Osteochondral Allograft Transplantation and Autograft Transfer System (OATS/mosaicplasty)

Introduction

HTA has selected Osteochondral Allograft Transplantation and Autograft Transfer System (OATS/mosaicplasty) to undergo a health technology assessment where an independent vendor will systematically review the evidence available on its safety, efficacy, and cost-effectiveness. HTA originally posted the topic as Osteoarticular Transfer System Cartilage Surgery (OATS), now modified to the more generic title above, and gathered public input on all available evidence. HTA published the Draft Key Questions to gather public input about the key questions and any additional evidence to be considered in the evidence review. Key questions guide the development of the evidence report. HTA seeks to identify the appropriate topics (e.g. population, indications, comparators, outcomes, policy considerations) to address the statutory elements of evidence on safety, efficacy, and cost effectiveness relevant to coverage determinations.

Osteoarticular Autograft Transfer System cartilage surgery (OATS) is an open joint or arthroscopic procedure used to repair localized cartilage injuries, usually caused by trauma or acquired defect of a joint (knee, ankle, hip, shoulder, elbow), such as an anterior cruciate ligament (ACL) deficiency. In the procedure, one (or more) plugs of healthy cartilage are harvested from a less important area of the cartilage within the same joint or from preserved cadaver tissue, and inserted into the center the damaged area, with the idea that surrounding cartilage will grow over the edges of the insert without the reduction of quality to fibrocartilage cells found in other cartilage repair procedures (sub-chondral bone marrow stimulation by drilling or microfracture, abrasion arthroplasty).

Draft Key Questions

When used in patients with cartilage damage:

1. What is the case definition of a patient suitable for OATS/mosaicplasty surgery, and are there measures of reliability and validity for case identification?
 a. What are the maximum, minimum, and optimum size (volume) of the damage that is suitable for repair using OATS/mosaicplasty?
 b. What are the maximum and optimum number of lesions that can be repaired in a single OATS/mosaicplasty procedure?
 c. Are there other considerations that make OATS/mosaicplasty suitable or unsuitable (age, mobility, comorbidities, BMI).
 d. Is there a distinction between OATS and mosaicplasty, and a related case definition difference between the two?
e. Is there a distinction between cases where autograft vs. allograft OATS/mosaicplasty is preferable?

f. Of the joints where OATS/mosaicplasty has used (knee, ankle, hip, shoulder, elbow), are any more or less suitable to this procedure?

2. What are the expected treatment outcomes of OATS/mosaicplasty, and are there validated instruments and scores to measure clinically meaningful improvement?

3. What is the evidence of efficacy and effectiveness of OATS/mosaicplasty (open or arthroscopic)? Including consideration of short term and long term:
 a. Delay or avoidance of progression to osteoarthritis
 b. Impact on function, pain, range of motion, quality of life, activities of daily living and return to work
 c. Longevity of treatment effect
 d. Need for continuing and/or subsequent intervention
 e. Need for extended or continuing physical therapy
 f. Recovery time considering harvest site recovery issues
 g. Differential results from multiple versus single grafts, patterning for multiple grafts (linear arrangement vs. circular arrangement)
 h. Differential results between allograft and autograft procedures
 i. Differential results between open and arthroscopic procedures
 j. Differential results in centers of excellence

4. What is the evidence of the safety of OATS surgery? Including consideration of:
 a. Adverse events type and frequency (peri-operative, cartilage plug detachment, cartilage rejection, graft fit, harvest site issues, development of fibrocartilage, mortality, other major morbidity such as DVT, deep infection, and excessive intraarticular bleeding)
 b. Revision/re-operation rates (if not addressed in efficacy)

5. What is the evidence that OATS surgery has differential efficacy or safety issues in sub populations? Including consideration of:
 a. Gender
 b. Age
 c. Psychological or psychosocial co-morbidities
 d. Baseline functional status: e.g. type of injury or lesion, extent of cartilage damage, specific damage site size, number of damage sites
 e. Other patient characteristics or evidence based patient selection criteria, especially comorbidities of diabetes and high BMI
 f. Provider type, setting or other provider characteristics
 g. Payor/ beneficiary type: including worker's compensation, Medicaid, state employees

6. What is the evidence of cost implications and cost-effectiveness for OATS/mosaicplasty? Including consideration of:
 a. Costs (direct and indirect) and cost effectiveness
 b. Short term and long term
Policy Context:

Injury or damage to cartilage can be resistant to healing due to low vascularization, and in joints, may lead to pain and loss of function. The resulting irritation and inflammation of the joint may also be associated with further degeneration and osteoarthritis. Treatments for injured cartilage include arthroscopic removal of damaged cartilage, stimulation of the underlying bone to encourage cartilage growth, injection of chondrocytes to encourage repair, and/or grafts of cartilage from other parts of the joint or from preserved cadaver tissue. Advanced joint degeneration is treated with other approaches, such as the injection of cushioning material (hyaluronic acid), bone shaping to reduce wear and joint replacement.

Injuries suitable for repair using OATS/mosaicplasty often occur in young, athletic individuals. Treatment that allows a continued healthy lifestyle and avoids long term joint damage and eventual more invasive procedures is of great benefit. Though definite causes for osteoarthritis have not been identified, there are indications that minor joint damage followed by years of continuous wear may be the major cause.

Technology Description:

Osteochondral Autograft Transfer System surgery is a graft procedure that uses one or more “plugs” of healthy cartilage to fill in damaged areas. It can be done as an open or arthroscopic procedure, and is sometimes combined with other joint operations such as arthroscopic debridement or ACL repair. The grafted cartilage is harvested from another area within the joint, and the harvest site as well as the repair site need to heal properly, so a period of physical therapy is required after the operation.

Osteochondral Allograft Transplant Surgery is a graft procedure similar to Osteochondral Autograft Transfer System, but using graft material from preserved cadaver cartilage. There is some indication that allograft cartilage does not integrate as well, and transplantation involves some risk of infection. However, adequate healthy cartilage tissue is not always available within the joint under repair.

Mosaicplasty is a more generic term that covers either Osteochondral autograft or allograft, open or arthroscopic.

Issues:

Significant questions remain about the safety, efficacy and effectiveness, and cost effectiveness of OATS/mosaicplasty cartilage surgery. The choice of suitable patients for OATS/mosaicplasty surgery is controversial because the size and number of damage sites for which it is functional are not well defined, because the harvesting of cartilage from another site or cadaver tissue adds risk and healing issues, and because other, less invasive procedures may be equally effective in the short term (autologous chondrocyte injection). Effectiveness questions particularly center on whether the potential beneficial outcomes of long term pain and functional improvement, prevention of osteoarthritis or further joint deterioration occur with this surgical intervention.
Joseph M. Czerniecki, MD is the Associate Director of the VA Research Center of Excellence in Limb Loss Prevention and Prosthetic Engineering at Seattle and Professor of Rehabilitation at the University of Washington. He is a clinical specialist in Physical Medicine and Rehabilitation, with a clinical focus in the area of amputee rehabilitation. He has an active ongoing research program, studying many facets of amputee rehabilitation including, the biomechanics of amputee gait and prosthetic components, pain after amputation, and most recently the prediction of outcomes in veterans who are about to undergo amputation secondary to diabetes or vascular disease. He has published over 60 scientific papers.
Disclosure

Any unmarked topic will be considered a "Yes"

<table>
<thead>
<tr>
<th>Potential Conflict Type</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salary or payments such as consulting fees or honoraria in excess of $10,000</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2. Equity interests such as stocks, stock options or other ownership interests</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3. Status or position as an officer, board member, trustee, owner</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4. Loan or intellectual property rights</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5. Research funding</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6. Any other relationship, including travel arrangements</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

If yes, list name of organizations that relationship(s) are with and for #6, describe other relationship:

__

__

<table>
<thead>
<tr>
<th>Potential Conflict Type</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Representation: if representing a person or organization, include the name and funding sources (e.g. member dues, governmental/taxes, commercial products or services, grants from industry or government)</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

7. If yes, Provide Name and Funding Sources:

__

__

__

If you believe that you do not have a conflict but are concerned that it may appear that you do, you may attach additional sheets explaining why you believe that you should not be excluded.

I certify that I have read and understand this Conflict of Interest Form and that the information I have provided is true, complete, and correct as of this date.

X

Date: 07/12/2011

Print Name

FOR QUESTIONS: Denise Santoyo, Health Care Authority, 360-923-2742,
PO Box 42712, Olympia, WA 98504-2712
CURRICULUM VITAE

Name: Joseph M. Czerniecki, M.D.
Date of Birth: August 19, 1953
Place of Birth: Nelson, British Columbia, Canada
Current Address: 4232 Bagley Ave. N.
 Seattle, Washington 98103
Telephone: (206) 277-1812 (Work)

Undergraduate Education

1971-1975 Bachelor of Science in Rehabilitation (Physical Therapy and Occupational Therapy) University of British Columbia, Vancouver, B.C.

Medical School

1977-1981 M.D., University of British Columbia, Vancouver, B.C.

Post Graduate Training

1981-1982 Internal Medicine Internship, University of Toronto, Sunnybrook Medical Centre, Toronto

1982-1985 Residency Training in Physical Medicine and Rehabilitation Medicine University of Washington, Seattle, WA

1985 Masters of Science, University of Washington, Seattle, WA
Thesis Entitled: An Electrogoniometric Analysis of Rotational Motion at the Knee in Normal Subjects and those with Anterior Cruciate Ligament Injury

1985-1986 Research Fellowship, Department of Rehabilitation Medicine University of Washington, Seattle, WA

Faculty Appointments
July '86-Feb '89 Acting Assistant Professor, Dept. of Rehabilitation Medicine
University of Washington, Seattle, WA

Feb '89-July '95 Assistant Professor, Dept. of Rehabilitation Medicine
University of Washington, Seattle, WA

July '90-Present Member, Graduate Faculty
University of Washington, Seattle, WA

July '95-July '03 Associate Professor, Department of Rehabilitation Medicine
University of Washington, Seattle, WA

July '03-Present Professor, Department of Rehabilitation Medicine
University of Washington, Seattle, WA

Hospital Appointments

July '86-July'04 Attending Physician, STAMP/PACT Service, Physical Medicine and
Rehabilitation Medicine Service, Seattle V.A. Medical Center, Seattle, WA

July '88-July'07 Director, Motion Analysis Laboratory, Seattle VA Medical Center,
Seattle, WA

July '88-Present Director, VA Regional Amputee Clinic

July '88-Present Associate Medical Staff, Harborview Medical Center

July '88-Present Associate Medical Staff, University of Washington Medical Center

July '88- July'92 Attending Physician, University Hospital Child Myoelectric Clinic

Feb '91- Dec '93 Co-Director, STAMP (Special Team for Amputation, Mobility &
Prosthetics/Orthotics), Seattle VA Medical Center, Seattle WA

Dec '93-July'04 Co-Director PACT Program (Preservation Amputation Care Team),
Seattle VA Medical Center, Seattle WA

May '95-Jan'97 Director Outpatient Clinics, Physical Medicine and Rehabilitation Service,
Seattle VA Medical Center, Seattle WA

Jan '97- Jan’99 Director Electrodiagnostic Services, Physical Medicine and Rehabilitation
Service, Seattle VA Medical Center, Seattle WA
Aug’05–May’10 Director of Rehabilitation Care Service Line, VA Puget Sound Health Care System, Seattle WA

Academic Honors Scholarships

1971 Norman A. MacKenzie Scholarship

1978 Dr. and Mrs. S. Schaffer Memorial Scholarship

1979 Cornelius Leonard Mitchell Scholarship

1980 Samuel Diamond Scholarship

1981 Peter Bain Scholarship Dr. and Mrs. J. Nemetz Memorial Scholarship

1989 Teacher of the Year, Dept of Rehabilitation Medicine
University of Washington, Seattle, WA

1992 Physical Medicine and Rehabilitation, Education and Research Foundation Award
Best publication by a Physiatrist in 1992 (role: co-author)

1994 Teacher of the Year, Dept. of Rehabilitation Medicine
University of Washington, Seattle, WA

1996 Physical Medicine and Rehabilitation, Education and Research Foundation Award
Best publication by a Physiatrist in 1996 (role: co-author)

2003 Visiting Professor, University of Geneva, Geneva, Switzerland

2004 Visiting Professor, Dalhousie University, Halifax Canada.
Presented the Arthur H. Shears Lectureship “Critical Issues in the Rehabilitation of People with Amputations”.
2006 Professional Achievement of the Year Award, awarded by the Amputee Coalition of America.

2009 Visiting Professor, University of Colorado, Denver Colorado, Gersten Lectureship “Innovations in Lower Extremity Amputee Rehabilitation and Prosthetic Technology: The near term and more distant horizon”.

2011 2010 Ernest W. Johnson / AAP Excellence in Research Writing Award honorable mention winner. (role: senior author)

Specialty Board Status

1986 Fellow of the Royal College of Physicians (Canada) Physical Medicine and Rehabilitation
1987 American Board of Physical Medicine and Rehabilitation
1988 American Board of Electrodiagnostic Medicine

Medical Licensure

1982 - Present Washington State Medical License

Professional Membership

American Academy of Physical Medicine & Rehabilitation
Royal College of Physicians (Canada)

Teaching Responsibilities

Courses

1986 – Present Rehab 685/687 Chronic Disease and Disability
Four times/year two week clinical rotation for medical students
1986-1994 Rehab 529 Prosthetic Orthotic Conference
Bi-monthly clinical/didactic case centered conference on amputation related issues.

1986-1988 Ortho 585 Sports Medicine for Medical Students
2-3 lectures on biomechanics in sports medicine

1987-1994 Rehab 654 Medical Student Introduction to Rehabilitation Medicine
2 hour lecture in this course to introduce medical students to issues related to amputation prevention and amputation rehabilitation

1988-1991 ICM II Introduction to Clinical Medicine II
I provided a single 2 hour lecture in this course

1986-1991 Hubio 553 Medical Student Anatomy
One quarter per year of Anatomy Lab supervision. This involved approximately 28 hours of involvement in a quarter.

1987-1992 Rehab 445 Therapy Students Anatomy
One quarter per year three lectures and 3 hrs of anatomy lab participation

1987-1992 Rehab 545 Rehabilitation Medicine Resident Anatomy Course
One quarter per year three lectures and anatomy lab participation.

1993-1997 Rehab 442 Advanced Clinical Kinesiology and Biomechanics
Co-course chair complete redesign of course and administrative responsibility for the course as well as 3-4 lectures in the quarter.

1995-2008 Rehab 593 Principles of Prosthetic Use in Rehabilitation
Designed a new course for 3rd year Rehab Residents consisting of 11 lectures in a quarter. Full administrative responsibility and ½ of the lectures. Development of the course to include Web based materials.

2001 Co-chair. Department of Rehabilitation Medicine, University of Washington Review Course. Coordinated all aspects of this 10 day review course.
Local CME Lectures

National CME Lectures

28. Amputee Rehabilitation: Current treatment and new research directions. War Illness and Injuries Study Center, New Jersey, May, 2006

31. The effect of Microprocessor Controlled Knees on the metabolic costs and biomechanics of Transfemoral Amputee Gait, AAOPA meeting, Atlanta, March, 2009.

34. VA National Amputation System of Care, VISN 20 Regional Amputation Conference, Seattle WA, July 2010.

Graduate Students Supervised

4. Margaret Forgette, MD, Masters of Rehabilitation Medicine, June, 1989. Thesis entitled: "Reflex Sympathetic Dystrophy in a Child, A single subject study design of the Role of Calcium Channel Blockers". Role: Member of Committee.

10. Mary Zdrojewski, MD, Masters of Rehabilitation Medicine, July 1994, Thesis entitled: Is the self-selected walking speed of AK amputee ambulation their most efficient. Role Chairman of Committee.

20. Andrew Sawyers, PhD Candidate, Rehabilitation Sciences, University of Washington, August 2008 to present, Member of Dissertation Committee.

Editorial Responsibilities

May '91-Present Ad Hoc manuscript reviewer
Journal of Biomechanics

May '89-Present Ad Hoc manuscript reviewer
Archives of Physical Medicine and Rehabilitation

June '97-July '00 Ad Hoc manuscript Reviewer
Clinical Orthopedics and Related Research

July '99-Present Ad Hoc manuscript reviewer
VA Journal of Rehabilitation Research and Development

Aug '00-Mar ‘04 Editorial Board member
Archives of Physical Medicine and Rehabilitation

Special National Responsibilities

Apr ‘89-Apr ‘96 Oral Board Examiner
American Board of Electrodiagnostic Medicine

Jan '89-Sept '92 Member, Self-Assessment Examination Subcommittee
American Academy of PM&R

May '92-May ‘02 Guest Oral Board Examiner, American Board of PM&R

June '92 Grant Review Panel Member, Biomedical Engineering to Aid the Disabled, National Science Foundation

March'94-June'95 Study Guide Committee (Prosthetics/Orthotics Section)
American Academy of PM&R

May ’94 Grant Review Panel Member, Biomechanics and Rehabilitation, National Science Foundation

Jun '97 - Present Associate Director, VA Rehabilitation Research and Development Center (Limb Loss Prevention and Prosthetic Engineering). A specialized research center of excellence in the Veterans Administration Health Care System.

Mar’99-Jul ‘02 Grant Review Panel Member, NIH Small Business Innovation Research Grant, Rehabilitation Special Emphasis Panel.

Oct’99-Jul ‘01 Question Writer for American Board of PM&R Re-certification Examination

June '01 Invited Participant in a National Conference (Veterans Administration and NIH) to establish future directions and research priorities for Prosthetic Research.
Apr '02-Apr’03 Member of Executive Committee of the US- ISPO. This is the US division of the International Society of Prosthetics and Orthotics.

Oct ’03 Invited Member National VA committee to evaluate and enhance amputee care in the VA Health Care System.

June ’05 Invited Member Consensus Conference on the Biomechanics of Prosthetic Feet, sponsored by the American Academy of Orthotists and Prosthetists, Dallas.

Sept ’04- Jan’08 VA National Advisory Board for Physical Medicine and Rehabilitation

Dec ’06 Invited to participate in a conference to develop international accreditation standards for Amputee Specialty Programs, CARF International, Washington, DC

Dec ’06 Participated in a committee to develop clinical practice guidelines for amputation care within the VA health care system, Denver, CO.

July ’07-present Member VA National Research Advisory Committee, review and advise on VHA’s research portfolio regarding OIF/OEF combat injured.

July ’07 NIH grant review panel member, Musculoskeletal Rehabilitation Study Section. Bethesda, MD.

Feb’08 – Sept’08 National Technical Advisory Team, develop and implement a plan for Post Deployment Health Care for returning combat exposed patients.

Sept’09 – May’10 Interim National Director VA Amputation System of Care,

Special Local Responsibilities

July ’87-July ’90 Member, Advisory and Evaluation Committee for Physical Therapy, University of Washington, Dept of Rehab Medicine

Aug ’87-July ’99 Departmental Career Advisor University of Washington, School of Medicine

July ’88-April ’89 Chairman, Committee to Evaluate Residency Training in Musculoskeletal Medicine

July ’88-July’92 Member, Standing Committee on Prosthetics and Orthotics Undergraduate Education, University of Washington, Dept of Rehab Medicine
July '89-July '90 Member, Departmental Physician Search Committee

Sept '90-May '93 Member, Rehabilitation Medicine Quality Improvement Committee, Seattle VA Medical Center

July '91-July '92 Member, Departmental Residency Training Advisory Committee, University of Washington, Dept of Rehab Medicine

July '91-July '02 Member, Advisory Committee Medical Rehabilitation Research Training Program, University of Washington, Dept. of Rehab Medicine

Dec '91-May '04 Chair, Credentialing & Privileging Committee, Rehab Medicine Service, Seattle VA Medical Center

July '92-May '93 Chair, Committee to Reformulate Kinesiology 442 Course, University of Washington, Dept of Rehab Medicine

May '93- July '98 Chair, Rehabilitation Medicine QI Committee, Seattle VA Medical Center

Mar '95-July '96 Member, Search Committee, Head of the Division of Prosthetics/Orthotics, Dept of Rehab Medicine, University of Washington

Mar '95-Mar'97 Member, Search Committee, Head of the Division of Physical Therapy, Dept of Rehab Medicine, University of Washington

Jan '97- July '03 Member, Departmental Physician Search Committee

July '97-Oct '03 Member, Standing Committee on Prosthetics and Orthotics, Undergraduate Education, University of Washington, Dept of Rehab Medicine

Oct '97-Oct '01 Member, Washington State Department of Health, Advisory Committee on Prosthetics and Orthotics

Apr ‘99-Oct ‘99 Member, Search Committee, Associate Chief of Staff for Research, VA Puget Sound Health Care System, Seattle Washington

Nov ‘99-July '02 Member, Veterans Affairs Medical Center, Research and Development Committee

Sept '00-Mar'01 Chair, Department of Rehabilitation Medicine, Physical Medicine and Rehabilitation Review Course
Aug '03-Aug ‘04 Member Departmental Graduate School Council, evaluation of need for doctoral program in Physical Therapy

May ‘06-July ‘07 Member Search Committee, for the Chair, Department of Rehabilitation Medicine, University of Washington

May ’09-May’10 Member VAPSHCS Credentialing and Privileging Committee

July ’07-Present Member VAPSHCS Physician Compensation Panel

Nov ’10-Present Member VAPSHCS IRB Committee

Grant Support

1. Use of Tri-Axial Electrogoniometer in the Study of the Anterior Cruciate Deficient Knee, Associate Grantee
 Co-Grantees: Sigvard Hansen, MD, Frederick Lippert, MD, John Olerud, MD.
 Date: January 1, 1984 - January 1985, Extended to June 1986
 Agency: Orthopedic Research Education Foundation
 Amount: $8,950

 Role: Principal Investigator
 Funding Period: Sept.1, 1988 - Sept.1, 1989
 Agency: Whitaker Foundation
 Amount: $58,005

3. Biomechanical Power Output Analysis of Prosthetic Feet
 Role: Co-Investigator
 Funding Period: September 1988 - September 1989
 Amount: $26,000
 Agency: VA Regional Advisory Group Proposal

4. A Metabolic and Biomechanical Analysis of Above Knee Amputee Gait
 Role: Co-Principal Investigator
 Date: October 1990 - October 1992
 Amount: $145,000
 Agency: VA Merit Review

5. Management of Chronic Pain in Rehabilitation, Principal Investigator, Mark Jensen PhD
 Project Title: Management of Chronic Pain in Persons with Amputations
 Role: Co-investigator
 Amount: $2,857,349 Direct Costs
 Funding Period: August 1996 - August 2001
6. RR&D Center for Amputation Prosthetics and Limb Loss Prevention.
 Role: Co-Principal Investigator
 Amount: $3,719,000
 Funding Period: October 1997 - October 2002
 Agency: Veterans Administration, Rehabilitation Research and Development

7. Effect of Motor imbalance on bony deformity and plantar pressure in the foot.
 Role: Co-investigator
 Amount: $231,400
 Date: October 1999 – October 2001
 Agency: Veterans Administration, Merit Review

8. Management of Chronic Pain in Rehabilitation
 Role: Co-investigator 5%, Principal Investigator, Mark Jensen PhD
 Amount: $3,640,609
 Date: Resubmission June 2001
 Agency: NIH

9. Performance of Shock Absorbing Pylons: Laboratory and Clinical Evaluation
 Role: Co-Principal Investigator
 Amount: $287,400
 Date: October, 2000 submission. Funding period Apr 2001- Apr 2004
 Agency: Veterans Administration, Merit Review

10. RR&D Center for Amputation Prosthetics and Limb Loss Prevention.
 Role: Co-Principal Investigator
 Amount: $3,429,000
 Agency: Veterans Administration, Rehabilitation Research and Development

11. A Longitudinal Study of Social Support Following Limb Loss
 Role: Co-Investigator 5%, Principal Investigator Dawn Ehde PhD
 Amount: $325,502
 Date: June, 2000
 Agency: CDC

12. The Effects of Novel Prosthetic Knees on the Function of Veterans with Transfemoral Amputation
 Role: Principal Investigator
 Amount: $100,000
 Agency: VA Merit Review;
 Funding Period Apr 2002- Apr 2004

13. Transtibial Amputation Management Strategies
 Role: Co-Investigator 5%
Amount: $96,000
Agency: VA Merit Review;
Funding Period Oct 2003 – Oct 2005

14. Controlled Plantar Pressure Re-Distribution
 Role: Co: Investigator 5%
 Principal Investigator: Glenn Klute, PhD
 Agency: VA Merit Review;
 Funding Period Aug 2004 – July 2005

15. Turning Corners: prosthetic components and stability in amputee gait(A3611I)
 Role: Co-investigator 5%
 Amount: $487,162
 Agency: VA Rehabilitation Research and Development Merit Review
 Funding Period: July 2005 – July 2008

16. Controlled plantar pressure re-distribution (A3217P)
 Role: Co-investigator 5%
 Amount: $45,097
 Agency: VA Rehabilitation Research and Development, Pilot Project
 Funding Period July 2004-July 2005

17. Vacuum suspension: effect on tissue oxygenation, activity, and fit (A3666I)
 Role: Co-investigator 5%
 Amount: $719,261
 Agency: VA Rehabilitation Research and Development, Merit Review
 Funding Period: July 2005-July 2008

18. Ankle equinus and plantar pressure in individuals with diabetes
 Role: Principal Investigator
 Agency: VA Rehabilitation Research and Development, Merit Review
 Amount: $403,440
 Funding Period: July 2005-July 2008

 Role: Principal Investigator
 Agency: VA Rehabilitation Research and Development, Merit Review
 Amount: $738,607
 Funding Period: April 2006- April 2010

20. RR&D Center for Amputation Prosthetics and Limb Loss Prevention.
 Role: Co-Principal Investigator(A4843C)
 Amount: $4,750,000
Agency: Veterans Administration, Rehabilitation Research and Development

21. Metabolic Cost Savings for Transtibial Amputees Wearing the CESR Foot.
 Role: Principal Investigator
 Agency: VA Rehabilitation Research and Development, Merit Review
 Amount: 749,632
 Funding Period: June 2006 – June 2010

22. Distributed sensing in prosthetic sockets
 Agency: NIH R21
 Role: Consultant
 Amount: $193,454
 Funding Period: February 2008- February 2010

23. Prosthetic Knee-Ankle-Foot System with Biomechatronic Sensing, Control,
 and Power Generation - (DR081177)
 Agency: DoD – DRMRP
 Role: Co-investigator
 Amount: $8,712,373
 Funding Period: July 2009 – July 2014

24. Ampredict; A prognostic System for Selecting Appropriate Level of Amputation(O7119R)
 Agency: VA Merit Review
 Role: Principal Investigator
 Amount: $995,000
 Funding Period: July 2010 – July 2014

25. Optimizing Stiffness in a Multi-Component Prosthetic Foot
 Agency: VA Merit Review
 Role: Investigator (Mike Hahn, PhD Principal Investigator)
 Amount: $822,142
 Funding Period: Oct 2010 – Sept 2013

26. Prosthetic foot characteristics and Knee osteoarthritis in Amputees
 Agency: VA Career Development
 Role: Mentor (David Morgenroth, MD Career Development Awardee)
 Amount $1,156,250
 Funding Period: Oct 2010 – Sept 2015

For complete CV (includes bibliography) – please request from HTA program at: shtap@hca.wa.gov
<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Representing</th>
<th>COI</th>
<th>PPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Paul Just, PharmD, BCPS</td>
<td>Smith & Nephew</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Samir Bhattacharyya, PhD</td>
<td>Depuy Mitek, Johnson & Johnson</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Disclosure
Any unmarked topic will be considered a "Yes"

<table>
<thead>
<tr>
<th>Potential Conflict Type</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salary or payments such as consulting fees or honoraria in excess of $10,000</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>2. Equity interests such as stocks, stock options or other ownership interests</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>3. Status or position as an officer, board member, trustee, owner</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>4. Loan or intellectual property rights</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>5. Research funding</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>6. Any other relationship, including travel arrangements</td>
<td>✅</td>
<td></td>
</tr>
</tbody>
</table>

If yes, list name of organizations that relationship(s) are with and for #6, describe other relationship:

Employee of Smith & Nephew, Inc., Advanced Surgical Devices

<table>
<thead>
<tr>
<th>Potential Conflict Type</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Representation: if representing a person or organization, include the name and funding sources (e.g., member dues, governmental/taxes, commercial products or services, grants from industry or government).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. If yes, Provide Name and Funding Sources: __

If you believe that you do not have a conflict but are concerned that it may appear that you do, you may attach additional sheets explaining why you believe that you should not be excluded.

I certify that I have read and understand this Conflict of Interest Form and that the information I have provided is true, complete, and correct as of this date.

[Signature] 10/26/2011 Paul M. Just, PharmD, BCPS

FOR QUESTIONS: Denise Santoyo, Health Care Authority, 360-923-2742, PO Box 42712, Olympia, WA 98504-2712

P Just signed Participant Conflict Disclosure 2003 2 of 2
Comments On Spectrum Research’s Final Report of a Health Technology Appraisal of Osteochondral Autograft Transplantation (OAT)

Washington State Health Care Authority
Health Technology Clinical Committee
Seattle, WA

November 18, 2011

Paul M. Just, PharmD, BCPS
Director, Healthcare Economics
Advanced Surgical Devices Division
Smith & Nephew, Inc.
Andover, MA

Overview of the surgical continuum for osteochondral defects

<table>
<thead>
<tr>
<th>Category*</th>
<th>Procedure</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palliative (Temporizing)</td>
<td>• Intraarticular lavage</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>• Debridement</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Marrow stimulation (Reparative)</td>
<td>• Abrasion</td>
<td>Fibrocartilage</td>
</tr>
<tr>
<td></td>
<td>• Subchondral drilling</td>
<td>Fibrocartilage</td>
</tr>
<tr>
<td></td>
<td>• Microfracture</td>
<td>Fibrocartilage</td>
</tr>
<tr>
<td>Restorative</td>
<td>• OAT</td>
<td>Pure hyaline cartilage</td>
</tr>
<tr>
<td></td>
<td>• Mosaicplasty</td>
<td>Pure hyaline cartilage</td>
</tr>
<tr>
<td></td>
<td>• ACI</td>
<td>Mixed Type I/II collagen cartilage</td>
</tr>
<tr>
<td>Replacement</td>
<td>• Total joint</td>
<td></td>
</tr>
</tbody>
</table>

*Adapted from Farr, et al, 2004
Level I/II Evidence (Level IIb in the report)

- OAT/MP to ACI
 - ACI superior to OAT/MP (Bentley)
 - ACI inferior to OAT/MP (Horas)
 - ACI equivalent to OAT/MP (Dozin)

- OAT/MP to MF
 - OAT/MP > MF (Gudas, 2005)
 - OAT/MP > MF (Gudas, 2009)

- ACI to MF (Knutsen 2004 & 2007)
 - MF = ACI at 2y by clinical outcome / superior humanistic
 - MF = ACI at 5y by clinical outcome / humanistic evaluation

Return to sport data

<table>
<thead>
<tr>
<th>Good and excellent repair ratings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microfracture</td>
<td>67% ± 7%</td>
</tr>
<tr>
<td>ACI</td>
<td>82% ± 7%</td>
</tr>
<tr>
<td>OAT</td>
<td>93% ± 5%, P=0.01 to MF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall return to sports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microfracture</td>
</tr>
<tr>
<td>ACI</td>
</tr>
<tr>
<td>OAT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time to return to sports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microfracture</td>
</tr>
<tr>
<td>ACI</td>
</tr>
<tr>
<td>OAT</td>
</tr>
</tbody>
</table>

(Mithoefer et al 2009)

Although those who do return to sport after ACI have greater “durability”, those with OAT are 36% more likely to return to sport and do so on average 11 months sooner.

The authors stated that the best “durability” was associated with ACI (96% ± 4%) followed by microfracture (52% ± 6%, P=0.079) and OAT (52% ± 21%, P=0.002)
Other points of differentiation
OAT/MP to ACI

- OAT/MP alone results in Type II hyaline cartilage
 (Radulescu, et.al 2010; Melton & Cossey, 2011)

- NICE ok with MP (Interventional Procedure Guidance 162)
 but does not recommend ACI (Technology Appraisal
 Guidance 89)

- ACI is a two-stage procedure (one AS, one open)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Clerical Modify</th>
<th>Manual</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroscopic</td>
<td>7-10 days</td>
<td>28 days</td>
<td>OAT/MP First ACI surgery</td>
</tr>
<tr>
<td>Open</td>
<td>21 days</td>
<td>49 days</td>
<td>Second ACI surgery</td>
</tr>
</tbody>
</table>

From: Work Loss Data Institute, 2011, for Knee and Leg
Guideline summary NGC-8518

Comparing cost ACI and OAT/MP

- Mosaicplasty costs (corrected) from State Agency Data 1 (p28)
 - 4y average = $11,061 per patient
 - 29 patients in 2010
 - About $310,000 in 2010 (across PEB, L&I and DSHS)

- ACI estimated to cost $20,000 to $30,000 per patient

- Estimated incremental cost for ACI in 30 patients / year
 - $268,000 to $568,000 (double or more present cost)

- Why ACI not MF to replace OAT/MF if coverage denied
 - OAT/MP superior to MF and ACI equivalent to MF
 - ACI equivalent to OAT/MP
Summary: Results from prospective RCTs: Microfracture, OAT/MP and ACI

- OAT/MP to ACI about equivalent in 2 prospective RCTs (Dozin & Horas)
- OAT/MP to ACI ACI superior in 1 prospective RCT (caveats: too large, proud, rehab issues)
- OAT/MP to MF OAT/MP superior (Gudas x 2)
- ACI to MF Clinical OC about equivalent at 2y and 5y; Humanistic OC for MF superior (Knutsen)
- OAT/MP is superior to microfracture
Josh Morse VIA E-MAIL
Program Director, Washington State Health Care Authority
Health Technology Assessment Program
P.O. Box 42712
Olympia, WA 98504-2712

October 26, 2011

Dear Mr. Morse:

Smith & Nephew, Inc. is a global medical technology business specializing in Orthopaedics (Trauma and Total Joint Reconstruction), Endoscopy and Advanced Wound Management. Smith & Nephew is a global leader in the development and manufacture of devices used in arthroscopic surgery.

We would appreciate your consideration of the following comments on the final Health Technology Assessment (HTA) report on Osteochondral Allograft/Autograft Transplantation (OAT) conducted by Spectrum Research, Inc.

We applaud the fact that Spectrum Research, Inc. has incorporated many of the recommendations we provided in our comments on the draft report to improve the final report’s factual accuracy and some of the recommendations to improve the report’s balance. Factual accuracy alone is an insufficient element of a critical appraisal. It is the integration of facts into an unbiased analysis reflecting the evolution of medical knowledge that makes for a strong technology appraisal. This latter element appears not universally present in the final report. A reader must be able to easily comprehend without undue distraction the knowledge gained from the past and present body of evidence and how it is integrated into the fabric of everyday patient care decisions. When done well, health care decision makers are best able to objectively assess the most appropriate way to apply the best evidence to make available the highest quality health care for the largest number of patients.

If one accepts the premise identified on page 71 of the final report that case series were not considered because comparative studies of safety and effectiveness were available for autograft procedures, this analysis should be considerably easier to review. It is not. When evaluating therapies, one must reach decisions with the best interests of patients in mind by using the best available evidence. Throughout the final report, the available level I/II prospective randomized controlled trials (RCTs) are repeatedly
referred to as poor quality. It appears that these were considered better evidence than case series and became the *defacto* best quality evidence available.

Therefore, five prospective RCTs (1-5) (final report references 3-7) form the basis of this appraisal and the analyses provided in virtually all relevant systematic reviews presented. Among the latter, authors’ interpretations may differ but the source of the data links to the same original trials. The manner in which statements or interpretations from these systematic reviews were selected for inclusion in the final report may influence a reader’s perception of the source evidence.

For example, on page 46 of the final report it states, “Some reviews found evidence suggestive of autologous chondrocyte implantation (ACI) being a superior treatment than OAT or mosaicplasty.” This statement is referenced by report references 15(6) and 77(7). Both of these references were systematic reviews that included the same evidence evaluated in six other systematic reviews that did not report such a conclusion.(8-13) One might contend that report reference 15 itself does not actually support the statement.

The only prospective RCT to directly conclude ACI was superior to OAT/mosaicplasty (5) was based on application of the latter surgery for large lesions of a size subsequently not recommended for primary treatment with OAT mosaicplasty. The other two prospective RCTs or quasi-RCT comparing OAT/mosaicplasty to ACI did not find ACI to have a clinically superior outcome.(3;4)

Another example of flawed context is found on page 41 of the final report. It states, “However, to date, few comparative studies have examined the efficacy of ACI compared to another treatment.” This is misleading because three of the prospective randomized controlled trials, rated level IIb evidence in the report, compared OAT or mosaicplasty to ACI, as described above. Additionally, a level I prospective RCT of ACI to microfracture is unmentioned in the report, but frequently included in systematic reviews of ACI used in the report. Spectrum has taken the position in its response to comments on the draft report that this appraisal is for OAT/mosaicplasty and detail on ACI is not in scope. Nonetheless, the comparisons of OAT/mosaicplasty to ACI are common throughout the report and in point of fact are highly relevant.

When objectively evaluating the role of OAT and mosaicplasty in the treatment of cartilage damage, one must consider the treatment alternatives and the place of OAT/mosaicplasty within the continuum of surgical options. The most reasonable comparative alternatives are microfracture and ACI as described in the literature. Their comparative effectiveness to OAT/mosaicplasty is relevant if the true purpose of this appraisal is to evaluate the role of OAT/mosaicplasty among surgical treatment options for patients with damaged cartilage. Fortunately, level I/II prospective RCTs are available comparing OAT/mosaicplasty to microfracture (1;2) and ACI to microfracture (14;15). A large prospective cohort study is available to evaluate clinical outcomes from microfracture.(16) These last three were not considered in the final report.

Of the three comparisons between OAT/mosaicplasty and ACI, one finds ACI to result in superior outcomes (5), another finds OAT/mosaicplasty to result in superior outcomes (3) and the last finds no
difference in clinical outcomes (4). As mentioned, the study reporting ACI to have superior outcomes was the earliest and used OAT/mosaicplasty for lesion sizes that were larger than are recommended based upon today’s knowledge as well containing other methodological challenges (13).

When mosaicplasty was evaluated in a prospective cohort study, the two-year outcome was favorable, however, knee function thereafter deteriorated (16). In two prospective RCTs comparing OAT/mosaicplasty to microfracture, response to the former was superior (1,2). In a single prospective RCT comparing ACI to microfracture, at two years microfracture was reported to have equivalent clinical outcomes but superior humanistic outcomes (14). At five years clinical outcomes were still equivalent but there was no significant difference in humanistic outcomes (P=0.054) despite microfracture alone having a significant improvement in humanistic outcomes compared to baseline (P <0.001) while ACI did not (P= 0.309) (15).

Comparing clinical outcomes results from prospective RCTs, OAT/mosaicplasty is superior to microfracture (1,2), ACI is equivalent to microfracture (14,15) and two of three studies (3,4) found OAT/mosaicplasty to have no significant outcome difference from ACI. In the only prospective to find ACI superior to OAT/mosaicplasty, the latter surgery is not performed today as a primary treatment for lesions as large as it was used for in that early trial (5). It appears unreasonable to conclude that ACI offers clinical advantages over OAT/mosaicplasty for cartilage defects of 4 cm² or smaller. Because OAT/mosaicplasty has superior outcomes over time to microfracture, its use is preferred in many patients.

What other factors might distinguish OAT/mosaicplasty and ACI?

Mithoefer et al 2009, provides a systematic review of return to sport in athletes following articular cartilage surgery of the knee (17). Data from 20 studies reporting on 1363 patients was included. Principal comparisons completed were between microfracture, OAT and ACI (they called it ACT). Good and excellent repair ratings were: Microfracture 67% ± 7%; ACI 82% ± 7%; and OAT 93% ± 5% (P=0.01 to MF). Overall return to sports was: Microfracture 66% ± 6%; ACI 67% ± 17%; and, OAT 91% ± 2% (P=0.01 to MF). Time to return to sports was: Microfracture 8 ± 1 months; ACI 18 ± 4 months; and, OA 7 ± 2 months. The authors stated that the best “durability” was associated with ACI (96% ± 4%) followed by microfracture (52% ± 6%, P=0.079) and OAT (52% ± 21%, P=0.002). (17)

OAT/mosaicplasty is a single stage procedure. If arthroscopy is used as the definitive tool to diagnose cartilage damage, the repair can be immediately completed. ACI, however, is a two-stage procedure requiring an initial arthroscopy for harvesting and an open arthrotomy several weeks later to implant the cultured chondrocytes. According to the Official Disability Guidelines for Knee and leg (Guideline Summary NGC-8516 and reference 68 of the final report), arthroscopic repair of osteochondral defects results in 7-10 days and 28 days of disability, respectively, for clerical/modified and manual work.

For open joint surgery, as required for the second implantation surgery for ACI, disability days are 21 and 49, respectively. Since both procedures require arthroscopy, these latter days of disability are incremental to that of the arthroscopic portion of either surgery. It is unreasonable to ignore the fact that
a second surgery must be performed openly and has increased days of disability. A very reasonable expectation is that these circumstances add cost compared to a single-stage arthroscopic procedure.

After correcting the error in the State Agency Data Table listed on pages 28-29 of the final report, OAT/mosaicplasty is reported to cost about $11,061 per patient. Because ACI costs between $20,000 and $30,000 per patient, a transition to ACI would require an additional $268,000 to $568,000 for 30 patients per year. This is consistent with work showing the surgical costs for ACI to be twice that of mosaicplasty. (18)

While microfracture is a less costly surgery than either OAT/mosaicplasty or ACI, would access to this alone in the absence of OAT/mosaicplasty offer patients a reasonable surgical alternative? It is unlikely because microfracture is considered inferior to OAT/mosaicplasty and ACI in terms of overall response and duration of sustained response. If OAT/mosaicplasty becomes unavailable, surgeons are most likely to replace it with ACI.

Beyond the prospective RCTs alone, the final report details case series documenting the success and safety of OAT/mosaicplasty when used in appropriately selected patients with symptomatic cartilage defects. We urge you to do what is right for patients and continue coverage for OAT and mosaicplasty as safe and effective surgical procedures.

Yours Truly,

Paul M. Just, PharmD, BCPS
Director, Healthcare Economics
Reference List

Disclosure

Any unmarked topic will be considered a "Yes"

<table>
<thead>
<tr>
<th>Potential Conflict Type</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salary or payments such as consulting fees or honoraria in excess of $10,000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Equity interests such as stocks, stock options or other ownership interests</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Status or position as an officer, board member, trustee, owner</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Loan or intellectual property rights</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Research funding</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Any other relationship, including travel arrangements</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

If yes, list name of organizations that relationship(s) are with and for #6, describe other relationship:

Salary employee of DePuy Mitek, A J&J

Company. Company pays for travel.

<table>
<thead>
<tr>
<th>Potential Conflict Type</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Representation: if representing a person or organization, include the name and funding sources (e.g. member dues, governmental/subsidies, commercial products or services, grants from industry or government)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

7. If yes, Provide Name and Funding Sources:

DePuy Mitek, A J&J

Company.

If you believe that you do not have a conflict but are concerned that it may appear that you do, you may attach additional sheets explaining why you believe that you should not be excluded.

I certify that I have read and understand this Conflict of Interest Form and that the information I have provided is true, complete, and correct as of this date.

[Signature]

10.28.11

Samir V. Bhatiacharya

FOR QUESTIONS: Denise Santoyo, Health Care Authority, 360-923-2742.

Box 32117, Olympia WA 98504-3211.
Osteochondral Allograft/Autograft Transplantation (OATS/Mosaicplasty): Health Technology Review

October 2011

Cartilage Damage & Treatment: Multifactorial Decision Making Process

- Size & shape
- Location
- Classification/Grade
- Depth/subchondral bone involvement
- Containment
- Chronicity
- Prior treatment/response

- Global knee/cartilage health
- Co-morbidities
- Alignment
- Ligament stability
- Meniscal deficiency

- Age
- BMI
- Goals & expectations
- Insurance
- Rehabilitation compliance

©DePuy A Johnson & Johnson company never stop moving
Unique Role of Osteochondral Allograft and Autograft

<table>
<thead>
<tr>
<th>Technique</th>
<th>Role in Cartilage Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debridement & Lavage</td>
<td>Pollative option; targets pain relief without structural repair (low activity, older patients)</td>
</tr>
<tr>
<td>MarrowStimulation</td>
<td>Single-stage, arthroscopic procedures for focal, contained lesions (1-6 cm²) only</td>
</tr>
<tr>
<td>Autograft Osteochondral</td>
<td>Two-stage, high cost, technically challenging option for second-line repair of larger lesions (≥10 cm²)</td>
</tr>
<tr>
<td>Autograft Osteochondral</td>
<td>Single-stage option to provide immediate hyaline cartilage repair with bone graft scaffold for small (1-4 cm²) contained & uncontained lesions</td>
</tr>
<tr>
<td>Allograft Osteochondral</td>
<td>Single-stage option to provide immediate hyaline cartilage repair with bone graft scaffold for large (≥10 cm²) contained & uncontained lesions, including OCD & JVN</td>
</tr>
</tbody>
</table>

- Osteochondral autograft and allograft maintain a unique role in the cartilage repair paradigm
 - Only techniques that support treatment of uncontained lesions and restoration of subchondral bone architecture
 - Only techniques that provide immediate defect filling with mature, hyaline cartilage

Validity and Reliability of 5 Instruments for Measuring Clinically Meaningful Outcomes (Key Question 2)

- HTA concluded that reliability had not been shown for 5 selected clinical measures (CRS, cartilage repair assessment, Lysholm, MCRS, IKDC SKP, and KOOS)
 - Construct validity of the IKDC was investigated by Hambley et al. (2008) in the target population. The authors concluded that the majority of IKDC items were both important and occurred frequently among the majority of patients. (The HTA did not reference this study.)
 - Construct validity of the IKDC was demonstrated by Ingmar (2001) in a study of over 600 patients with various conditions including internal, medial, OA, and cartilage lesions.
 - Construct validity of the KOOS was assessed in comparison to the SF-36, EQ-5D, and Lysholm (Bakker, 2009) in the target population. Moderate correlations were found for all subscales.
 - Construct validity of the Lysholm was confirmed in a study involving 157 patients with cartilage defects (Smith, 2009). After removal of the swelling item via Rasch analysis, a summation of the remaining 7 items was determined to provide a good measure.
- HTA concluded that reliability was inadequately tested and samples were too small to meet quality criteria
 - IKDC: Ingmar et al. (2001) found high levels of internal consistency (coefficient α = .92) and test-retest reliability (assessed over an average of 49.7 days) test-retest correlation coefficient = .90).
 - KOOS: In a study of 46 patients with focal cartilage lesions, Bakker (2008) reported acceptable to excellent test-retest reliability (ICC ranging from .87 to .95), and good internal consistency reliability for all subscales (ranging from .74 to .88).
 - Lysholm: Internal consistency was demonstrated to be .73 in a study involving 167 patients with cartilage defects (Smith, 2009). There was high agreement between patient and physiotherapists (ICC = .90).

Sample Size
- Small sample sizes are insufficient if analysis results are statistically significant or meet predefined criteria for reliability.
Level of Evidence Determination Shows Inconsistencies Between HTA and Other Systematic Reviews

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HTA</td>
<td>IIb</td>
<td>IIb</td>
<td>IIb</td>
<td>IIb</td>
</tr>
<tr>
<td>Bekkers et al</td>
<td>I</td>
<td>IIb</td>
<td>I</td>
<td>IIb</td>
</tr>
<tr>
<td>Magnussen et al</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Ruano-Ravina and Diaz</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>Safran and Seiber</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

OAT Repairs Articular Cartilage Lesions

"Gudas et al performed a level I prospective randomized controlled study to evaluate treatment with all-arthroscopic OAT versus microfracture.... Patients treated with OAT had significantly better results than did the microfracture group at 1, 2, and 3 years postoperatively according to modified HSS evaluation (P = 0.03, P = 0.006, and P = 0.006, respectively)"

- Safran and Seiber (2010)

TABLE 4 (Gudas 2005). Macroscopic Evaluations on Second-Look Arthroscopy at an Average of 12.4 Months for 33 Patients

<table>
<thead>
<tr>
<th>ICRS Repair Grade</th>
<th>OAT No. (%)</th>
<th>MF No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 excellent</td>
<td>7 (50%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>2 good</td>
<td>4 (29%)</td>
<td>6 (30%)</td>
</tr>
<tr>
<td>3 fair</td>
<td>3 (21%)</td>
<td>6 (30%)</td>
</tr>
<tr>
<td>4 poor</td>
<td>5 (25%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>
References

Osteochondral Transplantation
Background

Several techniques exist for repair of focal, full-thickness chondral defects. Osteochondral autograft/allograft transplantation techniques have been developed over the past 10-20 years:

- Various techniques include transplantation of chondral/subchondral bone plugs, either as single or multiple units or in a larger mosaic pattern of smaller implants.
- Implants may be autologous or allogeneic.
- Other techniques include bone marrow stimulation/microfracture, chondrocyte transplantation, and debridement.
- The evidence base for these techniques is rudimentary, leaving unanswered basic questions such as what technique is most efficacious in which clinical settings.
Osteochondral Transplantation
Background

AMDG Perspective
Topic concerns
• Safety = Medium
 • Paucity of long-term follow-up data
• Efficacy = High
 • Poor definition of appropriate indications/case selection
 • Outcome measures not well developed
 • Long-term outcomes not known
• Cost = Low
 • Modest costs to WA State agencies
 • Given uncertainties around case selection, potential for overuse or inappropriate application

Osteochondral Transplantation
Current State Agency Policy

UMP/PEB Coverage
Covered

L&I Coverage
Covered

Medicaid Coverage
• Open procedure covered with prior auth
• Arthroscopic procedure not covered
Osteochondral Transplantation Billing Codes

<table>
<thead>
<tr>
<th>Related Medical Codes</th>
<th>Code Type</th>
<th>Codes</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comorbidity</td>
<td>ICD-9</td>
<td>715-715.9</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>Treatment</td>
<td>CPT</td>
<td>27415</td>
<td>Osteochondral allograft, knee, open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27416</td>
<td>Osteochondral autograft(s), knee, open (eg. mosaicplasty) (includes harvesting of autografts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29866</td>
<td>Arthroscopy, knee, surgical; osteochondral autograft(s) (eg. mosaicplasty) (includes harvesting of the autografts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29867</td>
<td>Arthroscopy, knee, surgical; osteochondral allograft (eg mosaicplasty)</td>
</tr>
</tbody>
</table>

Osteochondral Transplantation State Agency Utilization

| Combined Agency Mosaicplasty Costs and Counts, 2007-2010 |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| Member/ Clnts | 2007 | 2008 | 2009 | 2010 | 4 yr Total |
| PEB | 4 | 5 | 5 | 6 | 28 |
| L&I | 18 | 17 | 19 | 21 | 83 |
| Medicaid | 2 | 2 | 1 | 2 | 7 |
| All Agencies | 24 | 24 | 25 | 29 | 100 |
| Total Amt Paid | 2007 | 2008 | 2009 | 2010 | 4 yr Total |
| PEB | $36,111 | $78,893 | $115,758 | $72,266 | $302,028 |
| L&I | $180,701 | $181,999 | $196,137 | $237,408 | $786,243 |
| Medicaid | $11,558 | $13,392 | $3,886 | $90 | $38,828 |
| All Agencies | $228,370 | $274,284 | $315,781 | $309,764 | $1,128,199 |
| Avg Pd / Mbr | 2007 | 2008 | 2009 | 2010 | 4 Year Avg |
| PEB | $9,028 | $15,779 | $23,152 | $12,044 | $51,027 |
| L&I | $10,039 | $10,706 | $10,323 | $11,305 | $42,477 |
| Medicaid | $5,779 | $6,666 | $3,886 | $45 | $18,172 |
| All Agencies | $8,515 | $11,429 | $12,631 | $10,682 | $41,222 |

PEB - Public Employee Benefits L&I – Labor and Industry
Osteochondral Transplantation
State Agency Utilization

All Agency Mosaicplasty Claim
Counts by Procedure Type,
2007 - 2010

All Agency Mosaicplasty Claim
Payments by Procedure Type, 2007-2010

$119K
$106K

Arthroscopic Allograft
Open Allograft
Arthroscopic Autograft
Open Autograft

Osteochondral Transplantation
State Agency Utilization

All Agency Top 10 Diagnosis Codes, 2007-2010

<table>
<thead>
<tr>
<th>Diagnosis Description</th>
<th>Payment Total</th>
<th>% Total Payments</th>
<th>Claim Count</th>
<th>% Total Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSTEochondritis dissecans</td>
<td>$407,860</td>
<td>36.2%</td>
<td>41</td>
<td>41.0%</td>
</tr>
<tr>
<td>ACQ Deformity NEC</td>
<td>$90,104</td>
<td>8.0%</td>
<td>10</td>
<td>10.0%</td>
</tr>
<tr>
<td>Bone & cartilage NEC</td>
<td>$73,789</td>
<td>6.5%</td>
<td>5</td>
<td>5.0%</td>
</tr>
<tr>
<td>OSTEochondropathy nos</td>
<td>$59,277</td>
<td>5.3%</td>
<td>7</td>
<td>7.0%</td>
</tr>
<tr>
<td>Chondromalacia</td>
<td>$49,253</td>
<td>4.4%</td>
<td>7</td>
<td>7.0%</td>
</tr>
<tr>
<td>Chondromalacia patellae</td>
<td>$43,727</td>
<td>3.9%</td>
<td>7</td>
<td>7.0%</td>
</tr>
<tr>
<td>INT DERANGEMENT KNEE NOS</td>
<td>$37,551</td>
<td>3.3%</td>
<td>5</td>
<td>5.0%</td>
</tr>
<tr>
<td>Joint dis NOS-L/LEG</td>
<td>$34,614</td>
<td>3.1%</td>
<td>4</td>
<td>4.0%</td>
</tr>
<tr>
<td>Derangement meniscus nec</td>
<td>$33,385</td>
<td>3.0%</td>
<td>2</td>
<td>2.0%</td>
</tr>
<tr>
<td>Sprain of knee/leg nos</td>
<td>$31,163</td>
<td>2.8%</td>
<td>3</td>
<td>3.0%</td>
</tr>
</tbody>
</table>
Osteochondral Transplantation:
Other Centers, Agencies and HTAs

CMS – No national coverage decision

Private Payers – Variable coverage policies – see tech assessment report
Osteochondral Transplantation: Risks & Benefits

Risks
Uncertain case selection criteria
No long-term outcomes data

Benefits
Some evidence of symptomatic and functional benefit in cases failing conservative management
Evidence of efficacy and effectiveness of osteochondral transplantation is low quality and shows variable outcomes

Osteochondral Transplantation Summary

State Agencies Summary View
- Evolving technology with weak evidence base
- Long-term safety and efficacy uncertain
- Potential for overuse/misuse given lack of consensus on patient- and technique selection criteria
Osteochondral Transplantation

State Agencies Recommendation

- Cover, with conditions:
 - Only for knee (and possibly talus)
 - Age <50
 - Absence of arthritis diagnosis
 - Failure of conservative management

Questions?

More Information:
http://www.hta.hca.wa.gov/oats.html

Dr. Steve Hammond, Medical Director
Department of Corrections
gshammond@doc1.wa.gov
Tel: 360-555-5555
Scope of Report

Critically summarize research on the efficacy, effectiveness and safety of osteochondral autograft and allograft transplantation (OAT/mosaicplasty) for the treatment of osteochondral defects

The report focuses on the highest quality evidence available based on systematic review of the literature
Background

• Articular hyaline cartilage
 • Hard, white tissues composed of chondrocytes within an extracellular matrix of collagens, proteoglycans and noncollagenous proteins without intercellular connections
 • Facilitates smooth articulation of bearing surface of synovial joints; resistant to compressive forces
 • Avascular and without nerve supply
• Osteochondral unit
 • Articular surface and underlying cartilage, calcified cartilage, subchondral bone plate and subchondral trabecular bone
 • Vasculature and nerves from subchondral region extend into the calcified cartilage layer

Background

• Osteochondral defects
 • Knee arthroscopy series: Chondral lesions/articular cartilage pathology found in >60% of evaluations
 • Causes:
 • Trauma
 • Repetitive microtrauma
 • Osteochondritis dissecans
 • Chondromalacia patellae
 • Natural history, unknown; progression to arthritis suggested in several studies
Background

Assessment of Osteochondral defects

- Physical exam

- Diagnostic assessment
 - Plain radiographs: Rule out global OA; check alignment
 - MRI: biological information; size, location, thickness, depth, involvement of bone, meniscus and ligaments; accuracy versus arthroscopy (knee)
 - Diagnostic arthroscopy: structural aspects of the cartilage surface primarily; cannot evaluate bone
 - Combination of MRI and arthroscopy may be used

Defect Classification - Arthroscopy

<table>
<thead>
<tr>
<th>Ostenbridge Classification</th>
<th>Grading system for joint cartilage breakdown:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0 - normal</td>
<td>Grade I - cartilage with softening and swelling</td>
</tr>
<tr>
<td>Grade I - partial thickness defect with fissures on the surface that do not reach subchondral bone or exceed 1.5 cm in diameter</td>
<td></td>
</tr>
<tr>
<td>Grade III - fissuring to level of subchondral bone in area with a diameter more >1.5 cm</td>
<td></td>
</tr>
<tr>
<td>Grade IV - exposed subchondral bone</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International Cartilage Repair Society (ICRS) Classification</th>
<th>Grading system for joint cartilage breakdown:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0 - normal</td>
<td>Grade 1 - nearly normal;</td>
</tr>
<tr>
<td>Grade 1 - nearly normal;</td>
<td>o A. Superficial lesions with soft indentation and/or</td>
</tr>
<tr>
<td>Grade 2 - abnormal: lesions extending down to <50% of cartilage depth</td>
<td></td>
</tr>
<tr>
<td>Grade 3 - severely abnormal:</td>
<td>o B. Superficial fissures and cracks</td>
</tr>
<tr>
<td>o A. Cartilage defects extending down >50% of cartilage depth</td>
<td></td>
</tr>
<tr>
<td>o B. As well as down to calcified layer</td>
<td></td>
</tr>
<tr>
<td>o C. Down to but not through the subchondral bone</td>
<td></td>
</tr>
<tr>
<td>o D. Down to but not through the subchondral bone with blisters included</td>
<td></td>
</tr>
<tr>
<td>Grade 4 - severely abnormal: through the subchondral bone</td>
<td></td>
</tr>
</tbody>
</table>
Osteochondral autograft and allograft transplantation

- OAT, OCA mosaicplasty
- Focus: press-fit dowel, cylindrical or geometric plugs of bone and intact articular cartilage
- Autograft/autologous graft: non-weight bearing portion of the joint (knee)
- Allograft: fresh or cryopreserved tissue, usually cadaver – (FDA regulation as Human Cell or Tissue Product)
- Arthroscopic or open

Comparators used in included studies

- Microfracture
 - Following debridement, awl is used to create holes 3-4 mm apart
 - Blood/bone marrow create clot that release cartilage-building cells; repair tissue is mixture of hyaline and fibrocartilage
- Autologous chondrocyte implantation (ACI)
 - 1st procedure: chondrocytes removed arthroscopically from non-weight-bearing area
 - Cells grown in vitro for 6 weeks – 10-12 million cells
 - 2nd procedure: periosteal flap applied, injection of the dedifferentiated chondrocytes into defect
Key Questions

1. What is the case definition of a patient suitable for OATS/mosaicplasty surgery, and are there measures of reliability and validity for case identification?

2. What are the expected treatment outcomes of OATS/mosaicplasty, and are there validated instruments and scores to measure clinically meaningful improvement?

3. What is the evidence of efficacy and effectiveness of OATS/mosaicplasty (open or arthroscopic)?

4. What is the evidence of the safety of OATS surgery?

5. What is the evidence that OATS surgery has differential efficacy or safety issues in sub-populations?

6. What is the evidence of cost implications and cost-effectiveness for OATS/mosaicplasty?

Scope: Inclusion criteria

- Population
 ➢ Persons with cartilage damage

- Intervention
 ➢ Osteochondral autograft transplantation (OAT); Osteochondral allograft transplantation (OCA) using dowels, cylinders, plugs; mosaicplasty

- Comparator
 ➢ Autologous chondrocyte implantation (ACI); Microfracture surgery

- Study design
 ➢ Randomized controlled trials (RCTs), comparative studies with concurrent controls, full economic studies sought

- Publication
 ➢ Full-length studies published in English in peer-reviewed journals, FDA reports (no meeting abstracts, proceedings)
Primary Outcomes
(based on available literature)

Efficacy and Effectiveness
- Patient-reported and clinician-based outcomes measures

Safety
- Donor site morbidity (autograft)
- Complications, revision, additional procedures, mortality

Economic
- ICER or similar

Literature search and overall quality
- Electronic databases, HTA sites were searched using a systematic approach; bibliographic review was done
- Literature search: 332 unique potentially relevant citations, >160 were case series;
- Primary evidence (some studies used for multiple questions)
 - KQ 1: 3 reliability studies
 - KQ 2: 5 psychometric analyses of outcomes measures
 - KQ 3-5: (OAT/mosaicplasty with autograft) -5 RCTs (LoE IIb), 7 cohort studies (LoE III), 15 case series (> 30 patients, safety only)
 - KQ 3-5: (allograft) – 2 cohort studies (LoE III), 6 case series (>18 patients using press fit plugs)
 - KQ 6: No full economic studies were found
Key Question 1: Case definition, measures of validity and reliability

- No specific case definitions were found
- Treatment algorithms (knee):
 - lesion size and classification (thickness of defect) are used for treatment decision making after ligament and meniscus stability and patient activity determined
- Inclusion/exclusion criteria for RCTs (OAT/MOS):
 - Symptomatic, isolated, full-thickness (ICRS or Outerbridge grades 3 or 4) lesions
- Inclusion/exclusion criteria OCA (dowel) – case series:
 - Symptomatic lesions

<table>
<thead>
<tr>
<th>Treatment algorithm for focal chondral lesions (adapted from Cole, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femoral Condyle</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>First line treatment</td>
</tr>
<tr>
<td>Second line treatment</td>
</tr>
<tr>
<td>Patellofemoral Joint</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>First line treatment</td>
</tr>
<tr>
<td>Second line treatment</td>
</tr>
</tbody>
</table>
Key Question 1: Case definition, measures of validity and reliability

Overall SoE: very low

- No validation studies for primary lesion classification schemes (ICRS, Outerbridge); no studies of clinical decision making specific to OAT/OCA
- Overestimation of lesion size by arthroscopy compared with open evaluation was reported in one clinical study.
- Only one of two clinical studies evaluating the reliability of the ICRS grading system evaluated agreement beyond chance and the agreement was fair to slight.
- One study reported moderate agreement between surgeons in discriminating between Outerbridge grades 2 and 3.

Key Question 2: Treatment outcomes, validated measures and clinically meaningful Improvement

Overall SoE: Very low

- Psychometric analyses: persons with osteochondral defects:
 - International Cartilage Repair Society (ICRS) cartilage repair assessment
 - Lysholm Knee Scoring Scale (LKSS)
 - Modified Cincinnati Knee Rating System (MCRS)
 - International Knee Documentation Committee subjective knee form (IKDC SKF)
 - Knee Injury Osteoarthritis Outcome Score (KOOS)
- None adequately tested for validity; reliability inadequate
- Responsiveness evaluated in one study (IKDC, MCRS)
- MCID: pre- to post-op improvement IKDC and MCRS.
Key Question 3: Efficacy OAT (Autograft) versus Microfracture
Patient Reported Outcomes (LoE IIb RCTs)

ICRS (IKDC Subjective Knee Form)

<table>
<thead>
<tr>
<th></th>
<th>Gudas (2005) - Athletes</th>
<th>MF (n=29)</th>
<th>P-value</th>
<th>Gudas (2009) - Children</th>
<th>OAT (n=25)</th>
<th>MF (n=22)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre-op</td>
<td>50.7 ± 4.05</td>
<td>50.3 ± 4.07</td>
<td>NS</td>
<td></td>
<td>51</td>
<td>51</td>
<td>NS</td>
</tr>
<tr>
<td>Mean Change Score (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 mos</td>
<td>35.2 (69.2)</td>
<td>24.8 (48.8)</td>
<td>< 0.03</td>
<td></td>
<td>41 (80.4)</td>
<td>35 (68.6)</td>
<td>NR</td>
</tr>
<tr>
<td>24 mos</td>
<td>37.3 (73.6)</td>
<td>25.2 (47.6)</td>
<td>< 0.001</td>
<td></td>
<td>43 (84.3)</td>
<td>24 (47.1)</td>
<td>NR</td>
</tr>
<tr>
<td>36 mos</td>
<td>38.3 (75.5)</td>
<td>24.2 (47.6)</td>
<td>< 0.001</td>
<td></td>
<td>33 (64.7)</td>
<td>13 (25.5)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>48 mos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32 (62.7)</td>
<td>12 (23.5)</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

Population / lesion characteristics
- Size: 1 to 4 cm²
- Age: 24.3 years
- Number: Single
- % Male: 61.4
- Average number plugs: 4.3

Population / lesion characteristics
- Size: 2 to 4 cm²
- Age: 14.3 years
- Number: Single
- % Male: NR
- Average number plugs: 4.7

IKDC MCID = 18.7 point increase in one year post-surgery from pre-surgery levels

Key Question 3: Efficacy OAT (Autograft) versus Microfracture
Clinician Based Outcomes (LoE IIb RCTs)

Hospital for Special Surgery Score

<table>
<thead>
<tr>
<th></th>
<th>Gudas (2005) - Athletes</th>
<th>MF (n=29)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre-op</td>
<td>77.9 ± 6.23</td>
<td>77.2 ± 8.12</td>
<td>NS</td>
</tr>
<tr>
<td>Mean Change Score (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 mos</td>
<td>10.1 (13.0)</td>
<td>5.8 (7.5)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>24 mos</td>
<td>13.1 (16.8)</td>
<td>4.8 (7.5)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>36 mos</td>
<td>13.1 (16.9)</td>
<td>3.4 (4.4)</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
Key Question 1: Efficacy OAT (Autograft) versus Microfracture

ICRS (IKDC Subjective Form)

<table>
<thead>
<tr>
<th></th>
<th>pre-op</th>
<th>0 mos</th>
<th>2 mos</th>
<th>4 mos</th>
<th>12 mos</th>
<th>24 mos</th>
<th>36 mos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>51</td>
<td>81</td>
<td>84</td>
<td>64</td>
<td>56</td>
<td>51</td>
<td>51</td>
</tr>
</tbody>
</table>

HSS Score

<table>
<thead>
<tr>
<th></th>
<th>pre-op</th>
<th>0 mos</th>
<th>2 mos</th>
<th>4 mos</th>
<th>12 mos</th>
<th>24 mos</th>
<th>36 mos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>51</td>
<td>81</td>
<td>84</td>
<td>64</td>
<td>56</td>
<td>51</td>
<td>51</td>
</tr>
</tbody>
</table>

IKDC MCID = 18.7 point increase at one year post-surgery from pre-surgery levels

Excellent: 85-100
Good: 70-84
Fair: 60-69
Poor: <60

Key Question 3: Efficacy OAT (Autograft) versus ACI

Patient Reported Outcomes (LoE IIb RCTs)

Horas (2003) (45% had previous surgery)

<table>
<thead>
<tr>
<th></th>
<th>OAT (n = 20)</th>
<th>ACI (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysholm Knee Scoring Scale (LKSS) Mean ± SD</td>
<td>28.45 ± 24.9</td>
<td>24.9 ± 17.7</td>
</tr>
<tr>
<td>P-value</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Change Score (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-op</td>
<td>NS</td>
</tr>
<tr>
<td>3 mos</td>
<td>-0.5 (-1.8)</td>
</tr>
<tr>
<td>6 mos</td>
<td>25 (87.9)</td>
</tr>
<tr>
<td>12 mos</td>
<td>39.8 (139.9)</td>
</tr>
<tr>
<td>24 mos</td>
<td>44.25 (155.5)</td>
</tr>
</tbody>
</table>

Tegner Activity Scale (TAS) Mean ± SD

<table>
<thead>
<tr>
<th></th>
<th>OAT (n = 20)</th>
<th>ACI (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>1.6 ± 1.6</td>
<td>1.6 ± 1.6</td>
</tr>
<tr>
<td>P-value</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Change Score (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-op</td>
<td>NS</td>
</tr>
<tr>
<td>3 mos</td>
<td>-0.05 (-3.1)</td>
</tr>
<tr>
<td>6 mos</td>
<td>1.95 (121.9)</td>
</tr>
<tr>
<td>12 mos</td>
<td>3.4 (212.5)</td>
</tr>
<tr>
<td>24 mos</td>
<td>3.6 (225.0)</td>
</tr>
</tbody>
</table>

No MCID found

Age 33.4 years old, 57.5% male
Single lesions; size 3.75 cm² (3.2 - 5.6); plugs NR
Key Question 3: Efficacy OAT (Autograft) versus ACI

Patient Reported Outcomes (LoE IIb RCTs)

Dozin (2005) (only 23/44 randomized were treated)
Based on modified Lysholm - 12 months
Mosaic (n = 22) ACI (n = 22)

<table>
<thead>
<tr>
<th>No. of cases (%)</th>
<th>P-value</th>
<th>Age: 28.7 years</th>
<th>% male: 61.4%</th>
<th>Lesion: single</th>
<th>Size: 1.93 ± 0.03 cm²</th>
<th>Number plugs: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete success</td>
<td>15 (68.2)</td>
<td>10 (45.5)</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial success</td>
<td>2 (9.1)</td>
<td>5 (22.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>0 (0)</td>
<td>1 (4.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss to follow-up</td>
<td>5 (22.7)</td>
<td>6 (27.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bentley (2003) (94% had previous surgery)
Based on Modified Cincinnati Rating Scale - 12 months
Mosaic (n = 42) ACI (n = 58)

<table>
<thead>
<tr>
<th>No. of cases (%)</th>
<th>P-value</th>
<th>Age: 31.8 years</th>
<th>% male: 57%</th>
<th>Lesion: NR</th>
<th>Size: 4.88 cm²</th>
<th>Number plugs: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>9 (21.4)</td>
<td>23 (39.7)</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>20 (47.6)</td>
<td>28 (48.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>6 (14.3)</td>
<td>7 (12.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>7 (16.7)</td>
<td>0 (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Question 3: Efficacy OAT (Autograft) versus ACI

Clinician Based Outcomes (LoE IIb RCTs)

Horas (2003)

<table>
<thead>
<tr>
<th>Meyers Score</th>
<th>OAT (n = 20)</th>
<th>ACI (n = 20)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>P-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-op</td>
<td>7.85</td>
<td>7.2</td>
<td>NS</td>
</tr>
<tr>
<td>Mean Change Score (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 mos</td>
<td>0 (0)</td>
<td>1.3 (18.1)</td>
<td>NS</td>
</tr>
<tr>
<td>6 mos</td>
<td>5.9 (75.2)</td>
<td>4.85 (67.4)</td>
<td>NS</td>
</tr>
<tr>
<td>12 mos</td>
<td>8.05 (102.5)</td>
<td>6.95 (96.5)</td>
<td>NS</td>
</tr>
<tr>
<td>24 mos</td>
<td>8.9 (113.4)</td>
<td>8.7 (120.9)</td>
<td>NS</td>
</tr>
</tbody>
</table>
Key Question 3: Efficacy OAT vs. ACI - Longevity of treatment

Horas (2003) N = 40; LOE IIb

<table>
<thead>
<tr>
<th>Outcome Score</th>
<th>OAT</th>
<th>ACI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>Good</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>Fair</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>Poor</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>No MCID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Range: 0-10
10 = competitive sport
0 = sick leave/disability

Key Question 1: Efficacy OAT (Autograft) - Other Outcomes

Return to pre-injury activity

<table>
<thead>
<tr>
<th>Return</th>
<th>OAT</th>
<th>BMT</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 months</td>
<td>93</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>11.7 months</td>
<td>84</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Gutas (2009) - Athletes
Gutas (2009) - Children

Other outcomes
No direct comparisons
- Open versus arthroscopic
- Allograft versus autograft
- Number of grafts/plugs
- Recovery time

Children at 4.2 years: OAT 81% who achieved pre-injury level practicing at same level vs. 43% of NF
Summary Key Question 3: OAT (Autograft)

- **OAT versus microfracture – Overall SoE - Low**
 - Two small (LoE IIb) RCTs; one in young athletes, one in children
 - OAT associated with better functional outcomes; overall appeared to be sustained to last follow-up; higher percentage of patients returned to pre-injury sporting activity versus microfracture recipients

- **OAT/mosaicplasty versus ACI – Overall SoE – Low**
 - Three LoE IIb RCTs; significant heterogeneity across studies
 - Two smallest RCTs: Possibly better function with OAT/mosaicplasty based on PROs; statistical significance reached only in one study (LKSS)
 - Largest RCT: 94% had prior intervention; significantly smaller percent of mosaicplasty versus ACI patients had excellent/good outcomes

Key Question 3: Effectiveness of Osteochondral allograft (OCA) using OAT-like procedure (dowel, cylindrical or geometric shaped plugs)

- No RCTs comparing OCA to other treatment options were found

- Two poor quality, small retrospective cohort studies (LoE III, total N = 70, page 117)
 - One study: Tegner scores significantly improved for OCA compared with loose body removal and internal fixation
 - One study: SF-12 MCS significantly improved in those who had OCA with meniscal allograft compared with those receiving ACI with MA
Key Question 3: Effectiveness of Osteochondral allograft (OA) using OAT-like procedure (press fit dowel, cylindrical or geometric shaped plugs)

- Six case series, LoE IV
- Three primarily used dowel, cylindrical or geometric plugs without hardware, three used other types as well (Table 26, page 121)
 - Improved function and quality of life following OCA were reported compared with pre-operative status
 - 91% graft survival rate at 5 years and 76% at both 10 and 15 years reported in one study (N = 65)

Summary Key Question 3: OCA (Allograft)

- **Efficacy - No RCTs – no evidence**
- **Effectiveness – Overall SoE – Very Low**
 - Two small poor quality retrospective comparative studies (LoE) reported no differences in most functional measures; confounding by indication
 - Six case series suggest improved outcomes following OCA but in the absence of a comparison group, comparative effectiveness cannot be assessed.
Key Question 4: Safety – OAT Autograft

Donor site morbidity (DSM)
- Rates: 10% in 2 RCTs
- 6-17% across 3 case series of the knee, 2-9% in 2 studies of ankle, 3% in one study of both sites
- Additional 5 case series specifically examined DSM
 - Young male competitive athletes: no longer-term morbidity in 2 studies (N = 23 total, follow-up 12 - 66 months)
 - Two series (N = 123): LKSS scores suggest that 10.5% (n = 13) of patients experienced poor function (follow-up 25-124 months)
 - Largest series (N=112): number of grafts and size of plugs weren’t related to LKSS or WOMAC scores

Complication Rates: RCTs

<table>
<thead>
<tr>
<th>Condition</th>
<th>Studies</th>
<th>OAT</th>
<th>MF</th>
<th>ACI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reoperation/revision</td>
<td>3</td>
<td>1% (1/53)</td>
<td>33% (17/51)</td>
<td>5% (1/20)</td>
</tr>
<tr>
<td>Evaluation arthroscopy</td>
<td>2</td>
<td>24.5% (13/53)</td>
<td>47% (24/51)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>20% (4/20)</td>
<td>—</td>
<td>25% (5/20)</td>
</tr>
<tr>
<td>Arthroscopic procedures</td>
<td>2</td>
<td>8% (4/48)</td>
<td>3% (1/29)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>10% (2/20)</td>
</tr>
<tr>
<td>Donor site morbidity</td>
<td>2</td>
<td>10% (5/48)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Joint stiffness</td>
<td>2</td>
<td>13% (6/48)</td>
<td>3% (1/29)</td>
<td>15% (3/20)</td>
</tr>
<tr>
<td>Infection</td>
<td>2</td>
<td>5.5% (4/73)</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hemarthrosis</td>
<td>1</td>
<td>10% (2/10)</td>
<td>—</td>
<td>0%</td>
</tr>
<tr>
<td>Joint swell/effusion</td>
<td>2</td>
<td>6.6% (3/45)</td>
<td>45% (10/22)</td>
<td>15% (3/20)</td>
</tr>
<tr>
<td>Subchondral cyst</td>
<td>1</td>
<td>8% (2/25)</td>
<td>33% (7/21)</td>
<td>—</td>
</tr>
</tbody>
</table>
Key Question 4: Safety – OAT Autograft

Complication Rates: Non-Randomized studies

<table>
<thead>
<tr>
<th></th>
<th>Studies</th>
<th>N</th>
<th>OAT</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reoperation/revision</td>
<td>10</td>
<td>432</td>
<td>21.3%</td>
<td>0% - 28%</td>
</tr>
<tr>
<td>Diagnostic arthroscopy</td>
<td>7</td>
<td>1328</td>
<td>11.4%</td>
<td>7% - 38%</td>
</tr>
<tr>
<td>Arthroscopic debridement</td>
<td>2</td>
<td>27</td>
<td>14.8%</td>
<td>13% - 16.6%</td>
</tr>
<tr>
<td>Donor site morbidity</td>
<td>6</td>
<td>1360</td>
<td>8.8%</td>
<td>2% - 17%</td>
</tr>
<tr>
<td>Infection</td>
<td>5</td>
<td>1366</td>
<td>0.9%</td>
<td>0.4% - 3%</td>
</tr>
<tr>
<td>Hemarthrosis</td>
<td>5</td>
<td>1275</td>
<td>5.8%</td>
<td>2% - 44.8%</td>
</tr>
<tr>
<td>Joint swell/effusion</td>
<td>2</td>
<td>70</td>
<td>64.3%</td>
<td>20% - 76%</td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>5</td>
<td>1235</td>
<td>0.6%</td>
<td>0.4% - 3%</td>
</tr>
<tr>
<td>Osteoarthitis progressions</td>
<td>3</td>
<td>98</td>
<td>29.6%</td>
<td>0% - 76%</td>
</tr>
<tr>
<td>Edema/sclerosis -MRI</td>
<td>1</td>
<td>27</td>
<td>71.0%</td>
<td></td>
</tr>
<tr>
<td>Graft osteonecrosis</td>
<td>1</td>
<td>55</td>
<td>11.0%</td>
<td></td>
</tr>
<tr>
<td>No deaths reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Question 4: Safety – Allograft (OCA)

ALLOGRAFT complication rates: Non-Randomized Studies

<table>
<thead>
<tr>
<th></th>
<th>Studies</th>
<th>N</th>
<th>OCA % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reoperation/revision</td>
<td>7</td>
<td>191</td>
<td>12.5% (24)</td>
</tr>
<tr>
<td>Diagnostic arthroscopy</td>
<td>1</td>
<td>23</td>
<td>4% (1)</td>
</tr>
<tr>
<td>Manipulation under anesthesia</td>
<td>1</td>
<td>19</td>
<td>5% (1)</td>
</tr>
<tr>
<td>Infection</td>
<td>1</td>
<td>23</td>
<td>4% (1)</td>
</tr>
<tr>
<td>Graft failure</td>
<td>2</td>
<td>47</td>
<td>21% (10)</td>
</tr>
<tr>
<td>Subchondral cysts</td>
<td>1</td>
<td>29</td>
<td>17% (5)</td>
</tr>
</tbody>
</table>

No reports of disease transmission and no reported deaths
Key Question 4: Safety
Summary and Overall Strength of Evidence (SoE)

KQ #4: Safety OAT (autograft) – SoE Low
• No deaths reported in studies reviewed
• Infection, DVT, hemarthrosis rates <7%
• Donor site morbidity 10% (RCTs), 3%-17% (case series)
• Revision rates: 1% for OAT vs. 33% for microfracture, 5% for ACI in RCTs; 21.3% (non-randomized)

KQ #4: Safety OCA (allograft) – SoE Low
• Non-randomized studies only (primarily case series)
• No deaths or disease transmission reported
• Reoperation rate 12.5% (24/191), graft failure 10/47

Key Question 5:
Differential outcomes for subpopulations

Comparisons within RCTs (OAT with autograft)
• **Age:** athletes <30 years old had better outcomes for both OAT and microfracture (MF) (no data)
• **Defect size:** 1 study-comparable functional outcomes for OAT and MF; MF patients with defects > 2cm² had worse functional outcomes (no data)
• **Defect location** – medial femoral condyle: MF patients had worse outcomes vs. other locations but no association between location and outcomes for OAT patients; greater proportion of ACI patients had excellent/good result versus mosaicplasty recipients
Key Question 5: Subpopulations
Summary and Overall Strength of Evidence (SoE)

KQ #3: Differential efficacy, effectiveness or safety in special populations – SoE - Low

- RCTs - Limited data are provided to truly evaluate differential effectiveness or safety
- Indirect comparisons based on case series cannot provide evidence

Key Question 6: Cost-effectiveness
Summary and Overall Strength of Evidence (SoE)

KQ #6: Cost implications and cost-effectiveness: SoE - no evidence

- No full economic studies were identified
Observations and remaining questions

- There are substantial differences across studies with respect to patient populations, lesion sizes, comparators and outcomes measures making it difficult to draw overall conclusions.

- Indications for OAT versus mosiacplasty, autograft versus allograft appear to be based on case series primarily.

- The majority of studies are in populations less than 50 years old.

- The overall quality of the literature is poor, particularly with respect to evaluation of allograft.

Questions?
HTCC Coverage and Reimbursement Determination
Analytic Tool

HTA’s goal is to achieve better health care outcomes for enrollees and beneficiaries of state programs by paying for proven health technologies that work.

To find best outcomes and value for the state and the patient, the HTA program focuses on these questions:
1. Is it safe?
2. Is it effective?
3. Does it provide value (improve health outcome)?

The principles HTCC uses to review evidence and make determinations are:

Principle One: Determinations are Evidence based

HTCC requires scientific evidence that a health technology is safe, effective and cost-effective\(^1\) as expressed by the following standards.\(^2\)

- Persons will experience better health outcomes than if the health technology was not covered and that the benefits outweigh the harms.
- The HTCC emphasizes evidence that directly links the technology with health outcomes. Indirect evidence may be sufficient if it supports the principal links in the analytic framework.
- Although the HTCC acknowledges that subjective judgments do enter into the evaluation of evidence and the weighing of benefits and harms, its recommendations are not based largely on opinion.
- The HTCC is explicit about the scientific evidence relied upon for its determinations.

Principle Two: Determinations result in health benefit

The outcomes critical to HTCC in making coverage and reimbursement determinations are health benefits and harms.\(^3\)

- In considering potential benefits, the HTCC focuses on absolute reductions in the risk of outcomes that people can feel or care about.
- In considering potential harms, the HTCC examines harms of all types, including physical, psychological, and non-medical harms that may occur sooner or later as a result of the use of the technology.
- Where possible, the HTCC considers the feasibility of future widespread implementation of the technology in making recommendations.
- The HTCC generally takes a population perspective in weighing the magnitude of benefits against the magnitude of harms. In some situations, it may make a determination for a technology with a large potential benefit for a small proportion of the population.
- In assessing net benefits, the HTCC subjectively estimates the indicated population’s value for each benefit and harm. When the HTCC judges that the balance of benefits and harms is likely to vary substantially within the population, coverage or reimbursement determinations may be more selective based on the variation.
- The HTCC considers the economic costs of the health technology in making determinations, but costs are the lowest priority.

\(^1\) Based on Legislative mandate: See RCW 70.14.100(2).

\(^2\) The principles and standards are based on USPSTF Principles at: http://www.ahrq.gov/clinic/ajpmsuppl/harris3.htm

\(^3\) The principles and standards are based on USPSTF Principles at: http://www.ahrq.gov/clinic/ajpmsuppl/harris3.htm
Arrive at the coverage decision by identifying for Safety, Effectiveness, and Cost whether (1) evidence is available, (2) the confidence in the evidence, and (3) applicability to decision.

1. **Availability of Evidence:**
 Committee members identify the factors, often referred to as outcomes of interest, that are at issue around safety, effectiveness, and cost. Those deemed key factors are ones that impact the question of whether the particular technology improves health outcomes. Committee members then identify whether and what evidence is available related to each of the key factors.

2. **Sufficiency of the Evidence:**
 Committee members discuss and assess the evidence available and its relevance to the key factors by discussion of the type, quality, and relevance of the evidence using characteristics such as:
 - Type of evidence as reported in the technology assessment or other evidence presented to committee (randomized trials, observational studies, case series, expert opinion);
 - the amount of evidence (sparse to many number of evidence or events or individuals studied);
 - consistency of evidence (results vary or largely similar);
 - recency (timeliness of information);
 - directness of evidence (link between technology and outcome);
 - relevance of evidence (applicability to agency program and clients);
 - bias (likelihood of conflict of interest or lack of safeguards).

 Sufficiency or insufficiency of the evidence is a judgment of each clinical committee member and correlates closely to the GRADE confidence decision.

<table>
<thead>
<tr>
<th>Not Confident</th>
<th>Confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appreciable uncertainty exists. Further information is needed or further information is likely to change confidence.</td>
<td>Very certain of evidentiary support. Further information is unlikely to change confidence</td>
</tr>
</tbody>
</table>

3. **Factors for Consideration - Importance**
 At the end of discussion at vote is taken on whether sufficient evidence exists regarding the technology’s safety, effectiveness, and cost. The committee must weigh the degree of importance that each particular key factor and the evidence that supports it has to the policy and coverage decision. Valuing the level of importance is factor or outcome specific but most often include, for areas of safety, effectiveness, and cost:
 - risk of event occurring;
 - the degree of harm associated with risk;
 - the number of risks; the burden of the condition;
 - burden untreated or treated with alternatives;
 - the importance of the outcome (e.g. treatment prevents death vs. relief of symptom);
 - the degree of effect (e.g. relief of all, none, or some symptom, duration, etc.);
 - value variation based on patient preference.

4 Based on GRADE recommendation: http://www.gradeworkinggroup.org/FAQ/index.htm
Medicare Coverage and Guidelines

<table>
<thead>
<tr>
<th>Organization</th>
<th>Date</th>
<th>Outcome</th>
<th>Evidence Base</th>
<th>Grade / Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS National Policy Decisions – WA HTA</td>
<td></td>
<td>▪ The Centers for Medicare and Medicaid Services have no published National coverage determinations (NCD) for osteochondral autograft/allograft transplantation (OATS) or mosaicplasty.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Centers for Medicare and Medicaid Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page: 61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Academy of Orthopaedic Surgeons (AAOS)</td>
<td></td>
<td>AAOS was unable to recommend for or against the use of osteoarticular allograft or autograft for the treatment of glenohumeral arthritis due to lack of studies of sufficient quality.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidelines – WA HTA</td>
<td>2008</td>
<td>Shoulder (acute & chronic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Loss Data Institute</td>
<td></td>
<td>A summary provided by the NGC indicates that OATS was considered as a treatment for workers with occupational shoulder disorders and not recommended. This guideline is in the process of being updated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidelines – WA HTA</td>
<td>2007</td>
<td>Knee & leg (acute & chronic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Loss Data Institute</td>
<td></td>
<td>A summary provided by the NGC indicates that OATS and mosaicplasty were considered as treatments for workers with knee and leg ailments for relieving pain and improving function. OATS was recommended; mosaicplasty was not recommended. This guideline is in the process of being updated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidelines – WA HTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| National Institute for Health and Clinical Excellence (NICE) | | The National Institute for Health and Clinical Excellence (NICE) provides guidance on health technologies and clinical practice for the National Health Service in England and Wales. A variety of keyword searches were performed, including “osteochondral autograft transfer,” “mosaicplasty,” “OATS,” “chondral OR osteochondral,” “allograft” and “Osteochondritis Dissecans.” One guideline was found, Mosaicplasty for knee cartilage defects 2006, and is summarized as follows:
 - Current evidence suggests that there are no major safety concerns regarding the use of mosaicplasty for | | |
<table>
<thead>
<tr>
<th>Organization</th>
<th>Date</th>
<th>Outcome</th>
<th>Evidence Base</th>
<th>Grade / Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>the treatment of knee cartilage defects; however, procedure-related and long-term complications are inadequately reported in studies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Some evidence exists for short-term efficacy, but data is inadequate regarding long-term efficacy.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HEALTH TECHNOLOGY EVIDENCE IDENTIFICATION

Discussion Document: What are the key factors and health outcomes and what evidence is there?

<table>
<thead>
<tr>
<th>Safety Outcomes</th>
<th>Safety Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td></td>
</tr>
<tr>
<td>Morbidity</td>
<td></td>
</tr>
<tr>
<td>• Rates of Donor Site Morbidity</td>
<td></td>
</tr>
<tr>
<td>Surgical Complications</td>
<td></td>
</tr>
<tr>
<td>Re-operations</td>
<td></td>
</tr>
<tr>
<td>MRI Findings</td>
<td></td>
</tr>
<tr>
<td>Progression of Osteoarthritis</td>
<td></td>
</tr>
<tr>
<td>Rate of Graft Failure</td>
<td></td>
</tr>
<tr>
<td>Disease Transmission from the Donor Tissue</td>
<td></td>
</tr>
<tr>
<td>Other Adverse Events</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficacy – Effectiveness Outcomes</th>
<th>Efficacy / Effectiveness Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Outcomes</td>
<td></td>
</tr>
<tr>
<td>Longevity of Treatment Effect</td>
<td></td>
</tr>
<tr>
<td>Return to Work or Pre-injury Activity Levels</td>
<td></td>
</tr>
<tr>
<td>Differential Results between Open and Arthroscopic Procedures or other factors</td>
<td></td>
</tr>
<tr>
<td>Quality of Life</td>
<td></td>
</tr>
<tr>
<td>Patient Satisfaction</td>
<td></td>
</tr>
<tr>
<td>Other Patient Outcomes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Population / Considerations Outcomes</th>
<th>Special Population Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect Type</td>
<td></td>
</tr>
<tr>
<td>Defect Location</td>
<td>Cost Evidence</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Patients with no Prior Surgical Intervention</td>
<td></td>
</tr>
<tr>
<td>Patient Selection</td>
<td></td>
</tr>
<tr>
<td>Payer or Beneficiary Type</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Cost Evidence</td>
</tr>
<tr>
<td>Total Health Care Costs / Societal Costs</td>
<td></td>
</tr>
<tr>
<td>Direct and indirect</td>
<td></td>
</tr>
<tr>
<td>- Short terms</td>
<td></td>
</tr>
<tr>
<td>- Over expected duration of use</td>
<td></td>
</tr>
<tr>
<td>Cost Effectiveness</td>
<td></td>
</tr>
</tbody>
</table>
First voting question
The HTCC has reviewed and considered the technology assessment and information provided by the administrator, reports and/or testimony from an advisory group, and submissions or comments from the public. The committee has given greatest weight to the evidence it determined, based on objective factors, to be the most valid and reliable.

Is there sufficient evidence under some or all situations that the technology is:

<table>
<thead>
<tr>
<th></th>
<th>Unproven (no)</th>
<th>Equivalent (yes)</th>
<th>Less (yes)</th>
<th>More (yes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost-effective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion
Based on the evidence vote, the committee may be ready to take a vote on coverage or further discussion may be warranted to understand the differences of opinions or to discuss the implications of the vote on a final coverage decision.

- Evidence is insufficient to make a conclusion about whether the health technology is safe, efficacious, and cost-effective;
- Evidence is sufficient to conclude that the health technology is unsafe, ineffectual, or not cost-effective
- Evidence is sufficient to conclude that the health technology is safe, efficacious, and cost-effective for all indicated conditions;
- Evidence is sufficient to conclude that the health technology is safe, efficacious, and cost-effective for some conditions or in some situations

A straw vote may be taken to determine whether, and in what area, further discussion is necessary.

Second vote
Based on the evidence about the technologies’ safety, efficacy, and cost-effectiveness, it is

_____ Not Covered. _____ Covered Unconditionally. _____ Covered Under Certain Conditions.

Discussion Item
Is the determination consistent with identified Medicare decisions and expert guidelines, and if not, what evidence is relied upon.
Clinical Committee Findings and Decisions

Next Step: Cover or No Cover
If not covered, or covered unconditionally, the Chair will instruct staff to write a proposed findings and decision document for review and final adoption at the following meeting.

Next Step: Cover with Conditions
If covered with conditions, the Committee will continue discussion.

1) Does the committee have enough information to identify conditions or criteria?
 • Refer to evidence identification document and discussion.
 • Chair will facilitate discussion, and if enough members agree, conditions and/or criteria will be identified and listed.
 • Chair will instruct staff to write a proposed findings and decision document for review and final adoption at next meeting.

2) If not enough or appropriate information, then Chair will facilitate a discussion on the following:
 • What are the known conditions/criteria and evidence state
 • What issues need to be addressed and evidence state

The chair will delegate investigation and return to group based on information and issues identified. Information known but not available or assembled can be gathered by staff; additional clinical questions may need further research by evidence center or may need ad hoc advisory group; information on agency utilization, similar coverage decisions may need agency or other health plan input; information on current practice in community or beneficiary preference may need further public input. Delegation should include specific instructions on the task, assignment or issue; include a time frame; provide direction on membership or input if a group is to be convened.

Efficacy Considerations:
• What is the evidence that use of the technology results in more beneficial, important health outcomes? Consider:
 o Direct outcome or surrogate measure
 o Short term or long term effect
 o Magnitude of effect
 o Impact on pain, functional restoration, quality of life
 o Disease management
• What is the evidence confirming that use of the technology results in a more beneficial outcome, compared to no treatment or placebo treatment?
• What is the evidence confirming that use of the technology results in a more beneficial outcome, compared to alternative treatment?
• What is the evidence of the magnitude of the benefit or the incremental value
• Does the scientific evidence confirm that use of the technology can effectively replace other technologies or is this additive?
• For diagnostic tests, what is the evidence of a diagnostic tests’ accuracy
 o Does the use of the technology more accurately identify both those with the condition being evaluated and those without the condition being evaluated?
• Does the use of the technology result in better sensitivity and better specificity?
• Is there a tradeoff in sensitivity and specificity that on balance the diagnostic technology is thought to be more accurate than current diagnostic testing?
• Does use of the test change treatment choices
Safety
- What is the evidence of the effect of using the technology on significant morbidity?
 - Frequent adverse effect on health, but unlikely to result in lasting harm or be life-threatening, or;
 - Adverse effect on health that can result in lasting harm or can be life-threatening.
- Other morbidity concerns
- Short term or direct complication versus long term complications
- What is the evidence of using the technology on mortality – does it result in fewer adverse non-fatal outcomes?

Cost Impact
- Do the cost analyses show that use of the new technology will result in costs that are greater, equivalent or lower than management without use of the technology?

Overall
- What is the evidence about alternatives and comparisons to the alternatives
- Does scientific evidence confirm that use of the technology results in better health outcomes than management without use of the technology?