diagnosis of gender dysphoria as defined by the DSM-V criteria, and
 b) Determines or confirms that the gender dysphoria is not due to another mental or physical health condition; and
4. Documentation of continuous hormonal therapy for at least 12 months, unless there is a documented medical contraindication to hormonal therapy. Hormonal therapy is not required prior to mastectomy; and
5. Twelve months of living in a gender role that is congruent with the patient’s gender identity.

B. Prior authorization is required for all proposed surgical interventions. Section II.A of this policy lists the requirements and documentation that must be submitted for prior authorization review. Surgeries are not required to be completed at the same time and, instead, may be performed and receive prior authorization in progressive stages. UMP covers the following procedures with prior authorization:
 1. Blepharoplasty, covered only if restorative function medical criteria are met (not specific to transgender surgery);
 2. Breast augmentation will require preauthorization with following criteria:
 a) Documentation of continuous hormonal therapy for at least 12 months, unless there is documented medical contraindication to hormonal therapy; and
 b) Have not reached a Tanner Stage 5.
 3. Bilateral mastectomy with or without chest reconstruction;
 4. Clitoroplasty;
 5. Colovaginoplasty;
 6. Colpectomy;
 7. Genital surgery;
 8. Genital electrolysis and laser hair removal as required as part of the genital surgery is covered with prior authorization and is limited to the genitals and, if applicable, the graft site, as required for genital surgery. Electrolysis and laser hair removal not meeting these guidelines and the guidelines for Surgical Treatments of Gender Dysphoria outlined in the Gender Affirming Interventions for Gender Dysphoria Criteria and Policy is not covered.
 9. Hysterectomy;
 10. Labiaplasty;
 11. Metoidioplasty;
 12. Orchietomy;
 13. Penectomy;
 14. Phalloplasty;
 15. Placement of testicular prosthesis;
 16. Rhinoplasty, covered only if restorative function medical criteria are met (not specific to transgender surgery);
 17. Salpingo-oophorectomy;
 18. Scrotoplasty;
 19. Urethroplasty;
 20. Vaginectomy; and

C. Other than gender reassignment surgeries listed in this policy, surgery and/or additional treatments to change specific appearance characteristics are considered not medically necessary as treatments of gender dysphoria, including, but not limited to the following:
 1. Brow lifts;
 2. Calf implants;
 3. Cheek/malar implants;
 4. Chin/nose implants;
 5. Chondrolaryngoplasty;
 6. Collagen injections;

These criteria do not imply or guarantee approval. Please check with your plan to ensure coverage. Preauthorization requirements are only valid for the month published. They may have changed from previous months and may change in future months.
7. Drugs for hair loss or growth;
8. Facial or trunk hair removal via laser or electrolysis;
9. Facial feminization;
10. Face lift;
11. Forehead lift;
12. Hair transplantation;
13. Jaw shortening;
14. Lip reduction;
15. Liposuction;
16. Mastopexy;
17. Neck tightening;
18. Pectoral implants;
19. Reduction thyroid chondroplasty;
20. Removal of redundant skin;
21. Suction-assisted lipoplasty of the waist;
22. Trachea shave;
23. Voice modification surgery; and