Lumbar Fusion for Patients with Degenerative Disc Disease Uncomplicated by Comorbid Spinal Conditions - Re-Review

Final Evidence Report

October 16, 2015
FINAL APPRAISAL DOCUMENT

Lumbar Fusion for Patients with Degenerative Disc Disease
Uncomplicated by Comorbid Spinal Conditions - Re-Review

October 16, 2015

Daniel A. Ollendorf, PhD Chief Review Officer
Anne M. Loos, MA Research Associate
Karin U. Travers, DSc Research Director
Steven D. Pearson, MD, MSc President
Table of Contents

List of Acronyms... ii

About ICER ... iii

Acknowledgements... iv

Executive Summary... ES-1

ICER Integrated Evidence Ratings ... ES-33

1. Background ... 1

2. Washington State Agency Utilization Data .. 4

3. Alternative Treatment Strategies .. 12

4. Clinical Guidelines and Training Standards ... 14

5. Medicare and Representative Private Insurer Coverage Policies .. 17

6. Previous Health Technology Assessments and Systematic Reviews .. 19

7. Ongoing Clinical Trials .. 21

8. Methods .. 23

9. Results .. 29

 Key Question #1... 30

 Key Question #2... 35

 Key Question #3... 37

 Key Question #4... 42

 Key Question #5... 50

10. Recommendations for Future Research ... 54

References .. 55

Appendix A: Literature Search Strategy ... 61

Appendix B: Summary Evidence Tables ... 63

Appendix C: ICER Integrated Evidence Ratings .. 77
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIF</td>
<td>Anterior Lumbar Interbody Fusion</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CBT</td>
<td>Cognitive Behavioral Therapy</td>
</tr>
<tr>
<td>CCI</td>
<td>Charlson Comorbidity Index</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CLBP</td>
<td>Chronic Low Back Pain</td>
</tr>
<tr>
<td>CMS</td>
<td>Centers for Medicare & Medicaid Services</td>
</tr>
<tr>
<td>DDD</td>
<td>Degenerative Disc Disease</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>EuroQol-5D</td>
</tr>
<tr>
<td>GFS</td>
<td>General Function Score</td>
</tr>
<tr>
<td>HRQoL</td>
<td>Health-related Quality of Life</td>
</tr>
<tr>
<td>IRP</td>
<td>Intensive Rehabilitation Program</td>
</tr>
<tr>
<td>ITT</td>
<td>Intent-to-treat</td>
</tr>
<tr>
<td>JOA</td>
<td>Japanese Orthopedic Association</td>
</tr>
<tr>
<td>LBP</td>
<td>Low back pain</td>
</tr>
<tr>
<td>LCD</td>
<td>Local Coverage Determination</td>
</tr>
<tr>
<td>MCID</td>
<td>Minimal Clinically Important Difference</td>
</tr>
<tr>
<td>MCS</td>
<td>Mental Component Summary</td>
</tr>
<tr>
<td>MIS</td>
<td>Minimally-Invasive Surgery</td>
</tr>
<tr>
<td>NCD</td>
<td>National Coverage Determination</td>
</tr>
<tr>
<td>NR</td>
<td>Not reported</td>
</tr>
<tr>
<td>NRS</td>
<td>Numerical Rating Scale</td>
</tr>
<tr>
<td>NS</td>
<td>Not significant</td>
</tr>
<tr>
<td>ODI</td>
<td>Oswestry Disability Index</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>PCS</td>
<td>Physical Component Summary</td>
</tr>
<tr>
<td>PLIF</td>
<td>Posterior Lumbar Interbody Fusion</td>
</tr>
<tr>
<td>PLF</td>
<td>Posterolateral Fusion</td>
</tr>
<tr>
<td>PSI</td>
<td>Patient Satisfaction Index</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality-Adjusted Life Year</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>RDQ</td>
<td>Roland-Morris Disability Questionnaire</td>
</tr>
<tr>
<td>RR</td>
<td>Risk Ratio</td>
</tr>
<tr>
<td>RTW</td>
<td>Return to Work</td>
</tr>
<tr>
<td>SCL</td>
<td>Standard Checklist</td>
</tr>
<tr>
<td>SF</td>
<td>Short Form</td>
</tr>
<tr>
<td>TLIF</td>
<td>Transforaminal Lumbar Interbody Fusion</td>
</tr>
<tr>
<td>TE</td>
<td>Treatment Effect</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollars</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analog Scale</td>
</tr>
<tr>
<td>WC</td>
<td>Workers’ Compensation</td>
</tr>
<tr>
<td>ZDS</td>
<td>Zung Depression Scale</td>
</tr>
</tbody>
</table>
About ICER

The Institute for Clinical and Economic Review (ICER) is an independent non-profit health care research organization dedicated to improving the interpretation and application of evidence in the health care system.

There are several features of ICER’s focus and methodology that distinguish it from other health care research organizations:

- Commitment to aiding patients, clinicians, and insurers in the application and use of comparative effectiveness information through various implementation avenues, including its core programs, the New England Comparative Effectiveness Public Advisory Council (CEPAC); and the California Technology Assessment Forum (CTAF).
- Focus on implementation and evaluation of ICER research to create innovative decision support tools, insurance benefit designs, and clinical/payment policy.
- Deep engagement throughout the process with all stakeholders including patients, clinicians, manufacturers, purchasers, and payers.
- Inclusion of economic modeling in our research, and use of an integrated rating system for comparative clinical effectiveness and comparative value to guide health care decisions.
- ICER’s independent mission is funded through a diverse combination of sources; funding is not accepted from manufacturers or private insurers to perform reviews of specific technologies. A full list of funders, as well more information on ICER’s mission and policies, can be found at www.icer-review.org.
Acknowledgements

ICER would like to thank the following individuals for their expert opinion as well as peer review of draft documents:

Roger Chou, MD
Professor of Medicine
Division of General Internal Medicine and Geriatrics
Director, Pacific Northwest Evidence-based Practice Center
Oregon Health & Science University

John D. Loeser, MD
Professor Emeritus
Departments of Neurological Surgery and Anesthesia and Pain Medicine
University of Washington

Rajiv K. Sethi, MD
Chair of the Neuroscience Institute
Director of Complex Spine Surgery, Virginia Mason Medical Center
Clinical Associate Professor
Department of Health Services, Program in Health Economics and Outcomes Methodology (PHENOM)
University of Washington

We would also like to thank Erin Lawler at ICER for her contributions to this report.
Executive Summary

Introduction
Low back pain (LBP) is an exceedingly common complaint and a substantial cause of disability. At any given point in time, more than 10% of individuals are diagnosed with LBP, and lifetime prevalence ranges from 60-70% in industrialized countries such as the US.\(^1\) The economic impact of LBP is also substantial. It is the second most common reason for all physician visits in the U.S., and is responsible for approximately $30 billion in direct medical costs annually.\(^2,3\) In addition, LBP is associated with substantial indirect costs, in large part due to its detrimental effect on productivity. It is estimated that over 3% of the U.S. work force is compensated for back pain or injury each year, with approximately 187 million missed work days and wage losses accounting for an additional $22.4 billion in annual indirect costs.\(^4,5\)

With LBP often presenting as a temporary condition, and an estimated 25-58% of cases spontaneously resolving, nonsurgical – that is, conservative – treatment is the primary treatment modality at diagnosis.\(^6\) Conservative treatment may include any number of non-surgical therapies, in a structured or unstructured setting, and to lesser or greater degrees of intensity; such therapies include exercise, physical therapy, education, CBT, acupuncture, or spinal manipulation. However, persistent LBP that is refractory to conservative treatment may be seen in as many as one-quarter of patients six months after an initial episode.\(^7\)

LBP can be caused by a number of specific and nonspecific conditions, all of which differ in prevalence and affect different age groups. Nerve irritation, muscle strain, and bone or soft tissue damage may all give rise to LBP. Another common cause of LBP is lumbar degenerative disc disease (DDD), arising from natural degeneration of an intervertebral disc. DDD is commonly associated with LBP in many individuals. Use of the term “disease” to describe this condition is something of a misnomer, however, as disc degeneration (dehydration and shrinkage) is a natural consequence of aging, and many individuals never develop overt symptoms of DDD. Diagnosis and subsequent treatment typically involves an initial history and physical examination by a clinician. However, the presence of DDD alone correlates poorly with the presence and severity of LBP, making it difficult to attribute symptoms to DDD. Initially, the clinician might prescribe various conservative self-care therapies or will perform a diagnostic exam to check the patient’s pain tolerance, functional capabilities, and reflexes.\(^8\) An MRI and/or CT scan may be used to identify other potential anatomic causes of the patient’s symptoms, including other co-occurring conditions such as radiculopathy (compression of the root nerve), spondylolisthesis (slippage of a vertebral disc over another, causing spinal instability), or spinal stenosis (narrowing of the spinal canal), lumbar disc herniation (the rupture of an intervertebral disc which then pushes outside its normal boundary).\(^9,10\) The process of disc degeneration appears to be influenced by demographic and behavioral factors (e.g., age, occupation, and activity level), lifestyle (e.g., obesity, smoking), and importantly, genetics.\(^11\)

Multiple treatment options are available for symptoms associated with DDD of the lower back, including conservative measures, minimally-invasive treatments such as spinal injections and radiofrequency ablation, and surgical intervention. Conservative, non-invasive approaches vary widely in method and intensity, and are typically used as a first-line treatment approach for patients complaining of LBP. When pain becomes chronic (i.e., continues for longer than three months), more intensive conservative
management using interdisciplinary methods is often considered. If these are unsuccessful, management with surgery can be considered. Lumbar fusion surgery, which involves the creation of a permanent connection across the vertebral space by means of a graft, is often considered when conservative treatments fail to relieve the patient's pain. However, many patients may be at risk of continued persistent LBP, as initial surgery is subject to high rates of reoperation with declining success rates after each consecutive surgery. It is estimated that as many as one-fifth of patients require additional surgery in the decade following an initial fusion procedure.

Not surprisingly, there is significant interest on the part of patients, clinicians, policymakers, and other stakeholders in evaluating the clinical and economic impact of lumbar fusion for patients with chronic LBP (CLBP) and DDD. An evidence-based inquiry into lumbar fusion as a treatment option for DDD is complicated by the fact that there exists no consensus regarding a true “gold standard” treatment for DDD. Given that lumbar fusion is commonly employed intervention for a number of indications (representing 3.1% of all surgical procedures in the US), a careful evaluation of its effectiveness relative to conservative treatment of DDD will serve to inform policy around its use.

Alternative Treatment Strategies
The major approaches to lumbar spinal fusion and conservative, nonsurgical management are described in further detail below. Of note, other minimally-invasive procedures (e.g., spinal injections, denervation procedures) are used in patients with uncomplicated DDD but are not described here given the contrast of primary interest for our review.

Lumbar Spinal Fusion
During spinal fusion procedures, the spine is stabilized by fusing two or more vertebrae together, using metal rods, bone grafts, or screws. Spinal fusions are classified as either simple (one or two disc levels or a single surgical approach) or complex (more than two disc levels or a combined anterior and posterior approach). Fusion may or may not use instrumentation such as screws, plates, or cages. Instrumentation is generally used as an internal splint to hold the vertebrae together while the bone grafts heal. Bone or bone substitutes are used to help fuse the vertebrae together. The bone may be taken from another bone in the patient (autograft) or from a bone bank (allograft). Bone morphogenic proteins may also be used as an alternative to autograft. Substantial bone healing takes some time to achieve and the healing process varies from person to person. Documentation of bone healing, as evidenced by an X-ray, is not carried out until approximately six weeks post-procedure. During this time, the patient’s activity must be limited. The surgeon may recommend a postoperative rehabilitation program.

Risks associated with spinal fusion include nerve root damage, bleeding, and infection. While the major risks are relatively rare, the odds of injury are higher with increasing complexity of surgical approach and use of instrumentation. Other complications, common to all types of major surgery, may include deep vein thrombosis, myocardial infarction, pulmonary embolism, and pneumonia.

The main approaches to lumbar fusion surgery are as follows:

Posterolateral gutter fusion (PLF)
A posterolateral gutter fusion is performed at the transverse processes, with the surgical approach to the spine from the back through a midline incision that is approximately three inches to six inches long. A bone graft is obtained and laid out in the posterolateral portion of the spine. This region lies on the
outside of the spine and is a very vascular area, which is important because the fusion needs blood to supply the nutrients for it to grow. A small extension of the vertebral body in this area (transverse process) is a bone that serves as a muscle attachment site. The large back muscles that attach to the transverse processes are elevated up to create a bed to lay the bone graft on. The back muscles are then laid back over the bone graft, creating tension to hold the bone graft in place.

Interbody Fusions

Interbody fusion is a method which removes the degenerated disc. It may be a less invasive, though possibly more technically demanding, method of obtaining a spinal fusion, using two threaded titanium cylinders to hold the vertebrae in proper position while the spine fusion occurs. These procedures are done using various approaches, and involve removing the disc between two vertebrae and inserting the bone graft into the space created between the vertebral bodies. They are described in detail below:

Posterior lumbar interbody fusion (PLIF)

Unlike the posterolateral fusion, the PLIF achieves spinal fusion in the low back by inserting a cage made of either allograft bone or synthetic material (polyetheretherketone [PEEK] or titanium) directly into the disc space. PLIF surgery has a higher potential for a solid fusion rates than posterolateral fusion rates because the bone is inserted into the anterior portion (front) of the spine.

Anterior lumbar interbody fusion (ALIF)

The anterior lumbar interbody fusion is similar to the PLIF approach, except that in the ALIF, the disc space is fused by approaching the spine through the abdomen instead of through the lower back. A three-inch to five-inch incision is made on the left side of the abdomen and the abdominal muscles are retracted to the side.

Transforaminal lumbar interbody fusion (TLIF)

TLIF fuses the anterior (front) and posterior (back) columns of the spine through a single posterior approach. This procedure is done from the back of the spine, differing from the PLIF mainly in the angle at which the disc is approached.

Extreme Lateral Interbody Fusion (XLIF)

An interbody fusion approach in which the surgeon accesses the intervertebral disc space and fuses the lumbar spine using a surgical approach from the side (lateral) rather than from the front (anterior) or the back (posterior).

Conservative, Nonsurgical Management

Conservative, non-invasive approaches vary widely in method and intensity. Further detail on this variability is available in the evidence review. Lower intensity treatments typically include medications, physical and/or exercise therapy, behavioral therapy, chiropractic, and alternative therapy (e.g., acupuncture, yoga). These are typically used as a first-line treatment approach for patients complaining of LBP. When pain becomes chronic (i.e., continues for longer than three months), interdisciplinary rehabilitation is often considered. Interdisciplinary rehabilitation programs are interventions that combine and coordinate physical, vocational, and behavioral components. These programs are typically physician-directed, with care provided by multiple health care professionals with different clinical backgrounds. The content and length of interdisciplinary programs varies widely; average duration of treatment is 3-4 weeks for more intensive therapy. Programs typically involve some component of group therapy, usually held in groups of up to 10. Interdisciplinary programs vary not
only in duration and intensity, but also in the types of components provided. Worksite interventions, strength training, aerobic exercises, educational interventions, and psychological interventions are all examples of components that can constitute an interdisciplinary program.

Key Questions
The following key questions were felt to be of primary importance for this review:

1. **What is the comparative clinical effectiveness of lumbar fusion surgery for patients with chronic low back pain and uncomplicated DDD relative to that of conservative management, minimally-invasive treatments, and other nonsurgical approaches?**

2. **What are the rates of “treatment success” or “successful clinical outcome” of lumbar fusion as defined by measures of clinically-meaningful improvement in pain, function, quality of life, patient satisfaction, and/or work status?**

3. **What are the rates of adverse events and other potential harms (perioperative, long-term adverse events, and reoperations) associated with lumbar fusion surgery compared to alternative treatment approaches?**

4. **What is the differential effectiveness and safety of lumbar fusion according to factors such as age, sex, race or ethnicity, pre-existing conditions (e.g., smoking history), intensity of conservative management (e.g., interdisciplinary rehabilitation vs. physical and/or behavioral therapy alone) technical approach to fusion (e.g., posterolateral vs. interbody, minimally-invasive vs. open procedures), initial versus repeat surgery, insurance status (e.g., worker’s compensation vs. other), and treatment setting (e.g., inpatient vs. ambulatory surgery)?**

5. **What are the costs and potential cost-effectiveness of lumbar fusion relative to alternative treatment approaches?**

Analytic Framework
The analytic framework for this project is depicted on the following page. We expected that studies would vary substantially in terms of their entry criteria, as there is no agreed-upon standard of what constitutes uncomplicated lower back DDD. In addition, the fusion technique and intensity of the conservative intervention may have differential effects on the outcomes of primary interest in LBP studies, including pain, function, quality of life, patient satisfaction, and work status. Finally, RCTs of fundamentally different interventions (e.g., surgery for pain relief versus rehabilitation for functional restoration) may have difficulty enrolling and randomizing patients, resulting in many studies with inadequate statistical power or other quality concerns (e.g., high dropout and/or crossover rates).

There were expected limitations on the available evidence in terms of (a) comprehensive comparisons of lumbar fusion to conservative management, and (b) long-term data on effectiveness and potential harms. As such, judgments about the effectiveness of these interventions rested predominantly upon individual consideration of each type of surgery and its relevant comparators, evaluation of procedurespecific risks, and linkage of shorter-term outcomes to higher-quality data on long-term effects where available.
Study Quality

Assessment of the quality of clinical trial reports and systematic reviews followed methods adapted specifically for studies of LBP from the Cochrane Back Review Group. For observational studies, we used the approach of the U.S. Preventive Services Task Force (see detailed descriptions below). Finally, while there are no published criteria for evaluating quality of case series due to their non-comparative nature, we identified specific quality criteria for inclusion of these studies as described above.

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study (follow-up at least 80 percent); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention paid to confounders in analysis. In addition, for RCTs, intention to treat analysis is used. Specifically for this review, target or mean/median duration of follow-up did not appreciably differ within study groups.

Fair: Studies will be graded "fair" if any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred with follow-up; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are addressed. Intention to treat analysis is done for RCTs. Specifically for this review, differences in baseline characteristics and/or duration of follow-up were allowed only if appropriate statistical methods were used to control for these differences (e.g., multiple regression, survival analysis).

Poor: Studies will be graded "poor" if any of the following fatal flaws exists: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. For RCTs, intention to treat analysis is lacking.
Overall strength of evidence for each key question was described as “high”, “moderate”, or “low”, and utilizing the evidence domains employed in the AHRQ approach. In keeping with standards set by the Washington HCA, however, assignment of strength of evidence focused primarily on study quality, quantity of available studies, and consistency of findings.

In addition, summary ratings of the comparative clinical effectiveness and comparative value of the procedures of interest (i.e., across multiple key questions) were assigned using ICER’s integrated evidence rating matrix. The matrix has been employed in previous Washington HCA assessments of virtual colonoscopy, coronary CT angiography, cervical fusion surgery, cardiac nuclear imaging, proton beam therapy, breast imaging in special populations, and bariatric surgery. The matrix can be found in Appendix C to this document.

Of note, our review identified no studies comparing surgery to minimally-invasive treatments.

Results

Evidence Quality

The evidence base for comparison of lumbar fusion procedures to non-surgical interventions for uncomplicated DDD has not grown substantially in the past decade, as exemplified by the addition of only one additional RCT since a 2007 review identified four. The current review also includes ten cohort studies, all of which were prospective in nature with the exception of Smith et al., which was retrospective. The current review also includes three case series. A summary evidence table (Table ES-1) capturing the strength of evidence for each of the five key questions of interest can be found starting on page ES-8.

There were a number of specific limitations affecting the quality of the studies in the evidence base. Among these was an imbalance in treatment groups with respect to factors potentially influencing outcomes, or a lack of consideration of such factors in the analysis of the resulting data. Often, but not always, such imbalances were addressed by authors, presenting treatment effect estimates adjusted for the factors of concern.

Also of concern was the lack of longer-term follow-up data in many studies, and the lack of strict criteria defining treatment groups. Many study populations were subject to substantial attrition rates, limiting the power of such studies to document effect sizes at follow-up. Additionally, treatment group definition was often heterogeneous. This precludes easy synthesis of findings with respect to both surgical and conservative interventions. Moreover, all of the identified RCTs were conducted in European countries and therefore represent health systems and treatment options which may differ substantially from U.S.-based settings. Further, pain duration in the RCTs ranged from seven to 11 years; in fact, duration of symptoms of <12 months was a protocol exclusion in many of these studies. Several studies also included some patients who had previous spinal surgery and did not stratify outcomes according to this variable. As such, these patients may represent a subset of the population that have more severe LBP and/or comorbid illnesses which may exacerbate symptoms.

Of the five RCTs identified for this review, we rated three (60%) to be of good quality based on the comparability of groups with respect to both baseline characteristics and duration of follow-up, and minimized sample attrition; and two RCTs (40%) were rated as of fair quality. Quality issues affecting the RCTs are described in detail below. Six of the ten prospective cohort studies were rated as
good quality (60%), three34,37,41 as fair (30%), and one32 as poor (10%). A retrospective cohort study36 was rated as poor. The poor quality ratings reflect the presence of at least one key quality issue not adequately addressed in either the design or analysis phase of the study.

In the study by Fairbank et al.,26 there was a substantial degree of crossover, with over 25% of patients randomized to intensive conservative management having had surgery by the end of two years; this is in contrast to only 4% of those randomized to surgery who crossed over to conservative management. A separate multiple imputation analysis was conducted to carry forward values for patients who crossed over or were lost to follow-up; this did not materially affect any primary findings. This study also described imbalances between treatment groups in several potentially important baseline characteristics; the authors also addressed this issue in the analysis phase, in this case by estimating the relative treatment effects in multivariate analyses controlling for these factors as additional independent variables.

In contrast to the Fairbank study, crossover rates in either direction between the group randomized to spinal fusion and the group randomized to non-intensive conservative management were relatively low (<10%) in the RCT by Fritzell et al.,27,41 and these crossovers were analyzed separately. However, the authors of this study failed to address any imbalances between the treatment groups with respect to factors possibly affecting treatment outcome; imbalances included mean pain duration between the groups and the presence of comorbidity. An additional limitation of this study included the lack of definition around conservative treatment. These limitations were not severe, but because no effort was made to evaluate their effect, the quality of this study was graded as fair, rather than good.

Two RCTs by Brox et al.,24,25 were limited by small sample size despite the incorporation of a power calculation in the study design (total sample n=60 and n=64 in the 2003 and 2006 studies, respectively). Both studies also had one year of follow-up, somewhat limiting the applicability of the evidence to questions regarding the duration of treatment effect. These limitations were deemed minimal enough to support a quality rating of good for both studies.

The RCT described by Ohtori et al.,22 was also limited by sample size (total sample, n=41), and further by the lack of consistency in the type of fusion surgery performed in the surgical treatment group, as well as the method by which patients were selected for inclusion. These limitations downgraded the quality rating for this study to fair.
Table ES-1: Summary evidence table for lumbar surgery compared to conservative treatment.

<table>
<thead>
<tr>
<th>Study Information</th>
<th>Comparators</th>
<th>Risk of Bias</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Strength of Evidence</th>
<th>Direction of Effect</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ1: Effectiveness of Lumbar Fusion Surgery vs. Conservative Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusion N=473 RCT=3</td>
<td>Intensive or Interdisciplinary Rehabilitation</td>
<td>Medium</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>+++ Moderate</td>
<td>Comparable</td>
<td>No differences in pain, function, RTW</td>
</tr>
<tr>
<td>Fusion N=335 RCT=2</td>
<td>Physical Therapy or Exercise alone</td>
<td>Medium</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>+++ Moderate</td>
<td>Comparable</td>
<td>Small benefits seen over 1-2 years of f/u (e.g., faster RTW); differences diminish over time</td>
</tr>
<tr>
<td>Fusion Other non- or minimally-Invasive comparators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NO STUDIES</td>
<td></td>
</tr>
<tr>
<td>KQ2: Rates of Treatment Success or Clinically Important Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusion N=124 RCT=2</td>
<td>Intensive or Interdisciplinary Rehabilitation</td>
<td>Medium</td>
<td>Consistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>+++ Moderate</td>
<td>Comparable</td>
<td>No differences in patient- or observer-rated success rates</td>
</tr>
<tr>
<td>Fusion N=294 RCT=1</td>
<td>Physical Therapy</td>
<td>Medium</td>
<td>Consistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>++ Low</td>
<td>Incremental</td>
<td>Higher rates of success or clinical improvement vs. lower-intensity care</td>
</tr>
</tbody>
</table>
KQ3: Potential Harms of Lumbar Spinal Fusion

<table>
<thead>
<tr>
<th>Study Information</th>
<th>Comparators</th>
<th>Risk of Bias</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Strength of Evidence</th>
<th>Direction of Effect</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perioperative Mortality</td>
<td>Harms reported in 14 studies comprising 1,420,986 patients</td>
<td>High</td>
<td>Inconsistent</td>
<td>Indirect</td>
<td>Imprecise</td>
<td>++ Low</td>
<td>Rates of 0.2-0.3% by procedure type</td>
<td>Evidence limited to retrospective databases; most do not isolate DDD</td>
</tr>
<tr>
<td>Overall Complications</td>
<td></td>
<td>High</td>
<td>Inconsistent</td>
<td>Indirect</td>
<td>Imprecise</td>
<td>++ Low</td>
<td>Range 9-20% overall</td>
<td>Inconsistent reporting and categorization across studies</td>
</tr>
<tr>
<td>Subsequent Treatment</td>
<td>Reoperation or Surgical Revision</td>
<td>High</td>
<td>Inconsistent</td>
<td>Indirect</td>
<td>Imprecise</td>
<td>++ Low</td>
<td>Mean of 12.5% over mean of 5 years of f/u</td>
<td>Hardware repair, repeat fusion, alternative surgery</td>
</tr>
<tr>
<td>Study Information</td>
<td>Comparators</td>
<td>Risk of Bias</td>
<td>Consistency</td>
<td>Directness</td>
<td>Precision</td>
<td>Strength of Evidence</td>
<td>Direction of Effect</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>KQ4: Differential Effectiveness and Safety According to Patient, Procedure, or Other Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity of Fusion</td>
<td>Single-level vs. multi-level</td>
<td>High</td>
<td>Inconsistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>++ Low</td>
<td>No discernible differences in effectiveness</td>
<td>Variable estimates by study and procedure</td>
</tr>
<tr>
<td></td>
<td>High vs. low levels of instrumentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Higher complication rates w/more intensity</td>
<td></td>
</tr>
<tr>
<td>Type of Fusion</td>
<td>Anterior, posterior, transfemoral, combined approaches</td>
<td>High</td>
<td>Inconsistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>++ Low</td>
<td>Evidence mixed, some studies suggest higher complication rates w/anterior approaches</td>
<td>Variable estimates by study and procedure</td>
</tr>
<tr>
<td>Surgical Setting</td>
<td>Inpatient vs. outpatient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NO STUDIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative Management Intensity</td>
<td>Varying levels of intensity and components</td>
<td>High</td>
<td>Inconsistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>++ Low</td>
<td>Performance vs. surgery better for more intense programs</td>
<td>No discernible patterns of individual program component association with outcome</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evidence mixed for interdisciplinary programs vs. less intense interventions</td>
<td></td>
</tr>
<tr>
<td>Study Information</td>
<td>Comparators</td>
<td>Risk of Bias</td>
<td>Consistency</td>
<td>Directness</td>
<td>Precision</td>
<td>Strength of Evidence</td>
<td>Direction of Effect</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Age</td>
<td>High</td>
<td>Inconsistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>++ Low</td>
<td></td>
<td></td>
<td>Some evidence for greater RTW but also higher disability claims in younger age categories</td>
</tr>
<tr>
<td>Gender</td>
<td>High</td>
<td>Inconsistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>++ Low</td>
<td></td>
<td></td>
<td>No clear patterns of gender impact</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NO STUDIES</td>
</tr>
<tr>
<td>Workers’ Compensation</td>
<td>Medium</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>+++ Moderate</td>
<td></td>
<td></td>
<td>Evidence suggesting WC status associated with poorer clinical outcome, lower RTW, and higher costs</td>
</tr>
<tr>
<td>Psychological Factors</td>
<td>High</td>
<td>Inconsistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>++ Low</td>
<td></td>
<td></td>
<td>Mixed evidence on effects of depression</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Presence of neuroses or personality disorder associated with poor surgical outcome</td>
</tr>
<tr>
<td>Lifestyle Factors</td>
<td>Smoking, BMI</td>
<td>High</td>
<td>Consistent</td>
<td>Indirect</td>
<td>Imprecise</td>
<td>++ Low</td>
<td></td>
<td>No association with any surgical outcome of interest</td>
</tr>
<tr>
<td>Study Information</td>
<td>Comparators</td>
<td>Risk of Bias</td>
<td>Consistency</td>
<td>Directness</td>
<td>Precision</td>
<td>Strength of Evidence</td>
<td>Direction of Effect</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>KQ5: Costs and Cost-Effectiveness of Lumbar Spinal Fusion</td>
<td>Surgery</td>
<td>Conservative Mgmt</td>
<td>High</td>
<td>Inconsistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>++ Low</td>
<td>>$100,000 per QALY over 2 years; other studies had unusual measures or inappropriate comparators; surgical costs high in the US and willingness to pay for fusion lower than for other procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variable data sources and assumptions; surgical costs high in the US and willingness to pay for fusion lower than for other procedures</td>
</tr>
</tbody>
</table>
Key Question #1: What is the comparative clinical effectiveness of lumbar fusion surgery for patients with chronic low back pain and uncomplicated degenerative disc disease relative to that of conservative management, minimally-invasive treatments, and other nonsurgical approaches?

We identified three good-quality RCTs, two fair-quality RCTs, five good- or fair-quality longer-term follow-up reports on these RCTs, one good-quality secondary analysis, one good-quality prospective cohort study, and one poor-quality retrospective cohort study (see Appendix B for study details) comparing lumbar fusion to conservative management in patients with uncomplicated DDD. Of note, none of these studies compared lumbar fusion to minimally-invasive treatments alone, and conservative approaches varied in duration and intensity across studies. Comparisons are further complicated by differences in study design, methods, and crossover rates. The variable nature of the comparator populations in these studies makes even indirect comparisons difficult if not impossible. Nevertheless, the available evidence suggests that lumbar fusion provides some advantage over lower-intensity conservative approaches (e.g., physical therapy or exercise alone) in improving pain and disability and returning to work over a shorter duration of follow-up (i.e., up to two years); however, differences diminish and are no longer statistically significant over longer durations of follow-up. Conversely, comparisons of lumbar fusion to more intensive and/or interdisciplinary forms of rehabilitation yield no differences in effectiveness.

We identified five RCTs comparing lumbar fusion to conservative treatment among patients with uncomplicated DDD. Four of these studies were evaluated in the original assessment for the HCA; only one additional RCT conducted in Japan was identified for this re-review. Three of these studies compared fusion to interdisciplinary rehabilitation with a cognitive-behavioral component. The remaining two RCTs compared fusion to non-intensive physical therapy, or an exercise treatment plan. While patients undergoing lumbar fusion had similar absolute levels of improvement in pain and function over one to two years of follow-up across four of the five RCTs, statistically-significant treatment effects favoring fusion for the primary outcome measures were noted only in the RCTs comparing fusion to less intensive or unstructured treatment approaches. None of these RCTs included patients who had previously undergone fusion surgery, though three allowed individuals with who had a prior discectomy or laminectomy.

Table ES-2 on the following page lists the study details of these five key RCTs. Several recent systematic reviews evaluating these studies have noted that patient inclusion criteria and control treatment regimens may affect outcomes in a substantive way; more details on the effect of the treatment intensity in the conservative cohorts are reported in Key Question #4. The section below describes the short- and longer-term outcomes from these RCTs, as well as the nonrandomized comparative studies we identified as part of our literature search. The rate of harms associated with lumbar fusion versus conservative care are discussed in detail in Key Question #3.
Table ES-2. Study details for 5 key RCTs comparing fusion to conservative treatment in patients with uncomplicated DDD.

<table>
<thead>
<tr>
<th>Study (Country of Origin)</th>
<th>Quality</th>
<th>Sample Size</th>
<th>Setting Type</th>
<th>Entry Criteria</th>
<th>Patient Characteristics</th>
<th>Control Group Description</th>
<th>Fusion Group Description</th>
<th>Follow-up Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brox 2003<sup>24</sup> (Norway)</td>
<td>Good</td>
<td>64</td>
<td>Multicenter</td>
<td>Aged 25-60 CLBP ≥1 year Patients who had undergone previous spinal surgery were excluded</td>
<td>Age: 43 Pain duration: 10.8 years % male: 39</td>
<td>Cognitive intervention and individual exercises with increasing intensity</td>
<td>PLF with instrumentation and postoperative physiotherapy</td>
<td>1 year</td>
</tr>
<tr>
<td>Brox 2006<sup>25</sup> (Norway)</td>
<td>Good</td>
<td>60</td>
<td>Multicenter</td>
<td>Aged 25-60 CLBP ≥1 year All patients had prior discectomy for disc herniation</td>
<td>Age: 43 Pain duration: 8.0 years % male: 52 % prior discectomy: 100</td>
<td>Cognitive intervention and individual exercises with increasing intensity</td>
<td>PLF with instrumentation and postoperative physiotherapy</td>
<td>1 year</td>
</tr>
<tr>
<td>Fritzell 2001<sup>27</sup> (Sweden)</td>
<td>Fair</td>
<td>294</td>
<td>Multicenter</td>
<td>Aged 25-65 CLBP ≥2 years Patients with successful discectomy >2 years before fusion were allowed</td>
<td>Age: 43 Pain duration: 8.0 years % male: 49 % prior discectomy: 18.8</td>
<td>Non-intensive physical therapy + information and education aimed at pain relief</td>
<td>Noninstrumented posterolateral, instrumented posterolateral, or instrumented circumferential</td>
<td>2 years</td>
</tr>
<tr>
<td>Fairbank 2005<sup>26</sup> (UK)</td>
<td>Good</td>
<td>349</td>
<td>Multicenter</td>
<td>Aged 18-55 CLBP ≥1 year All patients eligible for surgery irrespective of previous root decompression or discectomy</td>
<td>Age: means reported by age groups Pain duration: 8.0 years % male: 49 % prior surgery: NR</td>
<td>75 hours of IRP, including daily muscle strengthening and exercise, CBT, and hydrotherapy</td>
<td>At the discretion of the surgeon (15% of patients received stabilization without fusion)</td>
<td>2 years</td>
</tr>
<tr>
<td>Ohtori 2011<sup>22</sup> (Japan)</td>
<td>Fair</td>
<td>41</td>
<td>Single center</td>
<td>CLBP ≥2 years Patients who had undergone previous spinal surgery were excluded</td>
<td>Age: 34 Pain duration: 7.3 years % male: 59</td>
<td>Exercise treatment, including 30 minutes of daily walking and muscle strengthening</td>
<td>Anterior interbody fusion or posterolateral fusion with pedicle screws</td>
<td>2 years</td>
</tr>
</tbody>
</table>
Findings for the key outcomes of interest in available RCTs (i.e., pain, function, and return to work [RTW]) are summarized below. Further discussion of other outcomes can be found in the full report.

Pain and Function

RCT-based evidence on lumbar fusion surgery versus intensive rehabilitation with a cognitive element comes from three studies\(^{24-26}\) conducted in Norway and the UK. In the Norwegian RCTs,\(^{24,25}\) no significant differences were observed for pain (as measured by a 100-point VAS scale) or the Oswestry Disability Index (ODI) at 1 year of follow-up; medication use was also not significantly different in either study. Notably, in the later study\(^{25}\) which included only those patients who had a prior discectomy for disc herniation, absolute changes on the ODI were nominally in favor of the conservative cohort (12.8 vs. 8.9 for surgery). Both studies reported a 97% follow-up rate, with only 2.4% of patients across studies switching to the surgical group after randomization.

Although a significant difference in the ODI favoring lumbar fusion was observed in the UK RCT\(^{26}\) (-12.5 vs. -8.7, \(p=0.045\)) relative to IRP, the authors noted that this difference was only marginally significant. There were also no significant differences between groups for improvement on a shuttle walking test. These results are potentially confounded by differences between groups for follow-up at two years (78% and 84% in the surgical and conservative groups, respectively), with 28% of patients crossing over to the surgery compared to only 4% switching to the rehabilitation group. However, a separate multiple imputation analysis was conducted to carry forward values for patients who crossed over or were lost to follow-up; this did not materially affect any primary findings. This study included some patients that had undergone previous spinal surgery, though no further details were available.

In the Swedish RCT,\(^{27}\) significant differences favoring surgery were observed in the mean change from baseline to year two on both the 100-point VAS (-21.0 vs. -4.3, \(p=0.0002\)) and the ODI (-11.6 vs. -2.8, \(p=0.015\)) relative to non-intensive physical therapy. However, after six months of treatment the benefits of surgery began to diminish, and the authors observed that back pain increased significantly between one and two years of follow-up for the fusion cohort (\(p<0.0001\)). Although this RCT had low attrition with only 2% lost to follow-up, crossover was noted in both groups, including 25% of patients in the rehabilitation cohort and 3% in the surgical group. About one-fifth of patients had undergone previous successful surgery for disc herniation at least two years prior to entering the trial, and 15% of patients did not receive fusion.

In the most recent RCT\(^{22}\) from Japan, there were statistically-significant improvements in favor of ABF and PLF versus exercise treatment on the ODI (-51.7 and -44.8 vs. -24.0), VAS (-6.1 and -4.0 vs. -3.0), and JOA (+1.4 and +1.3 vs. +0.5) for ABF, PLF, and exercise treatment, respectively, over two years of follow-up (all outcomes, \(p<0.01\)). No patients were reported being lost to follow-up, or switching to a different treatment group. However, this small, single-center study was largely focused on comparing differences between the two fusion techniques,\(^{45}\) and the control group was only “minimally-treated” with 30 minutes of physician-supervised daily exercises and stretching. Additionally, the study population was approximately 10 years younger than patients enrolled in the other RCTs, and half the patients were selected based on the use of “discoblock” (i.e., analgesic injections at specific sites) as a diagnostic tool, which may have more precisely identified patients that could benefit from fusion.\(^{46}\) All other RCTs included patients based only on radiographical evidence of DDD, with the exception of Fairbank\(^{36}\) (which did not specify imaging or disease levels).

In addition to the above-described RCTs, good- and fair-quality follow-up data were available for four of the five RCTs. In a combined study\(^{28}\) of the original Norwegian RCT cohorts\(^{24,25}\) (\(n=124\), mean age 43,
45.2% male) after a mean follow-up of four years (with 89% of the original population remaining), the adjusted treatment effect between fusion and non-operative care was non-significant. After nine years, patients from both groups (n=99, mean age 43, 38.6% male) who consented to long-term radiography follow-up had similar ODI scores. In a sensitivity analysis which included one-third of patients who crossed over to the surgery group, there were significantly more patients taking opioids on a daily or weekly basis in the surgical cohort compared to non-operated patients (44% vs. 17%, adjusted odds ratio [OR]: 4.9; 95% CI: 1.8, 13.2; p=0.005), though no differences were observed in the intent-to-treat (ITT) analysis. Another high-quality follow-up study with 261 patients (mean age 42, 47.5% male) pooled from the Brox and Fairbank RCTs also found no significant differences between groups on the ODI or VAS, as well as for pain medication use after a mean of 11.4 years of follow-up. Finally, a recently published long-term study (n=251, mean age 59), which evaluated long-term data (mean of 12.8 years of follow-up) available from 85% of the original Fritzell sample, did not find any significant differences between the two groups with respect to functional improvement (as measured on the ODI and VAS), pain medication use, or pain frequency in any of the modeled analyses.

In addition to RCT data, we found one large, high-quality prospective cohort study of 495 patients (mean age 43, 47.5% male) comparing surgery (79% instrumented fusion) to conservative treatment. No specific treatment regimen was prescribed to either patient group in this observational study; rather, patients who were diagnosed with discogenic pain and received surgery within six months were considered part of the surgical group, and all others meeting the inclusion criteria were part of the non-operative cohort. Although the surgical group showed statistically-significant improvements over conventional treatment on the RDQ (-8.8 vs. -1.8) after one year (p<0.001), the authors noted that the conservative group was minimally-treated, with only 5% receiving CBT, and is likely biased in favor of surgery due to patient selection. In addition, there were significant differences in some baseline characteristics, including the proportion of patients who had undergone previous laminectomy (36% vs. 21% for the conservative group, p=0.004). Opioid pain medication use was not statistically-different between groups.

The final study identified as part of our literature search was a poor-quality retrospective cohort study of 495 patients (n=96, mean age 47, 50% male) comparing lumbar fusion to conservative treatment, which included physical therapy, epidural injections, and medication. Patients who underwent previous spinal surgery were excluded. This study did not find any significant differences between groups for Numerical Rating Scale (NRS) pain scores, or the ODI after five years of follow-up. However, there are some substantial methodological concerns with this study, including the failure to control for significant differences in patient characteristics between individuals at baseline and those lost to follow-up, which was more than half of the original population.

Return to Work

Data on the effect of lumbar fusion on return to work (RTW) come from the Norwegian and Swedish RCTs, and their subsequent follow-up studies. In first Brox study, the percentage of employed individuals who returned to work was numerically higher in the intensive rehabilitation control group, but did not reach statistical significance. The 2006 study, which evaluated patients with prior disc herniation surgery, similarly found that although there were more patients from the intensive rehabilitation group working full-time, these numbers were too small to be evaluated statistically. In the pooled four-year and 11-year follow-up studies, these differences continued to be non-significant.

In contrast, the percentage of patients in the Fritzell RCT not working at baseline due to back pain who were employed at the end of the study was statistically-significantly in favor of the lumbar fusion group
(39% vs. 23% for physical therapy, p=0.049). The “net” rate of back to work (i.e., subtracting those who stopped working during follow-up) was also significantly higher in the fusion group (36% vs. 13% for physical therapy, p=0.002). A subanalysis of the original RCT found that a shorter duration of sick leave prior to treatment was significantly associated with work status at follow-up in both the surgical (14 months for those working, and 31 months for those not working, p<0.0001) and conservative (13 months for those working, and 27 months for those not working, p=0.006) groups. Other variables, including sociodemographics (e.g., gender, smoking, comorbidity), pain (e.g., duration of pain, quality of pain), clinical findings (e.g., reflexes, sensation), psychological diagnosis (e.g., personality disorders), or radiography (e.g., Modic sign type 1), were not significantly associated with work status at follow-up. Moreover, in the long-term follow-up for the same cohorts, the proportion of those working full/part-time after 12.8 years was similar between groups.

Key Question #2: What are the rates of “treatment success” or “successful clinical outcome” of lumbar fusion as defined by measures of clinically-meaningful improvement in pain, function, quality of life, patient satisfaction, and/or work status?

Much of the work done to quantify clinically-significant improvement in measures of pain and function at the individual patient level came after the publication of the RCTs of interest. Two of the five RCTs we identified for this assessment did not include any measurement of “successful” outcome. Findings from the other three RCTs mirrored those of continuous measures of effectiveness in that results favoring surgery were limited to studies that compared surgery to minimal or nonspecific approaches to conservative management. Only two studies evaluated the proportion of patients attaining pre-specified degrees of improvement using a validated instrument, neither of which was an RCT of interest in our assessment.

In recent years, multiple efforts have been undertaken to identify clinically-meaningful changes in measures at the individual patient level. These individual “success” outcome measures include a mean 10-20 point change on a 100-point visual analog pain scale or 5-10 points on the RDQ, which are generally considered moderate improvements.\(^{38}\) Other published thresholds for clinically-meaningful improvement include at least a 30% decrease from baseline on a chronic pain scale or an improvement of at least 20 points on the ODI.\(^{47}\) Patient-defined minimum acceptable outcomes also include discontinuation of opioid medication and return to some occupational activity, though individuals with significant psychosocial factors (e.g., compensation claims, psychological distress), may be less likely to report satisfaction with treatment despite achieving the desired outcomes.\(^{48}\)

Unfortunately, the development of measures of clinically-meaningful change at the individual level came after publication of all but the small Ohtori RCT.\(^{22}\) Recent nonrandomized studies have made use of published measures of clinically-meaningful improvement, but their number is extremely limited for patients with CLBP and uncomplicated DDD. A single good-quality prospective cohort study\(^{35}\) evaluated clinically-meaningful improvement between treatment groups based on a 30% or 5-point improvement on the Roland-Morris Disability Questionnaire (RDQ) and found that, after controlling for baseline differences, a significantly higher proportion of surgically-treated patients achieved this outcome (57% vs. 25%, p<0.001). In addition, 33% and 15% of patients in the surgical and conservative groups, respectively, achieved a composite measure of treatment success that included the above RDQ thresholds as well as a ≥30% improvement in pain intensity, no use of opioid pain medication, and a status of employed at 12 months (p<0.001). While these results favored surgery, the authors cautioned that the control group received a variety of interventions and overall, did not appear to receive services
consistent with major guidelines for treatment of CLBP. For example, only half of patients received any physical therapy and 5% received a cognitive-behavioral intervention.

Only one case series\(^49\) that met our study inclusion criteria assessed a clinically-meaningful threshold of specific outcome measures for patients undergoing lumbar fusion surgery for uncomplicated DDD. Anderson et al. prospectively evaluated 106 patients who received fusion (ALIF technique with titanium cages and autogenous iliac bone graft) and found that patients who were employed before surgery were significantly more likely to be working after a mean 29.7 months of follow-up (90% vs. 43% for non-workers, OR 10.5, \(p=0.0008\)). An attempt to identify predictors of achieving 30% improvement on the RDQ using multivariate logistic regression found no statistically-significant associations between this outcome and work status, age, smoking history, gender, worker’s compensation status, pre-operative pain or RDQ scores, and type of fusion surgery.

In contrast, measures of success in earlier RCTs were limited to patient-reported or independent observer assessment of improvement after treatment. In the Fritzell RCT\(^27\) comparing fusion to physical therapy of varying intensity, 63% of patients in the surgical group rated their symptoms as “much better” or “better” compared to 29% receiving conservative management (\(p<0.0001\)). Results were rated as “excellent” or “good” by independent observers for 45% and 18% of patients in the surgical and conservative groups, respectively (\(p=0.005\)). In the long-term follow-up study\(^37\) to this RCT, the as-treated (66% vs. 31%, \(p=0.004\)) and per-protocol analyses (65% vs. 37%, \(p=0.044\)) demonstrated that significantly more patients felt they were “much better/better” in the fusion group. This result was also demonstrated using a novel analysis not previously published which automatically classified the crossovers from the conservative group as “unchanged/worse” (65% vs. 22%, \(p<0.001\)). However, this difference was not significant in the ITT analysis.

Moreover, there were no statistically-significant differences in either patient or independent observer ratings of treatment success (defined as the three best grades for the Prolo Scale and the Global Back Question) in the two Brox\(^24,25\) RCTs comparing fusion to cognitive/exercise intervention. Measures of treatment success were not considered in either the Fairbank\(^26\) or the Ohtori\(^22\) RCTs.

Some of the studies include mention of clinically-meaningful change in their Discussion sections. Fairbank\(^24\) and Brox\(^26\) (2003) remark that the mean difference in ODI scores between groups did not approach 10.0, which was considered a clinically-meaningful difference. In fact, the confidence interval in the Fairbank RCT did not include 10.0, essentially ruling out any possible difference in favor of surgery. In the Brox 2006\(^25\) RCT, which evaluated patients with prior discectomy, the observed mean difference on the ODI after adjustment for gender and pretreatment expectations was 9.7 points, and the confidence interval around this result included the possibility that exercise/cognitive therapy was superior to fusion.

Key Question #3: What are the rates of adverse events and other potential harms (perioperative, long-term adverse events, and reoperations) associated with lumbar fusion surgery compared to alternative treatment approaches?

Evidence on harms in published RCTs of treatments for patients with CLBP and uncomplicated DDD is limited by several factors. Many of these studies are too small to capture reliable data on complications that occur infrequently, and the relatively low rate of serious complications has led to standards for research reporting that often do not include a formal assessment of all complications.
Other factors contributing to the dearth of data on harms include the lack of observational studies that focus on uncomplicated DDD patients, and the short-term nature of many studies, leading to a failure to observe adverse outcomes associated with surgical interventions that do not manifest until later years (e.g., repeat surgery). Harms associated with conservative treatment are rarely reported and are generally limited to non-compliance with the treatment protocol.

Unlike findings for clinical effectiveness, harms data are often not stratified for interventions that are used for multiple indications (e.g., both uncomplicated DDD and more specific diagnoses). Rather than look to studies comparing different technical approaches of lumbar fusion, which are subject to the same methodological concerns as studies with a conservative treatment comparator group (e.g., small sample sizes, shorter duration of follow-up, lack of standardized reporting), we have identified several large database studies evaluating harms associated with lumbar fusion across several indications and procedure types to provide additional context on the rate of adverse events. These data are evaluated separately from our study set because either the majority of patients did not have a primary indication of uncomplicated DDD (using our pre-specified threshold of ≥75% uncomplicated DDD per our inclusion criteria), or outcomes were not stratified for this population. It should be further noted that diagnostic specificity has been shown to be correlated with outcomes, so results from these studies should be interpreted with caution.

Lumbar Fusion
For lumbar fusion procedures, we have categorized harms as surgery-related mortality, overall adverse events (as reported in the included studies), and requirements for retreatment (e.g., reoperation/revision surgery). Although these studies used various technical approaches to fusion, we did not make any attempt to stratify outcomes by surgical method. Such data, if available, are summarized for Key Question #4. In addition, the available long-term studies did not report any additional complications except the need for additional surgery beyond the original study duration.

Mortality
No data on perioperative mortality attributable to lumbar fusion were reported in any systematic review, RCT, or observational study that met our inclusion criteria. Overall mortality was reported in the Mannion study; 7.1% (10/140) patients died in the fusion group and 0.8% (1/121) patients died in the conservative treatment group during the 11-year follow-up period for the Brox and Fairbank cohorts. The authors noted that they could not definitively determine if these deaths were associated with CLBP or its treatment given that some patients had illnesses unrelated to back pain, nor was this difference statistically tested. Hedlund et al. reported that after a mean 12.8 years of follow-up of the Fritzell cohorts, 20 patients (6.8%) had died for reasons unrelated to chronic LBP; the authors did not report this outcome on a per-group basis, however.

Adverse Events
The most frequently-reported adverse events occurred during the perioperative period and included dural tears, bleeding, and wound infection, occurring at a rate of 9-18% in available RCTs and observational studies. Notably, the only RCT published since the original review did not evaluate the rate of complications in either treatment group, nor did the one good-quality prospective cohort study we identified.

In the Fairbank RCT, a total of 19 patients experienced complications from surgery (10.8%), which were primarily dural tears and problems with surgical implants (2.8% each). In the 2003 Brox RCT, complications included two wound infections, two bleedings, one dural tear, and one venous
thrombosis. Overall 6 patients (18.2%) experienced a complication, and all presented as early complications; there were no late complications associated with surgery. The 2006 Brox RCT\(^25\) reported wound complications in only two patients (8.7%). During long-term follow-up for these studies, no additional complications related to surgery were reported.\(^23\) Fritzell et al.\(^27\) reported 53 early complications occurring in 17% of patients, and 13 (6%) of patients suffered a late complication (defined as more than two weeks after surgery), including nine patients who developed nerve root pain related to the pedicle screw implant.

We identified only one small, poor-quality prospective comparative cohort study\(^32\) which evaluated outcomes for patients with uncomplicated DDD (n=46, mean age 55, 59% male) undergoing minimally-invasive TLIF compared to those who had a previous discectomy undergoing fusion for the first time. Although more patients in the revision group experienced dural tears, overall there were no statistically-significant differences in perioperative complications between the groups.

In addition to the above-described comparative studies, we identified two longer-term case series in our study set that reported complications from fusion surgery. Schoenfeld et al.\(^40\) found that 5% of 143 active military personnel had a postoperative complication following a one- or two-level TLIF procedure, including wound infection, seroma, and radiculitis, with an additional 4% presenting with pseudarthrosis at the last point of follow-up (mean: 34.9 months). Another one of these studies\(^39\) which evaluated 118 patients undergoing one- or two-level ALIF did not report any intraoperative or major complications after surgery over two years of follow-up, but nine patients (7.6%) had persistent pain, two patients (<1%) experienced a hematoma, and one patient received a permanent disability rating.

Subsequent Treatment

Data from available studies indicate that requirements for additional surgery vary widely in both reported rate and indication for such surgery. Across all studies, the rate of reoperation and/or revision surgery averaged approximately 12.5% across studies over a mean of five years of follow-up. As shown in Figure ES-2 on the following page, reoperation continues to be a concern even years after initial surgery. Studies of shorter duration (i.e., up to two years) had a lower reported rate of reoperation (4%-11%) compared to the limited number of studies with longer follow-up periods (15%-32%). Indications for additional surgery include hardware removal, repeat fusion, alternative lumbar surgery (e.g., discectomy), or some combination. The figure on the following page represents those studies in our set that reported on the rate of reoperations.\(^26\)\(^-\)\(^28\),\(^30\),\(^32\),\(^33\),\(^35\),\(^39\),\(^40\) It is difficult to distinguish between revision surgery and reoperations for two reasons: 1) studies often use these terms interchangeably, and 2) patients can undergo surgery for multiple indications (e.g., a combination of hardware removal and repeat fusion), so reasons for repeat surgery are not always differentiated. One study\(^33\) reported these outcomes separately; of the 38 (15%) patients requiring additional surgery, 17 involved hardware removal, 11 required repeat fusion, nine had a combination procedure, and one underwent a discectomy.
Interestingly, only one of these studies associated repeat surgery with adjacent segment degeneration, which is considered a major concern with lumbar fusion and can cause recurrent lumbar pain. Lammli and colleagues reported that one-third of the additional surgical procedures were performed due to degeneration adjacent to the primary fusion level. Two additional long-term studies in our sample evaluated this outcome but with conflicting results. Froholdt et al. (n=48, mean age 43, 42.8% male) included patients from the Brox RCTs who had radiographs available for review after nine years, and found no differences between the surgical and conservative groups after a mean of nine years follow-up. In contrast, another follow-up study which included 369 patients (mean age 43, 46.7% male) who participated in the Brox, Fairbank, and Fritzell RCTs who consented to long-term radiographic follow-up over a mean duration of 13.1 years found a significant correlation between surgery and adjacent segment degeneration by assessing adjacent disc height (TE: -0.44 standard deviations, 95% CI: -0.77, -0.11; p=0.01), but this relationship was not associated with statistically-significant changes in patient-reported measurements of pain or disability.

Conservative Care
No data on observed mortality or complications due to conservative treatment were found in the available evidence. Information was limited to rates of crossover to surgery as summarized above.

Large Database Studies of Lumbar Fusion
As mentioned previously, we identified seven large database studies evaluating complications for fusion across several indications (e.g., stenosis, isthmic spondylolisthesis, scoliosis, etc.) that did not meet our inclusion criteria but are described here to provide additional information on complications associated with lumbar fusion. Three studies used the National Inpatient Sample (NIS) database, two evaluated data from Washington State-specific databases, and one reviewed the Swedish Spine registry for the 2011 calendar year. One of these studies did not specify the spinal outcomes database being reviewed. There is some concern in the clinical community around reviewing large databases.
studies for outcomes of lumbar fusion due to diagnosis coding ambiguity in claims data.59 We have nevertheless described the results of these studies for context below.

The most recent database study58 retrospectively reviewed 1,498 patients with one- and two-year patient-reported outcomes data and found that across all indications for lumbar fusion, the rate of postoperative complications was 7.7%, the majority of which were either cerebrospinal fluid leak, bleeding requiring transfusion, nerve root injury, and surgical site infections. Those patients with DDD with or without radiculopathy made up the largest proportion of patients that experienced any complication (39.7%) compared to those with spondylolisthesis (33.6%), spinal stenosis (13.6%), deformity (9.6%), or instability (3.6%). Although the authors concluded that there were no significant differences in functional improvement (as measured on the ODI, VAS, or SF-36) between those who did and did not experience complications, these outcomes were not specifically tied to a DDD diagnosis.

Another recent database study54 which used NIS data to evaluate three different primary interbody fusion cohorts (923,038 fusions) over nine years. Patients with uncomplicated DDD represented a majority of patients for each fusion group (80.1%, 60.6%, and 78.6% for anterior lumbar interbody fusion [ALIF], posterior/transforaminal lumbar interbody fusion [P/TLIF], and combined anterior-posterior interbody fusion [APF], respectively, mean across groups: 64.2%). Table ES-3 on the following page represents the rate of complications among these groups, showing a significantly higher rate for APF for 12 of 16 complications, and a significantly higher rate of mortality for ALIF. These rates were not adjusted for differences in baseline characteristics.

Those studies52,53 that did not meet our inclusion criteria (primarily because they did not have a majority of patients with uncomplicated DDD or report outcomes specific to this population), but reviewed large samples from the NIS database, evaluated whether mortality was associated with the incidence of specific complications of lumbar fusion across multiple diagnoses. The first study52 identified a sample of 220,522 patients who had a fusion procedure (ALF, PLF, or APLF) for degenerative diseases of the lumbar spine and found that the incidence of postoperative ileus was significantly higher in those who had ALF surgery relative to PLF surgery (4.9 vs. 26.0 per 1,000). Presence of postoperative ileus was associated with significantly higher Charlson comorbidity index (CCI) scores (3.05 and 2.13 for PLF and ALPF, respectively, p<0.001), and rates of mortality in both the ALF (1.5 vs. 4.1 deaths per 1,000, p=0.025) and PLF (1.1 vs. 4.0 deaths per 1,000, p<0.001) fusion groups. The second study53 evaluated the incidence and potential risk factors of cerebral vascular accidents (CVA) following lumbar fusion surgery. A total of 340 CVAs out of 264,891 fusions (1.3 per 1,000) were identified between 2002-2011, and were associated with a greater mortality rate (73.7 vs. 0.8 per 1,000 patients) compared to those who did not have a CVA. Risk factors associated with CVA include advanced age (64.4 vs. 55.0 years for no CVA) and preoperative comorbidities as demonstrated on the CCI (4.03 vs. 2.52 for no CVA) (both outcomes, p<0.001).
Table ES-3. Comparison of complications among P/TLIF, ALIF, and APF.54

<table>
<thead>
<tr>
<th>Complications</th>
<th>ALIF (%)</th>
<th>P/TLIF (%)</th>
<th>APF (%)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>0.25</td>
<td>0.15</td>
<td>0.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>0.17</td>
<td>0.13</td>
<td>0.11</td>
<td>0.0017</td>
</tr>
<tr>
<td>Device Related</td>
<td>5.43</td>
<td>2.44</td>
<td>3.89</td>
<td><0.001</td>
</tr>
<tr>
<td>Neurologic</td>
<td>0.37</td>
<td>0.96</td>
<td>0.55</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiac</td>
<td>0.90</td>
<td>0.87</td>
<td>1.23</td>
<td><0.001</td>
</tr>
<tr>
<td>Peripheral Vascular</td>
<td>0.22</td>
<td>0.08</td>
<td>0.28</td>
<td><0.001</td>
</tr>
<tr>
<td>Respiratory</td>
<td>1.65</td>
<td>1.25</td>
<td>2.20</td>
<td><0.001</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>4.83</td>
<td>2.20</td>
<td>5.56</td>
<td><0.001</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>0.84</td>
<td>1.02</td>
<td>1.11</td>
<td><0.001</td>
</tr>
<tr>
<td>Postoperative Shock</td>
<td>0.08</td>
<td>0.08</td>
<td>0.13</td>
<td>0.0002</td>
</tr>
<tr>
<td>Hematoma/Seroma</td>
<td>0.63</td>
<td>0.62</td>
<td>0.82</td>
<td><0.001</td>
</tr>
<tr>
<td>Intraoperative Accidental Puncture/Laceration of Nerve/Blood vessel</td>
<td>3.41</td>
<td>3.43</td>
<td>4.20</td>
<td><0.001</td>
</tr>
<tr>
<td>Wound Dehiscence</td>
<td>0.27</td>
<td>0.15</td>
<td>0.37</td>
<td><0.001</td>
</tr>
<tr>
<td>Postop Infection</td>
<td>0.74</td>
<td>0.43</td>
<td>0.74</td>
<td><0.001</td>
</tr>
<tr>
<td>Acute Anemia secondary to Hemorrhage</td>
<td>7.39</td>
<td>11.42</td>
<td>11.60</td>
<td><0.001</td>
</tr>
<tr>
<td>Acute Respiratory Distress Syndrome</td>
<td>1.36</td>
<td>0.75</td>
<td>1.36</td>
<td><0.001</td>
</tr>
<tr>
<td>Venous Thromboembolic Events</td>
<td>0.62</td>
<td>0.41</td>
<td>0.73</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table key: ALIF, anterior lumbar interbody fusion; APF, anterior-posterior interbody fusion; ARDS, acute respiratory distress syndrome; CNS, central nervous system; GI, gastrointestinal; GU, genitourinary; P/TLIF, posterior/transforaminal lumbar interbody fusion; VTEs, venous thromboembolic events.

Note: Highest percentage is given in \textbf{bold}. p-Value is from chi-square test.

Two additional database studies55,56 reviewed Washington state-specific data to identify complications and mortality associated with lumbar fusion procedures. One of these studies55 used the Comprehensive Hospital Abstract Reporting System (CHARS) registry of all nonfederal hospitals in Washington State and identified 5,091 adults who underwent a primary fusion procedure for degenerative diseases of the lumbar spine between 2004 to 2007. The overall complication rate for patients with DDD (n=1,097 or 18% of the total population) within the first 90 days after surgery was 4.2%, 2.1% had a repeat lumbar fusion surgery, and there were no deaths. During the one year follow-up, an additional 3.2% had a reoperation, but no deaths or complications were observed. The second study56 identified all workers’ compensation (WC) claimants (n=2,378) who underwent fusion from 1994 through 2001 and found a 90-day perioperative mortality rate of 0.29% (95% CI: 0.11, 0.60) and a 3-year cumulative mortality rate of 1.93% (95% CI: 1.41, 2.57). Interestingly, patients without a specific indication for surgery were more likely to experience the adverse consequences of narcotic use; a diagnosis of DDD was associated with the highest risk of analgesic-related mortality (Risk Ratio [RR] 2.71, 95% CI: 1.17, 6.28).

The final database study57 retrospectively reviewed the Swedish National Spine Register from 2011. In a cohort of 3,066 patients who had fusion surgery, 14% underwent reoperations over a mean three years of follow-up, of which 53% were related to removal of an implant and 47% were related to other complications from surgery. A minority of patients (8%) were listed as having a sole diagnosis of DDD.
and 38% of patients had previous lumbar spinal surgery; however, no further details on complications were reported.

Key Question #4: What is the differential effectiveness and safety of lumbar fusion according to factors such as age, sex, race or ethnicity, pre-existing conditions (e.g., smoking history), intensity of conservative management (e.g., interdisciplinary rehabilitation vs. physical and/or behavioral therapy alone) technical approach to fusion (e.g., posterolateral vs. interbody, minimally-invasive vs. open procedures), initial versus repeat surgery, insurance status (e.g., worker’s compensation vs. other), and treatment setting (e.g., inpatient vs. ambulatory surgery)?

There is little evidence to suggest that greater surgical intensity is related to changes in outcome in the long-term; advantages to less-intensive surgery (e.g., the effect of minimally-invasive surgery [MIS] compared to open surgery was positive on HRQoL) were noted in the short-term but did not persist in longer-term follow-up >2 years. On the other hand, our review suggests that more intensive and interdisciplinary rehabilitation featuring behavioral intervention may be both superior to usual-care approaches featuring only physical or exercise therapy, and that these more intensive approaches produces comparable outcomes compared to lumbar fusion. WC status appears to have a differential treatment effect, negatively affecting some surgical outcomes (but not those of conservative management). This effect on surgical outcomes was inconsistent, however, as were the effects of age and gender. Our review did not find smoking status or BMI to be predictive of surgical outcome. These findings suggest that it will be difficult to use such factors to define subgroups of patients with uncomplicated DDD in whom surgical or conservative interventions would be preferentially indicated.

There are scant and often conflicting data addressing intervention-associated and patient-based factors that may influence outcomes following treatment for uncomplicated DDD. Several factors (e.g., age, gender, complexity of fusion) are often adjusted for in analysis of the effect of treatment for uncomplicated DDD on various outcomes of interest; however, the rationale for variable selection and/or results of stratified analyses suggesting differential effects are rarely provided.

The evidence on differential effects of lumbar fusion according to various patient- and treatment-defined subgroups is summarized in the sections that follow. We gave priority to evidence from comparative studies where available, but also used data from fusion case series to augment our analyses.

Surgical Intensity

Within the primary review scope, patients undergoing spinal fusion had similar levels of improvement in pain and function over one to two years of follow-up across four of the five identified RCTs comparing surgical to conservative treatment. However, statistically-significant treatment effects favoring fusion were noted only in the RCTs comparing non-intensive physical therapy or exercise to posterior lumbar interbody fusion (PLIF) without decompression or ALIF or PLIF with or without variable screw placement. This is in contrast to a lack of significant findings in only one of these RCTs comparing intensive conservative management strategies to PLIF with posterior transpedicular screws. In addition, a subanalysis of a RCT found no significant differences between three different techniques of fusion, including PLF both with and without instrumentation and PLIF with instrumentation.
Our review did not identify any publications describing the effect of previous spinal surgery on any outcome for patients with uncomplicated DDD compared to conservative therapy. One RCT reported no benefit of lumbar fusion over intensive conservative management among patients with previous surgery for disc herniation; this finding mirrors the lack of benefit noted for lumbar fusion over intensive conservative management among patients with no previous surgery. Two additional RCTs included some patients with previous spinal surgery but did not stratify outcomes for these patients. Additionally, a poor-quality prospective study of minimally-invasive TLIF with instrumentation performed in 25 patients as a primary surgical intervention and in 21 patients as a revision surgery for patients who had a previous discectomy documented no pain or function differences between primary and revision surgery at one year; these findings support the observation that there are few differences in primary versus revision surgery among patients with uncomplicated DDD treated with a surgical intervention.

The effect of the number of vertebrae levels fused compared to conservative management was not evaluated in the five RCTs or comparative cohort studies identified in our review. However, two case series that met our inclusion criteria evaluated the effect of single versus multi-level fusion on outcomes in the population of interest. Anderson et al. assessed outcomes in a population of 106 patients with discogenic LBP and followed for a mean of 29.7 months after treatment with varying intensity of ALIF (according to number of levels fused). Using a multivariate regression model, the authors evaluated the effect of single- versus multiple-level fusion on a number of different outcome measures: RTW, a 30% improvement in the VAS pain score, or an increase of at least 30% on the RDQ. Fusion level was not found to be statistically-significantly associated with any of these outcomes. In another case series, the effect of differing levels of fusion (1, 2, or 3 or more) was evaluated in 143 active duty military personnel (mean age 36.3 years), of whom 118 (83%) were DDD patients, treated with TLIF and followed for a mean of 34.9 months. A univariate analysis found that the number of levels fused was not significantly associated with the likelihood medical separation (i.e., an inability to remain on active duty).

We did not identify any studies that met our inclusion criteria and compared minimally-invasive versus open lumbar fusion surgery, or the use of instrumentation versus no instrumentation. However, we did find several systematic reviews and comparative studies that included some proportion of patients with DDD and evaluated these factors. One of these was a systematic review reporting the effect of minimally-invasive versus open surgery for patients undergoing PLIF surgery. The findings of this review suggest that minimally-invasive techniques may be associated with better HRQoL outcomes in the short-term, though the effect was variable, and not present at all in longer term follow-up (>2 years). In addition, the authors noted that the included studies were considerably heterogeneous due to variable patient characteristics and diverse technical specifications associated with surgery. Nevertheless, recent reports reflecting these findings include a prospective study of 66 patients undergoing single level TLIF, comparing those treated with open (n=33, of which 14 were patients with DDD) versus MIS (n=33, of which 13 were patients with DDD), which found significantly lower VAS pain scores at six months post-surgery among those treated with a minimally-invasive approach; no longer term data were presented. Likewise, a retrospective study of 64 patients being treated for LBP and receiving either minimally-invasive TLIF or open TLIF for the treatment of single level DDD or Grade 1 spondylolisthesis with or without leg pain reported lower VAS pain scores in the early post-operative period for the minimally-invasive treatment, with no longer term data presented. In contrast, a prospective study with 190 morbidly obese patients with for LBP and/or radiculopathy undergoing open versus minimally-invasive TLIF did not find any significant differences for any outcome of clinical effectiveness or postoperative complications. Given that the mean BMI in the study sample was 35.3 kg/m², these results may only reflect this subset of the population.
The effect of instrumentation in lumbar fusion surgery was assessed in a retrospective analysis of 1,310 DDD patients undergoing lumbar fusion, examining the effect of varying levels of surgical instrumentation on HRQoL, pain and function, and RTW. Patients undergoing non-instrumented fusion (n=115) had higher levels of pain as measured on a VAS scale than those undergoing instrumented interbody fusion (p=0.02), although no differences in either HRQoL (as measured using the EQ-5D) or disability (as measured using the ODI) were noted. A RCT of patients with DDD treated with PLF (n=72) versus PLIF (n=73) reported no differences in ODI or VAS scores between the two groups at 36 months. These findings were also supported by a prospective study of patients with DDD treated with PLF (n=82) and PLIF (n=80), in which no difference between the two groups was noted on the ODI.

The use of cages in lumbar fusion surgery was evaluated in a recent systematic literature review, which reported that single cage lumbar interbody fusion had significantly lower rates of complications than did two-cage fusion surgery (OR 0.30, 95% CI: 0.10, 0.95). Supporting this finding are those of a retrospective population-based cohort study of 1,950 CLBP patients treated with lumbar fusion surgery and receiving Washington State workers compensation who were followed by for a mean of 6.6 years; in this study, the use of cages or instrumentation was associated with increased complication rate compared with bone-only fusion surgery (OR 2.20, 95% CI: 1.16, 4.16), without any improvement in disability or reoperation rates.

Surgical Approach
The primary focus of our review was on comparisons of lumbar fusion to conservative management; we nevertheless summarize available data comparing different forms of fusion below, with a focus on uncomplicated DDD where possible.

There exists little conclusive evidence documenting the effect of surgical approach on the outcomes of lumbar fusion among patients with uncomplicated DDD. A five-year RCT comparing the clinical outcomes of posterior midline fusion (n=25) compared to a paraspinal approach (n=25) in DDD patients reported significant improvement in outcomes for both groups, but no differences between groups. Another RCT with two years of follow-up reported no statistically-significant differences in function (ODI) or pain (VAS) between groups of DDD patients with radiculopathy treated with TLIF (n=51) or PLF (n=47). Evaluating the hypothesis that APF, with its anterior approach, may result in a higher incidence of major complications than TLIF, a respective analysis of 68 DDD patients treated with APF compared to 65 with TLIF reported higher rates of intra-operative complications associated with APF, and higher rates of post-operative complications associated with TLIF, but with similar clinical outcomes in both groups. A retrospective database analysis similarly documented a significantly increased incidence of postoperative ileus ALF surgery compared to PLF surgery (74.9 vs. 26.0 per 1,000; p<0.001). A prospective observational study documented two-year outcomes associated with posterior fusion with translaminar screw fixation compared to TLIF in a cohort of 120 patients with DDD, and reported no difference in either clinical outcomes or treatment satisfaction.

Conservative Management Intensity
Conservative management in the five identified RCTs incorporated a range of options, and differed in intensity. Table ES-4 on the following page describes the various components of the conservative management programs in each of these RCTs.
Table ES-4. Components of Conservative Management Programs Incorporated as Comparators in RCTs Evaluating Lumbar Fusion in the Treatment of Uncomplicated DDD

<table>
<thead>
<tr>
<th>Publication</th>
<th>Comparator</th>
<th>Strength Training</th>
<th>Aerobic Exercise</th>
<th>Educational Interventions</th>
<th>Biopsychosocial Interventions</th>
<th>Other Interventions</th>
<th>Program Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brox, 2003<sup>24</sup></td>
<td>PLIF</td>
<td></td>
<td>Individualized endurance and coordination exercises</td>
<td>Rehab specialist lecture - Daily reinforcement</td>
<td>Fear avoidance Belief modification</td>
<td></td>
<td>75 hours/3 weeks</td>
</tr>
<tr>
<td>Brox, 2006<sup>25</sup></td>
<td>PLIF</td>
<td></td>
<td></td>
<td>Re却 specialist lecture - Daily reinforcement</td>
<td>Fear avoidance Belief modification</td>
<td></td>
<td>75 hours/3 weeks</td>
</tr>
<tr>
<td>Fairbank, 2005<sup>26</sup></td>
<td>Various fusion</td>
<td>Muscle stretching Spinal flexibility General strength Spine stability</td>
<td>Individualized endurance and coordination exercises</td>
<td>CBT: Fear avoidance and belief modification</td>
<td>Hydrotherapy</td>
<td></td>
<td>60-110 hours/3 weeks</td>
</tr>
<tr>
<td>Fritzell, 2001<sup>27</sup></td>
<td>PLF, ALIF, or PLIF*</td>
<td>Ad hoc physical therapy</td>
<td>Ad hoc educational programs</td>
<td>Ad hoc cognitive training</td>
<td></td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Ohtori, 2011<sup>22</sup></td>
<td>ALIF or PLIF*</td>
<td>½ hour daily muscle stretching</td>
<td>1 hour daily walking</td>
<td></td>
<td></td>
<td>1095 hours/2 years</td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant treatment effect of surgery over conservative management
The conservative management programs differ with respect to the intensity of the intervention, with three24–26 programs providing intensive treatment over a period of less than one month, and another two22,27 providing treatment either over a longer period of time or with an undefined intensity. While comparisons across these RCTs are complicated by differences in study design, methods, and crossover, there are discernable patterns.42 Patients undergoing lumbar fusion had similar levels of improvement in pain and function over one to two years of follow-up across all four of the five identified RCTs comparing surgical to conservative treatment outcomes. However, statistically-significant treatment effects favoring fusion were noted only in the two RCTs22,27 comparing fusion to non-intensive physical therapy or exercise. In contrast, there appears to be relative benefit conferred by intensive conservative management compared to surgery.24–26 No particular component of the management programs appears to be substantially associated with a greater relative benefit compared to surgery; such greater relative benefit appears instead associated with structure and intensity of the program over the short-term perioperative period.

Our review did not identify any studies directly comparing conservative management programs of varying intensity. Outside the scope of our review, there is evidence describing the relative effectiveness of varying intensity of conservative management. Several RCTs describe the efficacy of intensive interdisciplinary rehabilitation programs compared to specific physical therapy regimens.73,74 Findings from those RCTs comparing higher intensity conservative management to some form of physical therapy were consistent, in that no significant treatment effects favoring the more intensive program were observed for any primary outcome measure; substantial improvements in pain, disability, and function were observed in both treatment groups. Several systematic reviews describing the effectiveness of higher intensity programs have also been published. One review75 found that intensive interdisciplinary rehabilitation programs (>100 hours) were associated with clinically-important improvement in function compared to usual care, while another review76 did not find such an association between program intensity and clinical benefit. In sum, there is moderate evidence that intensive conservative management programs confer some level of incremental benefit over usual care, but not necessarily over less intensive programs of physical therapy.

Age

Our review identified three good-quality studies evaluating age as a potential predictor of treatment outcomes: one31 RCT and two40,49 case series, all of which have been previously described. The RCT31 is a secondary analysis of data derived from the Swedish Lumbar Spine Study.27,41 Hagg et al. found that working status at the end of the two-year follow-up was associated with younger age (evaluated as a continuous variable) in the surgical treatment group, but not in the conservative cohort, indicating a differential effect of age on treatment outcomes. In contrast, a case series40 evaluating 143 active duty military personnel found that younger individuals were at a significantly greater risk of medical separation – that is, they were unable to remain on active duty (OR 0.93 per year increase in age, 95% CI: 0.87, 0.98; p=0.01).

Our review identified another case-series49 with conflicting results relative to those above. Using a multivariate regression model, the authors evaluated the effect of age on a number of different outcome measures: returning to work, a 30% improvement in the VAS pain score, or an increase of at least 30% on the RDQ.49 Age was not found to be significantly associated with any of these outcomes. Outside of the scope of the current review, there are similarly conflicting data around the relationship between age and the outcome of surgical treatment for CLBP. A retrospective population-based cohort study48 of 1,950 patients treated with lumbar fusion surgery and receiving Washington State workers compensation reported that in a multivariate analysis age greater than 30 was significantly associated
with post-operative disability, and to the greatest degree for those over 60 (OR 3.07, 95% CI: 1.71, 5.51). In contrast to this finding, a case-series of 620 patients with DDD treated with single level PLF, and followed at least three years, found that only 24.4% returned to work in within two years postoperatively. \(^{38}\) Negative predictors of RTW included age more than 50 years at fusion (OR 0.66; 95% CI: 0.45, 0.95). \(^{38}\)

Workers’ Compensation

Our review identified one good-quality secondary analysis \(^{31}\) of an RCT and one case-series \(^{49}\) describing WC as a potential predictor of outcomes. Hagg et al. found that WC status was negatively associated with patient global assessment (p=0.049) and work status (p=0.035) in the surgical group, but not in the conservative group, indicating a differential effect of WC on treatment. \(^{31}\)

A previously-described case-series \(^{49}\) evaluated the effect of WC on a number of different outcome measures, including pain and function; WC status was not found to be statistically-significantly associated with any of these outcomes. The multivariate model also included pre-surgery work status as a potential predictor of success, and this was independently associated with RTW (OR 10.5, 95% CI: 2.64, 41.4; p=0.008), but not improvements on the VAS or RDQ.

Outside of the scope of this review are several sources of information which may further illustrate the variation in findings around the effect of WC status on the outcome of treatment of patients with CLBP. In contrast with the inconsistent findings above, compensation status, whether through litigation or WC, is in general consistently associated with poor outcomes after any surgical intervention, as reported in a systematic review of 211 clinical trials with relevant information. \(^{77}\) Several other publications describe primary studies of lumbar fusion which add additional specific evidence to the association of WC and outcomes in groups treated thusly. A previously-described nonrandomized comparative prospective study \(^{61}\) found no significant differences in clinical outcomes between those receiving WC compared to the non-WC group, either overall, or stratified by the open versus minimally-invasive technique. These findings were in contrast to those of a prospective non-comparative study of 125 patients undergoing ALIF over a two-year period (of whom 27 were patients with uncomplicated DDD), which documented a significantly lower rate of clinical success (as defined by a score of 1 or 2 on the Patient Satisfaction Index [PSI]) among patients receiving WC (68% success rate) compared to those not (91% success rate) (p=0.006). \(^{78}\) This negative relationship did not hold true in the analysis of either the ODI or the SF-12 PCS or MCS, however.

Psychological Factors

Our review identified two good-quality studies describing psychosocial factors as potential predictors of the effect of treatment. The first was performed in the context of a good-quality multicenter study \(^{31}\) which was derived from the Swedish Lumbar Spine Study. \(^{27,41}\) The authors evaluated factors they deemed as potential predictors of various treatment outcomes in surgical and conservative (non-intensive physical therapy) patient groups. Outcome measures included reduction of disability (≥50% reduction of the ODI score), patient global assessment of treatment effect (improvement/no improvement), and work status at the conclusion of two years of follow-up. \(^{31}\) Using a stepwise, forward multiple logistic regression analysis, the authors found that neurotic personality (measured using the Karolinska Scales of Personality) was statistically-significantly negatively associated with improvement in patient global assessment in the surgical group (p=0.006). However, this association was not significant in the conservatively-treated group, indicating a differential effect of neurotic personality traits on treatment.
Conversely, in this same study, depressive symptoms measured using the ZDS were negatively associated with improvement in the patient global assessment score in the conservative group but not in the surgical group, suggesting a differential effect of this trait on treatment. There was no association, differential or otherwise, noted for depression, ODI scores, or work status in either the surgical or conservative treatment groups.

Outside of the scope of the current review, there are data which may further illustrate nuances of the relationship between psychological comorbidities and outcomes of treatment for uncomplicated DDD. A retrospective case series followed 620 patients with DDD treated with single-level PLF for at least three years; 24.4% returned to work in within two years postoperatively. Negative predictors of RTW included psychological comorbidity (defined as undergoing psychotherapy) before fusion (OR 0.30; 95% CI: 0.14, 0.62). In addition, a systematic literature review documented that psychological factors may in fact modify the treatment effect of fusion versus conservative treatment, with the outcome of fusion less favorable among patients with personality disorder, neuroticism, or depression. Supporting these findings is a retrospective population-based cohort study of 1,950 chronic back pain patients treated with lumbar fusion surgery and receiving Washington State workers compensation followed by for a mean of 6.6 years. This study reports that psychological comorbidities, characterized as including depression, dysthymia, manic-depressive disorders, stress, affective psychoses, or adjustment disorders, were associated with a higher risk of disability two years after lumbar fusion (OR 1.51, 95% CI: 1.05, 2.26).

Key Question #5: What are the costs and potential cost-effectiveness of lumbar fusion relative to alternative treatment approaches?

Economic evaluations of lumbar spinal fusion in patients with uncomplicated DDD are limited both in number and in quality. Available evidence on the costs of lumbar fusion surgery suggest that in-hospital costs alone can approach $100,000 in the U.S., particularly for more complex forms of surgery. The results of two RCT-based economic evaluations mirrored findings for clinical outcomes. A comparison of fusion to interdisciplinary rehabilitation in which no material differences in clinical effectiveness were observed yielded a two-year cost-effectiveness estimate of >$100,000 per quality-adjusted life-year gained. A second comparison of fusion to variable approaches for physical therapy produced calculated cost per unit improvement in pain and function as well as per case of symptom improvement or RTW rather than traditional cost-effectiveness measures such as unadjusted or quality-adjusted survival. Finally, a survey-based study of LBP patients’ willingness to pay for surgery indicated a willingness to pay more than the actual observed costs of surgery for discectomy and decompression alone, but not for lumbar fusion.

While many studies in the available literature have documented increases in both the utilization and costs of lumbar fusion surgery, relatively few have focused specifically on costs and potential cost-effectiveness in the target population for this assessment—patients with DDD and CLBP not attributable to other conditions (e.g., severe stenosis, acute trauma, etc.) and without radiculopathy. We summarize the available economic evidence for patients with uncomplicated DDD below, as well as those from selected other studies commenting on cost data and/or trends relevant to fusion surgery. Costs are presented in terms of 2014 US dollars, and were updated as necessary based on the medical care component of the U.S. Consumer Price Index.
Utilization and Costs of Fusion in the U.S.

Given the policy interest around the use and appropriateness of fusion procedures in the U.S., it is not surprising that utilization of these procedures has been closely tracked. We chose to focus on comprehensive evaluations that have been performed most recently. One such study focused specifically on the use of lumbar fusion for DDD employed the Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample to evaluate trends from 2000-2009. Population-adjusted utilization of fusion surgery increased 2.4-fold during this period, with the greatest increases seen in anterior approaches to fusion. Another relatively recent study used Medicare claims data to examine trends from 2002-2007 in utilization, outcome, and cost, although the focus of attention in this evaluation was on patients with spinal stenosis. Results suggested a more than 15-fold increase (from 1.3 to 19.9 per 100,000 beneficiaries) in the rate of “complex” fusion procedures (i.e., more than two disk levels or a combined anterior/posterior approach), and an incidence of life-threatening complications with complex fusion (5.6%) more than two-fold higher than among patients undergoing decompressive surgery without fusion. Adjusted hospital charges (in 2014 United States Dollars [USD]) ranged from $27,480 for decompression alone to $67,773 for simple fusion to $92,766 for complex fusion.

Martin and colleagues also explored whether differences in worker’s compensation coverage policy for lumbar fusion in a variety of degenerative conditions had an impact on utilization and costs. State inpatient databases were compared for California, which requires coverage in any situation in which a second opinion agrees with the first, and Washington, which applies utilization review criteria, requires imaging confirmation of spinal instability, and limits the initial procedure to a single disc level. In 2008-2009, the age- and sex-adjusted rate of lumbar fusion in the worker’s compensation population was 19.0 per 100,000 employed adults in California and 12.9 per 100,000 in Washington (p<0.001). Rates of reoperation and readmission within three months of the initial procedure were also statistically-significantly higher in California. Finally, after adjustment for age, sex, comorbidity, and indication for fusion, mean hospitalization costs (2014 USD) were over 20% higher in California ($59,168 versus $48,271 for Washington, p<0.001).

Cost-Effectiveness of Lumbar Fusion in DDD

Two of the RCTs summarized in our assessment featured within-trial economic evaluations. In one, Rivero-Arias and colleagues evaluated the cost-effectiveness of lumbar fusion over a two-year period based on clinical, utility, and micro-costed data collected during Fairbank’s RCT comparing lumbar fusion to intensive rehabilitation. Costs were calculated based on itemized resources and unit costs for surgical, rehabilitation, and follow-up services utilized. Utility estimates were based on direct collection of data from the EQ-5D questionnaire at multiple timepoints. Interestingly, while productivity loss was also costed, these estimates do not appear to have been used in the evaluation, which is described as having been conducted from the perspective of the British National Health Service.

Two-year costs for surgery and rehabilitation (in 2014 US dollars) totaled $18,345 and $10,604 respectively. There was no statistically-significant difference in quality-adjusted survival between groups. Cost-effectiveness (2014 USD) was $113,838 per quality-adjusted life year (QALY) gained for surgery. The authors concluded that such a ratio would not represent a cost-effective use of resources over a two-year window, and sensitivity analyses suggested that cost-effectiveness might only be approached if differences in utility persisted over the long term and/or greater than 20% of rehabilitation patients opted for surgery each year.
The other trial-based evaluation comes from the Swedish Lumbar Spine Study27 and also involved costing of resources consumed during the two-year study.84 Unfortunately, cost-effectiveness was expressed not in terms of cost per QALY or life-year gained, but in terms of unit improvements in disability, treatment success, and RTW. In primary analyses, cost-effectiveness of fusion (in 2014 USD) versus usual care was estimated to be $2,363 per unit improvement on the ODI. Original cost-effectiveness calculations appeared to treat differences in RTW and significant clinical improvement as whole numbers rather than proportions. When considered as proportions (i.e., differences in the probability of these outcomes), cost-effectiveness was $54,527 per significant clinical improvement and $81,011 per RTW, respectively.

We identified two additional cost-effectiveness evaluations that made use of clinical data, although not from studies that were considered for our evidence review. Adogwa and colleagues examined the cost-effectiveness of TLIF in 45 patients with Grade 1 spondylolisthesis,85 while Glassman et al.86 assessed the cost-effectiveness of PLIF among patients with DDD as well as other conditions (e.g., disc herniation). In both studies, however, costs and QALYs at two years were compared to those before surgery in the same population rather than to a control group receiving a contemporaneous intervention. In Adogwa’s study, cost-effectiveness was estimated to be $46,428 per QALY gained (2014 USD) at two years.85 In the Glassman evaluation, the cost-effectiveness of fusion (2014 USD) was $34,565 per QALY gained when only direct health care costs were considered and $56,443 per QALY gained when costs of lost productivity were added. Again, these ratios are calculated in relation to a pre-surgical state rather than to the costs and outcomes associated with an alternative treatment.

Other Economic Evaluations

Fayssoux and colleagues estimated the indirect costs associated with surgery for single-level DDD by using pooled data from an RCT of lumbar fusion and artificial disc replacement.87 In the first year postoperatively, rates of full- or part-time employment declined from approximately 54% at baseline to less than 30% at 6 weeks, but returned to baseline levels by one year. Lost wages totaled approximately $2,900 per patient in the first year. By the end of the second year of follow-up, 63% of patients reported full- or part-time employment.

Another study involved the use of a post-surgery evaluation of the value that patients ascribe to individual surgical procedures for LBP.88 A total of 115 Swiss patients who had undergone discectomy, decompressive surgery, or fusion for a variety of degenerative lumbar conditions were surveyed regarding the maximum they would be willing to pay for each of these procedures, controlling for other factors such as satisfaction with the procedure, family income, and other financial resources. For both discectomy and decompression, the maximum willingness-to-pay (WTP) threshold for surgery was higher than the actual cost of the surgical procedures. For lumbar fusion, however, patients reported a maximum willingness-to-pay level of $19,712 (2014 USD), compared to an actual average hospital cost of $24,676 (p<0.05).

Finally, Alvin and colleagues conducted a systematic review to document variation in cost-calculation methods in economic evaluations of cervical and spinal lumbar surgery.89 A total of 37 economic evaluations were identified. Sources of costs varied widely, with approximately one-third of evaluations using public-payer reimbursement, another one-third based on procedure micro-costing approaches, and the remainder using cost-to-charge ratios or other government data sources. Of perhaps greater concern, one-quarter of the cost-effectiveness evaluations that stated use of a societal perspective did not include calculations of indirect costs, and there was great variation in the types of direct costs considered.
ICER Integrated Evidence Ratings

The ICER integrated evidence rating matrix is shown below; a detailed explanation of the methodology underpinning this rating system can be found in Appendix C to the full report. Separate ratings are provided for each of the populations and procedure comparisons under consideration; the ratings and rationale are described on the following pages.

Figure ES-3: ICER Integrated Evidence Ratings

<table>
<thead>
<tr>
<th>Comparative Clinical Effectiveness</th>
<th>Superior: A</th>
<th>Incremental: B⁺/B</th>
<th>Comparable: C⁺/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promising but Inconclusive: P/I</td>
<td>Aa</td>
<td>Ab</td>
<td>Ac</td>
</tr>
<tr>
<td>Insufficient: I</td>
<td>B⁺ a</td>
<td>B⁺ b</td>
<td>B⁺ c</td>
</tr>
<tr>
<td></td>
<td>Ba</td>
<td>Bb</td>
<td>Bc</td>
</tr>
<tr>
<td></td>
<td>C⁺ a</td>
<td>C⁺ b</td>
<td>C⁺ c</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>Cb</td>
<td>Cc</td>
</tr>
<tr>
<td></td>
<td>Da</td>
<td>Db</td>
<td>Dc</td>
</tr>
<tr>
<td>P</td>
<td>Pa</td>
<td>Pb</td>
<td>Pc</td>
</tr>
<tr>
<td>Insufficient: I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

Comparative Value

- High
- Reasonable/Comp
- Low
Lumbar Spinal Fusion vs. Conservative Management in Uncomplicated DDD

1. Lumbar Fusion vs. Intensive/Interdisciplinary Rehabilitation: Dc (“Inferior/Low Value”)
2. Lumbar Fusion vs. Less Intensive Conservative Management: Cc (“Comparable/Low Value”)

Rationale for ICER Ratings

As noted in this review, there were clear distinctions in the available evidence comparing lumbar fusion to conservative management in patients with DDD and no other acute, systemic, or clearly anatomic causes for LBP (i.e., “uncomplicated DDD”). Randomized and other studies comparing fusion to structured, interdisciplinary rehabilitation programs that typically add educational and behavioral components to physical and exercise therapy show no clinical benefit for surgery in these comparisons. In addition, regardless of the comparator, lumbar fusion procedures are associated with relatively high rates of overall complications and reoperation. In our view, combining the evidence on clinical benefits and harms for fusion yields a net health benefit rating of “Inferior” in comparison to interdisciplinary rehabilitation. In addition, while there is a lack of high-quality evidence on cost-effectiveness in this setting, fusion appears to represent a high-cost intervention in the U.S. for no material gain in relation to interdisciplinary programs (i.e., of “low” value).

The evidence for lumbar fusion in comparison to less-intensive, often single-component conservative care (e.g., physical or exercise therapy alone) involves a more complex tradeoff. Randomized evidence suggests statistically-significant (if not consistently clinically-significant) improvements in pain, function, and RTW for versus conservative management in these settings, but with the notable caveat that short-term benefits (i.e., at 1-2 years) appear to diminish with longer-term follow-up. These findings are further complicated by high rates of crossover between treatment groups in some studies. Given fusion’s potential for harm, we feel that the available evidence suggests that fusion and less-intensive conservative management are “functionally equivalent” (i.e., a rating of “Comparable” on the ICER matrix). Available economic evidence in these settings is limited and subject to quality concerns (e.g., use of nontraditional measures of cost-effectiveness, comparisons to pre-surgical states rather than contemporaneous control therapy). Given fusion’s high cost and only modest long-term benefit for these comparisons, we consider fusion also to be of low value when compared to less-intensive conservative management.
1. Background

Condition
Low back pain (LBP) is an exceedingly common complaint and a substantial cause of disability. At any given point in time, more than 10% of individuals are diagnosed with LBP, and lifetime prevalence ranges from 60-70% in industrialized countries such as the US. The economic impact of LBP is also substantial. It is the second most common reason for all physician visits in the U.S., and is responsible for approximately $30 billion in direct medical costs annually. In addition, LBP is associated with substantial indirect costs, in large part due to its detrimental effect on productivity. It is estimated that over 3% of the U.S. work force is compensated for back pain or injury each year, with approximately 187 million missed work days and wage losses accounting for an additional $22.4 billion in annual indirect costs.

With LBP often presenting as a temporary condition, and an estimated 25-58% of cases spontaneously resolving, nonsurgical – that is, conservative – treatment is the primary treatment modality at diagnosis. Conservative treatment may include any number of non-surgical therapies, in a structured or unstructured setting, and to lesser or greater degrees of intensity; such therapies include exercise, physical therapy, education, CBT, acupuncture, or spinal manipulation. However, persistent LBP that is refractory to conservative treatment may be seen in as many as one-quarter of patients six months after an initial episode.

LBP can be caused by a number of specific and nonspecific conditions, all of which differ in prevalence and affect different age groups. Nerve irritation, muscle strain, and bone or soft tissue damage may all give rise to LBP. Another common cause of LBP is lumbar degenerative disc disease (DDD), arising from natural degeneration of an intervertebral disc. DDD is commonly associated with LBP in many individuals. Use of the term “disease” to describe this condition is something of a misnomer, however, as disc degeneration (dehydration and shrinkage) is a natural consequence of aging, and many individuals never develop overt symptoms of DDD. Diagnosis and subsequent treatment typically involves an initial history and physical examination by a clinician. However, the presence of DDD alone correlates poorly with the presence and severity of LBP, making it difficult to attribute symptoms to DDD. Initially, the clinician might prescribe various conservative self-care therapies or will perform a diagnostic exam to check the patient’s pain tolerance, functional capabilities, and reflexes. An MRI and/or CT scan may be used to identify other potential anatomic causes of the patient’s symptoms, including other co-occurring conditions such as radiculopathy (compression of the root nerve), spondylolisthesis (slippage of a vertebral disc over another, causing spinal instability), or spinal stenosis (narrowing of the spinal canal), lumbar disc herniation (the rupture of an intervertebral disc which then pushes outside its normal boundary). The process of disc degeneration appears to be influenced by demographic and behavioral factors (e.g., age, occupation, and activity level), lifestyle (e.g., obesity, smoking), and importantly, genetics.

Multiple treatment options are available for symptoms associated with DDD of the lower back, including conservative measures, minimally-invasive treatments such as spinal injections and radiofrequency ablation, and surgical intervention. Conservative, non-invasive approaches vary widely in method and intensity, and are typically used as a first-line treatment approach for patients complaining of LBP. When pain becomes chronic (i.e., continues for longer than three months), more intensive conservative management using interdisciplinary methods is often considered. If these are unsuccessful, management with surgery can be considered. Lumbar fusion surgery, which involves the creation of a permanent connection across the vertebral space by means of a graft, is often considered when
conservative treatments fail to relieve the patient’s pain. However, many patients may be at risk of continued persistent LBP, as initial surgery is subject to high rates of reoperation with declining success rates after each consecutive surgery. It is estimated that as many as one-fifth of patients require additional surgery in the decade following an initial fusion procedure.

While some treatment options are used exclusively in certain patient populations, they can be generally characterized as follows:

- Non-surgical
 - Conservative treatment
 - Lower intensity: Simple, conservative treatment. This includes medications, physical and/or exercise therapy, behavioral therapy, chiropractic, alternative therapy (e.g., acupuncture, yoga)
 - Higher intensity: Interdisciplinary rehabilitation. This includes intensive, multimodal rehabilitation that is physician-directed and may include workplace, exercise, educational, and/or psychologist- or therapist-led behavioral interventions
 - Minimally-invasive procedures
 - Spinal injections (e.g., epidural steroids, facet joint)
 - Radiofrequency denervation
 - Intradiscal electrothermal therapy: Passage of a catheter into the lumbar disc space, and heating up the outer core.
 - Posterior dynamic stabilization: Devices are used to preserve motion in the spine while also releasing pressure on the degenerated disc. The devices can be used in conjunction with fusion, or as stand-alone treatments.

- Surgical
 - Discectomy
 - Spinal fusion: the intensity of each of the below procedures is associated with the number of vertebral segments involved, with the fusion of 2 segments limiting motion more so than one.
 - Posterolateral gutter fusion - the procedure is done through the back, and involves placement of the bone graft between the transverse processes, commonly using pedicle screw fixation.
 - Interbody fusion: the procedures are done using various approaches, and involve removing the disc between two vertebrae and inserting the bone graft into the space created between the vertebral bodies
 - Posterior lumbar interbody fusion (PLIF) - the procedure is done from the back
 - Transforaminal lumbar interbody fusion (TLIF) - this procedure is done from the back of the spine, differing from the PLIF mainly in the angle at which the disc is approached
 - Anterior lumbar interbody fusion (ALIF) - the procedure is done from the front
 - Extreme Lateral Interbody Fusion (XLIF) - an interbody fusion in which the approach is from the side
Policy Context

Due to the prevalence of LBP and the varying nature of the conditions that underlie it, numerous management options are available. These options vary substantially in intensity of treatment and follow-up, degree of invasiveness, and most importantly, level of evidence regarding their effectiveness. Although there is lack of consensus on when lumbar fusion surgery is indicated, how the surgery should be performed, and long-term prognosis after surgery, the number of lumbar fusion surgeries performed in the U.S. has nevertheless increased more than two-fold between 2000 and 2009.81,90 In particular, some studies have shown poor success rates for lumbar fusion when used to treat patients with CLBP and DDD alone – that is, without radicular pain or co-occurring spinal injuries or disorders.91 Not surprisingly, there is significant interest on the part of patients, clinicians, policymakers, and other stakeholders in evaluating the clinical and economic impact of lumbar fusion for patients with chronic LBP and DDD.

An evidence-based inquiry into lumbar fusion as a treatment option for DDD is complicated by the fact that there exists no consensus regarding a true “gold standard” treatment for DDD. Building such consensus around treatment requires comparison of surgical to conservative treatment modalities, providing a clear picture of all treatment options, and allowing for evidence-based evaluation. Lumbar fusion is a commonly employed method of surgical intervention for DDD, and a careful evaluation of its effectiveness relative to conservative treatment modalities will serve to inform policy around its use.
2. **Washington State Agency Utilization Data**

Lumbar fusion analysis includes utilization data from:
- PEBB/UMP,
- Public Employees Benefit Board Uniform Medical Plan, the
- Department of Labor and Industries (L&I) workers’ compensation plan, and
- Medicaid Fee for Service and Managed Care.

The analysis periods for the populations are:
- PEBB and L&I calendar year 2009 through 2014;
- Medicaid calendar year 2012 – 2014.

The primary analysis inclusion criteria included:
- Age at time of service was greater than 17 years old; AND one of the following CPT Codes:
 1) 22533, 22558, 22612, 22630, 22633; or
 2) 22849

Cost includes all professional, inpatient, and ancillary claims for the CPT.

Claims that included a $0 allowed amount and a $0 paid were excluded.

Table 1
PEBB/UMP
Population: Members
Number and Distribution by Gender and by Age Cohort

<table>
<thead>
<tr>
<th>Year</th>
<th>Total PEBB Mbrs</th>
<th>% PEBB/UMP Mbrs >17 Y.O.</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>227,755</td>
<td>171,071 (84%)</td>
<td>All Males (%) 45%</td>
</tr>
<tr>
<td>2012</td>
<td>230,723</td>
<td>194,688 (84%)</td>
<td>45%</td>
</tr>
<tr>
<td>2013</td>
<td>239,855</td>
<td>202,223 (84%)</td>
<td>45%</td>
</tr>
<tr>
<td>2014</td>
<td>246,950</td>
<td>208,330 (84%)</td>
<td>45%</td>
</tr>
</tbody>
</table>

Table 2
Medicaid Fee-For-Service And Managed Care
Population: Members
Number and Distribution by Gender and by Age Cohort

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Medicaid</th>
<th>% Medicaid Mbrs >17 yrs</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1,342,639</td>
<td>519,971 (39%)</td>
<td>All Males (%) 32%</td>
</tr>
<tr>
<td>2012</td>
<td>1,344,853</td>
<td>517,451 (38%)</td>
<td>33%</td>
</tr>
<tr>
<td>2013</td>
<td>1,367,708</td>
<td>529,666 (39%)</td>
<td>33%</td>
</tr>
<tr>
<td>2014</td>
<td>1,774,651</td>
<td>905,451 (51%)</td>
<td>41%</td>
</tr>
</tbody>
</table>
Table 3
PEBB/UMP Utilization: Lumbar Fusion 2009 – 2014 *(Does not include Medicare)*

NOTE: Submitted, Allowed and Paid Dollars are rounded

<table>
<thead>
<tr>
<th>Year</th>
<th>Unique Patients</th>
<th>Procedures</th>
<th>Submitted Amt (rounded)</th>
<th>Allow Amt (rounded)</th>
<th>Paid Amt (rounded)</th>
<th>Average Paid/Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>85</td>
<td>88</td>
<td>$9,952,000</td>
<td>$5,011,000</td>
<td>$4,912,000</td>
<td>$55,818</td>
</tr>
<tr>
<td>2010</td>
<td>145</td>
<td>148</td>
<td>$19,126,000</td>
<td>$8,960,000</td>
<td>$8,793,000</td>
<td>$59,412</td>
</tr>
<tr>
<td>2011</td>
<td>119</td>
<td>120</td>
<td>$20,528,000</td>
<td>$7,951,000</td>
<td>$7,790,000</td>
<td>$64,917</td>
</tr>
<tr>
<td>2012</td>
<td>116</td>
<td>117</td>
<td>$15,420,000</td>
<td>$6,932,000</td>
<td>$6,832,000</td>
<td>$58,393</td>
</tr>
<tr>
<td>2013</td>
<td>136</td>
<td>137</td>
<td>$22,368,000</td>
<td>$7,223,000</td>
<td>$7,094,000</td>
<td>$51,781</td>
</tr>
<tr>
<td>2014</td>
<td>154</td>
<td>157</td>
<td>$26,612,000</td>
<td>$8,810,000</td>
<td>$8,680,000</td>
<td>$55,287</td>
</tr>
</tbody>
</table>

Table 4

Volume Only

<table>
<thead>
<tr>
<th>Year</th>
<th>Unique Patients</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>2012</td>
<td>134</td>
<td>137</td>
</tr>
<tr>
<td>2013</td>
<td>129</td>
<td>130</td>
</tr>
<tr>
<td>2014</td>
<td>169</td>
<td>171</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Year</th>
<th>Unique Patients</th>
<th>Procedures</th>
<th>Total Paid (rounded)</th>
<th>Average Paid/Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>399</td>
<td>415</td>
<td>$16,435,000</td>
<td>$39,602</td>
</tr>
<tr>
<td>2010</td>
<td>403</td>
<td>421</td>
<td>$16,369,000</td>
<td>$38,881</td>
</tr>
<tr>
<td>2011</td>
<td>402</td>
<td>411</td>
<td>$15,197,000</td>
<td>$36,975</td>
</tr>
<tr>
<td>2012</td>
<td>401</td>
<td>411</td>
<td>$18,623,000</td>
<td>$45,311</td>
</tr>
<tr>
<td>2013</td>
<td>404</td>
<td>416</td>
<td>$15,869,000</td>
<td>$38,146</td>
</tr>
<tr>
<td>2014</td>
<td>343</td>
<td>345</td>
<td>$15,414,000</td>
<td>$44,678</td>
</tr>
</tbody>
</table>
Table 6
Medicaid Fee-For-Service
Utilization: Lumbar Fusion 2012 – 2014
Excludes members with dual benefits from Medicare/Medicaid

<table>
<thead>
<tr>
<th>Year</th>
<th>Unique Patients</th>
<th>Procedures</th>
<th>Total Alloc (rounded)</th>
<th>Total Paid (rounded)</th>
<th>Average Paid/Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>241</td>
<td>241</td>
<td>$6,725,000</td>
<td>$5,486,000</td>
<td>$22,765</td>
</tr>
<tr>
<td>2013</td>
<td>281</td>
<td>281</td>
<td>$8,479,000</td>
<td>$6,565,000</td>
<td>$23,363</td>
</tr>
<tr>
<td>2014</td>
<td>391</td>
<td>391</td>
<td>$10,815,000</td>
<td>$10,207,000</td>
<td>$26,105</td>
</tr>
</tbody>
</table>

Table 7
Medicaid Managed Care
Utilization: Lumbar Fusion 2012 – 2014 Volume Only

<table>
<thead>
<tr>
<th>Year</th>
<th>Unique Patients</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>126</td>
<td>128</td>
</tr>
<tr>
<td>2013</td>
<td>224</td>
<td>232</td>
</tr>
<tr>
<td>2014</td>
<td>365</td>
<td>377</td>
</tr>
</tbody>
</table>

Chart 1
PEBB/UMP, PEBB Medicare, Medicaid Fee-for-Service, and Medicaid Managed Care
Utilization: Utilization per 1000 by Program 2012-2014
Chart 2
PEBB/UMP, L & I, Medicaid Fee-for-Service, and Medicaid Managed Care
Utilization: Average Age of Patient on Date of Procedure by Program 2011-2014

Chart 3
PEBB/UMP
Utilization: Members with a Lumbar Fusion 2011-2014 by Age Cohort
Chart 4
L & I
Utilization: Members with a Lumbar Fusion 2012-2014 by Age Cohort

<table>
<thead>
<tr>
<th>Year</th>
<th><30</th>
<th>30 - 40</th>
<th>41 - 50</th>
<th>51 - 60</th>
<th>>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>35%</td>
<td>34%</td>
<td>33%</td>
<td>35%</td>
<td>35%</td>
</tr>
<tr>
<td>2013</td>
<td>17%</td>
<td>18%</td>
<td>12%</td>
<td>17%</td>
<td>12%</td>
</tr>
<tr>
<td>2014</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Chart 5
Medicaid Fee-for-Service
Utilization: Patients with a Lumbar Fusion 2012-2014 by Age Cohort

<table>
<thead>
<tr>
<th>Year</th>
<th><30</th>
<th>30-40</th>
<th>41-50</th>
<th>51-60</th>
<th>61+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>22%</td>
<td>11%</td>
<td>14%</td>
<td>9%</td>
<td>15%</td>
</tr>
<tr>
<td>2013</td>
<td>6%</td>
<td>6%</td>
<td>9%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>2014</td>
<td>6%</td>
<td>6%</td>
<td>9%</td>
<td>7%</td>
<td>7%</td>
</tr>
</tbody>
</table>
Chart 6
Medicaid Managed Care
Utilization: Patients with a Lumbar Fusion 2012-2014 by Age Cohort

Chart 7
PEBB/UMP
Chart 8
L & I
Utilization: Lumbar Fusion by Year 2009 – 2014

Chart 9
Medicaid Fee-for-Service & Managed Care
Utilization: Lumbar Fusion Procedures by Year 2012 – 2014

Excludes all dual coverage patients for procedure
Table 8
PEBB/UMP, L& I & Medicare
Top 10 Primary ICD-9 Diagnoses Coded For Lumbar Fusion

<table>
<thead>
<tr>
<th>L & I 90% of Claims Use These ICD-9s 2009 - 2014</th>
<th>PEBB 83% of Claims Use These ICD-9s 2009 - 2014</th>
<th>Medicaid 74% of Claims Use These ICD-9s 2012 - 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPINAL STEN LUMB REG W/O NEUROGENIC CLAU</td>
<td>ACQUIRED SPONDYLOLISTHESIS</td>
<td>ACQUIRED SPONDYLOLISTHESIS</td>
</tr>
<tr>
<td>DISPLCMNT LUMBAR INTERVERT DISC W/O MYELO</td>
<td>SPINAL STENOSIS, LUMBAR REGION, WITHOUT NEUROGENIC CLAUDICATION</td>
<td>SPINAL STEN LUMB REG W/O NEUROGENIC CLAU</td>
</tr>
<tr>
<td>DEGEN LUMBAR/LUMBOSACRAL INTERVERTEBRAL</td>
<td>DEGENERATION OF LUMBAR OR LUMBOSACRAL INTERVERTEBRAL DISC</td>
<td>LUMBOSACRAL SPONDYLOSIS</td>
</tr>
<tr>
<td>ACQUIRED SPONDYLOLISTHESIS</td>
<td>DISPLACEMENT OF LUMBAR INTERVERTEBRAL DISC WITHOUT MYELOPATHY</td>
<td>DEGEN LUMBAR/LUMBOSACRAL INTERVERTEBRAL</td>
</tr>
<tr>
<td>LUMBOSACRAL SPONDYLOSIS WITHOUT MYELOPAT</td>
<td>LUMBOSACRAL SPONDYLOSIS WITHOUT MYELOPATHY</td>
<td>LUMBAR DISC DISPLACEMENT</td>
</tr>
<tr>
<td>THORACIC/LUMBOSACRAL NEURITIS/RADICULITI</td>
<td>SPINAL STENOSIS, LUMBAR REGION, WITH NEUROGENIC CLAUDICATION</td>
<td>SPONDYLOLISTHESIS</td>
</tr>
<tr>
<td>POSTLAMINECTOMY SYNDROME LUMBAR REGION</td>
<td>SCOLIOSIS (AND KYPHOSCOLIOSIS), IDIOPATHIC</td>
<td>SPINAL STENOSIS, LUMBAR REGION, WITH NEUROGENIC CLAUDICATION</td>
</tr>
<tr>
<td>CONGENITAL SPONDYLOLISTHESIS</td>
<td>MECH COM ORTH DEV NEC</td>
<td>MECH COM ORTH DEV NEC</td>
</tr>
<tr>
<td>LUMBAGO</td>
<td>POSTLAMINECTOMY SYNDROME, LUMBAR REGION</td>
<td>POSTLAMINECTOMY SYNDROME, LUMBAR REGION</td>
</tr>
<tr>
<td>NONUNION OF FRACTURE</td>
<td>OTHER KYPHOSCOLIOSIS AND SCOLIOSIS</td>
<td>LUMBOSACRAL NEURITIS NOS</td>
</tr>
</tbody>
</table>
3. Alternative Treatment Strategies

The major approaches to lumbar spinal fusion and conservative, nonsurgical management are described in further detail below. Of note, other minimally-invasive procedures (e.g., spinal injections, denervation procedures) are used in patients with uncomplicated DDD but are not described here given the contrast of primary interest for our review.

Lumbar Spinal Fusion

During spinal fusion procedures, the spine is stabilized by fusing two or more vertebrae together, using metal rods, bone grafts, or screws.\(^1\)\(^4\) Spinal fusions are classified as either simple (one or two disc levels or a single surgical approach) or complex (more than two disc levels or a combined anterior and posterior approach). Fusion may or may not use instrumentation such as screws, plates, or cages. Instrumentation is generally used as an internal splint to hold the vertebrae together while the bone grafts heal. Bone or bone substitutes are used to help fuse the vertebrae together. The bone may be taken from another bone in the patient (autograft) or from a bone bank (allograft). Bone morphogenic proteins may also be used as an alternative to autograft. Substantial bone healing takes some time to achieve and the healing process varies from person to person. Documentation of bone healing, as evidenced by an X-ray, is not carried out until approximately six weeks post-procedure. During this time, the patient’s activity must be limited. The surgeon may recommend a postoperative rehabilitation program.\(^1\)\(^5\)

Risks associated with spinal fusion include nerve root damage, bleeding, and infection. While the major risks are relatively rare, the odds of injury are higher with increasing complexity of surgical approach and use of instrumentation.\(^1\)\(^6\) Other complications, common to all types of major surgery, may include deep vein thrombosis, myocardial infarction, pulmonary embolism, and pneumonia.

The main approaches to lumbar fusion surgery are as follows:

Posterolateral gutter fusion (PLF)

A posterolateral gutter fusion is performed at the transverse processes, with the surgical approach to the spine from the back through a midline incision that is approximately three inches to six inches long. A bone graft is obtained and laid out in the posterolateral portion of the spine. This region lies on the outside of the spine and is a very vascular area, which is important because the fusion needs blood to supply the nutrients for it to grow. A small extension of the vertebral body in this area (transverse process) is a bone that serves as a muscle attachment site. The large back muscles that attach to the transverse processes are elevated up to create a bed to lay the bone graft on. The back muscles are then laid back over the bone graft, creating tension to hold the bone graft in place.

Interbody Fusions

Interbody fusion is a method which removes the degenerated disc. It may be a less invasive, though possibly more technically demanding, method of obtaining a spinal fusion, using two threaded titanium cylinders to hold the vertebrae in proper position while the spine fusion occurs. These procedures are done using various approaches, and involve removing the disc between two vertebrae and inserting the bone graft into the space created between the vertebral bodies. They are described in detail below:
Posterior lumbar interbody fusion (PLIF)
Unlike the posterolateral fusion, the PLIF achieves spinal fusion in the low back by inserting a cage made of either allograft bone or synthetic material (polyetheretherketone [PEEK] or titanium) directly into the disc space. PLIF surgery has a higher potential for a solid fusion rates than posterolateral fusion rates because the bone is inserted into the anterior portion (front) of the spine.

Anterior lumbar interbody fusion (ALIF)
The anterior lumbar interbody fusion is similar to the PLIF approach, except that in the ALIF, the disc space is fused by approaching the spine through the abdomen instead of through the lower back. A three-inch to five-inch incision is made on the left side of the abdomen and the abdominal muscles are retracted to the side.

Transforaminal lumbar interbody fusion (TLIF)
TLIF fuses the anterior (front) and posterior (back) columns of the spine through a single posterior approach. This procedure is done from the back of the spine, differing from the PLIF mainly in the angle at which the disc is approached.

Extreme Lateral Interbody Fusion (XLIF)
An interbody fusion approach in which the surgeon accesses the intervertebral disc space and fuses the lumbar spine using a surgical approach from the side (lateral) rather than from the front (anterior) or the back (posterior).

Conservative, Nonsurgical Management
Conservative, non-invasive approaches vary widely in method and intensity. Further detail on this variability is available in the evidence review. Lower intensity treatments typically include medications, physical and/or exercise therapy, behavioral therapy, chiropractic, and alternative therapy (e.g., acupuncture, yoga). These are typically used as a first-line treatment approach for patients complaining of LBP. When pain becomes chronic (i.e., continues for longer than three months), interdisciplinary rehabilitation is often considered. Interdisciplinary rehabilitation programs are interventions that combine and coordinate physical, vocational, and behavioral components. These programs are typically physician-directed, with care provided by multiple health care professionals with different clinical backgrounds. The content and length of interdisciplinary programs varies widely; average duration of treatment is 3-4 weeks for more intensive therapy. Programs typically involve some component of group therapy, usually held in groups of up to 10. Interdisciplinary programs vary not only in duration and intensity, but also in the types of components provided. Worksite interventions, strength training, aerobic exercises, educational interventions, and psychological interventions are all examples of components that can constitute an interdisciplinary program.
4. Clinical Guidelines and Training Standards

American Association of Neurological Surgeons (AANS) (2014)

http://thejns.org/doi/pdf/10.3171/2014.4.SPINE14270

Lumbar fusion is recommended for patients with one- or two-level DDD without stenosis or spondylolisthesis if CLBP persists after conservative treatment, which may include physical therapy and other non-operative measures.

American Pain Society (APS) (2009)

For patients with non-radicular LBP who have not responded to usual care, APS advises clinicians to consider intensive interdisciplinary rehabilitation that combines physical rehabilitation with a psychological and social or occupational component.

For patients with non-radicular LBP, common degenerative spinal changes, and persistent and disabling symptoms, APS recommends that clinicians use a shared-decision making approach in deciding whether or not to pursue fusion surgery. Physicians should discuss with patients the similar efficacy of interdisciplinary rehabilitation, and the small to moderate average benefit of surgery over interdisciplinary rehab. If the patient and clinician together decide that surgery is the best option, instrumented fusion is associated with enhanced fusion rates over non-instrumented fusion, though the evidence is not sufficient to suggest better outcomes. No specific fusion method is recommended over another.

For patients with persistent non-radicular LBP, APS found evidence to be insufficient to evaluate long-term benefits and harms of vertebral disc replacement, local injections, botulinum toxin injection, epidural steroid injection, intradiscal electrothermal therapy, therapeutic medical branch block, radiofrequency denervation, sacroiliac joint steroid injection, or intrathecal therapy with opioids or other medications. Facet joint corticosteroid injection, prolotherapy, and intradiscal corticosteroid injection are not recommended.

Dr. Robert Bree Collaborative (2014)

The Bree Collaborative does not endorse the use of single- or multi-level lumbar fusion to treat back pain associated with degenerative joint disease in the presence or absence of structural instability, and recommends a structured, conservative, non-surgical approach for patients without neurologic symptoms or signs. Failure of other therapies is also not an indication for lumbar fusion, and decompression should be considered before fusion, where appropriate. For patients with continuing disability despite nonsurgical therapy, a four-cycle model is recommended as a guide to providers, purchasers, and payers; this model requires documentation of persistent disability, meeting fitness requirements for patients prior to surgery, adherence of standards for best practice surgery, and implementation of a structured plan to rapidly return patients to function.
DDD is considered to be a medically necessary indication for fusion—at a maximum of two levels—when the following criteria are met:

- The patient is experiencing clinically significant pain and disability consistent with discogenic pain;
- Imaging studies suggest morphological disc degeneration;
- The patient has tried 6 consecutive months of structured conservative management, including pain medication, activity modification, and daily exercise, with demonstrated compliance, and has not shown sufficient improvement;
- Following 6 months of conservative management, the patient has tried intensive multidisciplinary rehabilitation if available and covered by the patient’s insurance. The program must include a cognitive/behavioral component, with at least 80 hours of on-site treatment during a 2-4 week period;
- The patient has been screened for possible mental illness or substance abuse issues and has undergone professional treatment if a condition is identified;
- The patient is not currently involved in an ongoing litigation case related to his or her back;
- The patient is between the ages of 25 and 65;
- The patient is not pregnant; and
- Provocative discography or magnetic resonance spectroscopy has been used to confirm that pain is likely due to disc degeneration observed on imaging.

National Institute for Health and Care Excellence (NICE) (2009)
http://www.nice.org.uk/guidance/cg88/chapter/1-guidance
For first line therapy, NICE advises clinicians to promote self-management and provide patients with strategies to manage their LBP. Patients may also be offered medication, including NSAIDs, opioids, or antidepressants, as well as one of the following treatment options, depending on patient preference: a structured exercise program, a course of manual therapy, or a course of acupuncture, each lasting 12 weeks. If these therapies do not provide sufficient improvement, physicians may consider a combined physical and psychological treatment program that includes at least 100 hours of treatment over an eight-week period. If the patient has completed these steps and continues to have pain, referral to a specialist for spinal surgery may be considered.

Prior to surgery, any patient with psychological distress should receive treatment. Patients should be referred to a specialist, and physicians should consider all possible risks for the patient. Patients should not be referred for other procedures, including intradiscal electrothermal therapy, percutaneous intradiscal radiofrequency thermocoagulation, or radiofrequency facet joint denervation.

These guidelines were current as of 2009 and an update is currently in development for 2016.

Lumbar fusion is indicated for discogenic LBP secondary to a degenerated disc when the following criteria are met:

- Single level disease confirmed by MRI with moderate to severe degeneration of the disc with Modic changes;
- Patient has had symptoms for at least one year that have not responded to nonsurgical options, which at minimum must include physical therapy. Other nonsurgical options may include pain management, injections, CBT, and exercise programs;
- Patient does not have an active psychological disorder that requires pharmacologic management;
- Patient has not smoked for at least three months prior to surgery; and
- The primary complaint is axial pain, with a possible secondary complaint of pain in lower extremities.

Washington State Department of Labor and Industries (2009)

http://www.lni.wa.gov/ClaimsIns/Files/OMD/MedTreat/LumbarFusion.pdf

For patients with no prior lumbar surgery, fusion should only be recommended if the patient has non-radicular LBP with at least Grade 2 spondylolisthesis and: 1) objective signs/symptoms of neurogenic claudication, 2) objective signs/symptoms of unilateral or bilateral radiculopathy, which are corroborated by neurologic examination and by MRI or CT (with or without myelography), or 3) instability of the lumbar segment. For patients with prior lumbar surgery, fusion may be recommended depending on the location and type of previous surgery, but only if three months of conservative care failed to relieve symptoms. Per the Washington State Health Technology Clinical Committee decision made in November 2007, for patients with single-level uncomplicated DDD, lumbar fusion could be a covered service if treatment by a Structured Intensive Multidisciplinary Program (SIMP) for chronic pain management was completed first and pain was still unresolved.
5. Medicare and Representative Private Insurer Coverage Policies

5.1 Centers for Medicare and Medicaid Services (CMS)

There are currently no national or local coverage determinations (LCDs) for lumbar fusion that pertain to Washington State.

5.2 Representative National Private Insurer Policies

aetna

Lumbar spinal fusion for DDD is not covered due to a lack of evidence on effectiveness.

Anthem

https://www.anthem.com/ca/medicalpolicies/guidelines/gl_pw_c160722.htm

Lumbar fusion is not considered medically necessary for LBP due to or degenerative lumbar spondylosis without stenosis or spondylolisthesis.

CIGNA

https://cignaforhcp.cigna.com/public/content/pdf/coveragePolicies

Single level lumbar fusion is covered for DDD without instability when there is unremitting pain and functional impairment for at least 12 months and all of the following conditions are met:

- Continued pain and impairment despite at least 6 consecutive months of structured, physician supervised conservative management including exercise, medication, physical therapy, participation in at least three CBT sessions that address disease education, activity and lifestyle modification, and stress management
- Single-level DDD confirmed by imaging studies
- Statement from a licensed behavioral or medical health care provider attesting to an absence of underlying mental health issues that may contribute to chronic pain
- The individual does not smoke, or will refrain from smoking for at least 6 weeks prior to surgery

Humana

Lumbar fusion surgery is covered for a variety of conditions when confirmed by imaging studies. Covered indications include iatrogenic instability, severe degenerative scoliosis, spinal abscess or infection, spinal dislocation, spinal fracture, spinal stenosis associated with spondylolisthesis, spinal tuberculosis, spinal tumor, spondylolysis such as isthmic spondylolisthesis, and symptomatic pseudarthrosis from a prior procedure. Many covered indications are subject to additional clinical criteria.
UnitedHealthcare

UnitedHealthcare does not have a plan-specific policy for lumbar fusion; enrollees must defer to their specific benefit document. The most recent update to their medical policy on surgical treatment for spine pain allows the use of extreme lateral interbody fusion (XLIF®) or direct lateral interbody fusion (DLIF), though no specific indications for these surgeries are listed.

5.3 Representative Regional Private Insurer Policies

Health Net

Health Net considers lumbar fusion medically necessary for patients with chronic mechanical LBP without the presence of radiographic intervertebral instability, when the patient has chronic, severe, and disabling pain from DDD confirmed with CT or MRI. To be considered for fusion, that patient’s pain must persist despite at least six consecutive months of non-surgical measures. Non-surgical measures may include reconditioning exercises, activity modification, physical therapy, or medications. The patient must be free from untreated underlying psychosocial issues and be motivated. All other possible sources of pain must be ruled out, and requests for fusion cannot be at more than 2 adjacent levels.

Premera Blue Cross

Premera Blue Cross considers lumbar fusion investigational for disc herniation, chronic nonspecific LBP without radiculopathy, DDD, initial discectomy/laminectomy for neural structure decompression, or facet syndrome. Patients must have participated in a physician supervised weight loss program lasting at least six consecutive months within the two years preceding surgery. Patients must also complete a psychological evaluation with a licensed mental health provider to assess emotional stability and ability to comply with post-surgical limitations.

The Regence Group

The Regence Group considers lumbar fusion investigational for disc herniation, DDD with no radicular symptoms, initial discectomy/laminectomy for neural structure decompression, facet joint arthritis as a singular problem, or LBP that does not meet other criteria.
6. Previous Health Technology Assessments and Systematic Reviews

We were able to identify four formal health technology assessments evaluating lumbar fusion surgery relative to conventional treatment, none of which found sufficient evidence for these comparisons. Many systematic reviews have evaluated RCT-based data for these interventions; only two recent systematic reviews have included data from all five published RCTs and are described in detail in the section below.

6.1 Health Technology Assessments

Agency for Healthcare Research and Quality (AHRQ, 2006):
The amount of evidence on lumbar spinal fusion does not demonstrate either short- or long-term benefits when compared with non-surgical treatment, especially for patients over 65 years of age, or for those with DDD.

Agency for Healthcare Research and Quality (AHRQ, 2012):
http://ebm.avalere.com/studies/24754?keywords=lumbar+fusion&saved_search_name=&utf8=%E2%9C%93
Limited evidence suggests that spinal fusion compared with physical therapy improves pain and function for adults undergoing fusion for LBP due to disc degeneration. The incidence of adverse events (serious and minor) associated with fusion could also not be determined conclusively because of insufficient reporting and variation in surgical methods used in the different studies. The authors also noted that many of the studies reviewed were ultimately excluded for lack of relevance to modern treatment.

The Cochrane Collaboration (2005)
An updated Cochrane review found insufficient evidence on the effectiveness of anterior, posterior, or circumferential fusion for degenerative lumbar spondylosis and any fusion procedure relative to conventional physiotherapy or an exercise and rehabilitation program.

Washington State Health Care Authority (HCA, 2007)
A health technology assessment conducted by the ECRI Institute for the Washington State HCA found insufficient evidence on outcomes of lumbar fusion relative to conservative treatment, including intensive exercise/rehabilitation plus CBT or non-intensive physical therapy, in patients with or without prior back surgery.
6.2 Systematic Reviews

Phillips 2013

http://journals.lww.com/spinejournal/Abstract/2013/04010/Lumbar_Spine_Fusion_for_Chronic_Low_Back_Pain_Due.18.aspx

Phillips and colleagues identified a total of six publications with 547 fusion and 372 conservative patients. The weighted average improvement on the ODI was 13.9 ± 8.7/100 (29% change; 95% CI: 18.7, 39.4) in the surgical group and 8.2 ± 6.2/100 (17.5% change; 95% CI: 8.5, 26.6) in the conservative group. The weighted average improvement in patient satisfaction was 74.8% (95% CI, 72.2, 77.4) in the surgical group and 55.6% (95% CI, 53.3, 57.9) in the conservative group, with an average reoperation rate for fusion of 7% (95% CI: 5.7, 8.3). The authors concluded that the literature supports fusion as a viable option for patients with a diagnosis of disc degeneration who are refractory to conservative care. However, this review has been criticized for not reporting the methodological approach used to conduct the meta-analysis, and for using duplicated study samples in their assessment of fusion relative to non-operative care.45

Bydon 2014

http://journals.lww.com/jspinaldisorders/Abstract/2014/07000/Lumbar_Fusion_Versus_Nonoperative_Management_for.9.aspx

A systematic review and meta-analysis evaluated five RCTs comparing lumbar fusion to conservative care. Bydon et al. observed that despite statistically-significant improvements in favor of surgery in three of these studies, the pooled data did not reveal a statistically-significant difference compared to the non-operative group (TE: -7.39; 95% CI: -20.26, 5.47). The authors were also unclear if the treatment effect in favor of surgery would lead to a clinically-significant difference. Notably, this review only considered changes on the ODI; data on other pain measurements (e.g., VAS) and patient satisfaction were not pooled.
7. Ongoing Clinical Trials

We did not identify any ongoing RCTs or observational studies comparing lumbar fusion to conventional treatment or minimally-invasive approaches for patients with uncomplicated DDD. The majority were long-term safety and tolerability studies of various instrumentation devices (frequently sponsored by the manufacturers) used in fusion surgery, comparisons to other surgical interventions (e.g., discectomy, total disc replacement), or the use of graft material to improve fusion rate, suggesting that the evidence base around the use of lumbar fusion in patients with DDD alone is not growing. The ongoing trials described below represent a snapshot of those studies that most closely resemble the patient population of interest to this review.

Table 1: Ongoing Clinical Trials

<table>
<thead>
<tr>
<th>Title/ Trial Sponsor</th>
<th>Study Design</th>
<th>Comparators</th>
<th>Patient Population</th>
<th>Primary Outcomes</th>
<th>Estimated Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study to Evaluate Safety and Effectiveness of Dynamic Stabilization Versus Lumbar Fusion in Treatment of Multilevel Lumbar Disc Degeneration Disease (MLIDH) NCT02385695</td>
<td>Case-control</td>
<td>Posterior Dynamic Stabilization Internal Fixation and Fusion</td>
<td>N=102 Age 30-75 Participants will have multi-level lumbar disc degeneration disease and be scheduled for 2- or 3-level lumbar discectomy from L1 to S1 with or without dynamic stabilization or fusion. ODI scores should be at least 30% prior to surgery, and clinical symptoms must be consistent with a diagnosis of lumbar DDD.</td>
<td>Range of motion in lumbar spine at 24 months</td>
<td>August 2021</td>
</tr>
<tr>
<td>Posterior Dynamic Stabilization Versus Fusion in the Treatment of Lumbar Degenerative Disease (DYNORFUSE)</td>
<td>RCT</td>
<td>Posterior Dynamic Stabilization Fusion</td>
<td>N=440 Age >18 Participants must have a mono- or bi-segmental symptomatic lumbar degenerative disease with or without stenosis; an indication</td>
<td>Difference in ODI between treatment groups at 2 years post intervention</td>
<td>November 2015</td>
</tr>
<tr>
<td>Title/Trial Sponsor</td>
<td>Study Design</td>
<td>Comparators</td>
<td>Patient Population</td>
<td>Primary Outcomes</td>
<td>Estimated Completion Date</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>NCT01365754</td>
<td></td>
<td></td>
<td>for fusion with spondylolisthesis of at least 5mm or segmental vertebral motion of at least 3mm or 10° on flexion/extension radiographs, or ii) predominant LBP in combination with Modic changes; and failure of adequate conservative measures for more than 3 months.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Multi-Center Prospective Randomized Study Comparing Supplemental Posterior Instrumentation, Aspen™ Spinous Process System Versus Pedicle Screw Fixation, in Lateral Lumbar Interbody Fusion (LLIF) or Anterior Lumbar Interbody Fusion (ALIF) NCT01549366</td>
<td>RCT</td>
<td>Fusion with Aspen™ device Posterior fusion with pedicle screw instrumentation</td>
<td>Age 18-75 Up to 25 sites Diagnosis of primary symptomatic Degenerative Disc Disease (DDD) and/or spondylolisthesis confirmed with appropriate imaging studies and/or positive lumbar discography and an ODI v2.1 score >30%, and failed at least 3 months of conservative care (non-surgical) OR has clinical signs of neurological deterioration</td>
<td>Absolute change in ODI at 2 years post-operative</td>
<td>December 2015</td>
</tr>
</tbody>
</table>
8. Methods

Objectives
The primary objectives of the systematic review were to answer the following key questions, using the listed sources of evidence:

1. What is the comparative clinical effectiveness of lumbar fusion surgery for patients with chronic low back pain and uncomplicated DDD relative to that of conservative management, minimally-invasive treatments, and other nonsurgical approaches?
 • Sources: RCTs, high-quality comparative cohort studies, and high-quality systematic reviews of lumbar fusion vs. the comparators of primary interest

2. What are the rates of “treatment success” or “successful clinical outcome” of lumbar fusion as defined by measures of clinically-meaningful improvement in pain, function, quality of life, patient satisfaction, and/or work status?
 • Sources: RCTs, high-quality comparative cohort studies, and high-quality systematic reviews of lumbar fusion vs. the comparators of primary interest

3. What are the rates of adverse events and other potential harms (perioperative, long-term adverse events, and reoperations) associated with lumbar fusion surgery compared to alternative treatment approaches?
 • Sources: RCTs, high-quality comparative cohort studies, and high-quality systematic reviews of lumbar fusion vs. the comparators of primary interest; selected non-comparative case series

4. What is the differential effectiveness and safety of lumbar fusion according to factors such as age, sex, race or ethnicity, pre-existing conditions (e.g., smoking history), intensity of conservative management (e.g., interdisciplinary rehabilitation vs. physical and/or behavioral therapy alone) technical approach to fusion (e.g., posterolateral vs. interbody, minimally-invasive vs. open procedures), initial versus repeat surgery, insurance status (e.g., worker’s compensation vs. other), and treatment setting (e.g., inpatient vs. ambulatory surgery)?
 • Sources: RCTs, high-quality comparative cohort studies, and high-quality systematic reviews of lumbar fusion vs. the comparators of primary interest; selected non-comparative case series

5. What are the costs and potential cost-effectiveness of lumbar fusion relative to alternative treatment approaches?
 • Sources: Published economic evaluations, agency data

Analytic Framework
The analytic framework for this project is depicted on the following page. We expected that studies would vary substantially in terms of their entry criteria, as there is no agreed-upon standard of what
constitutes uncomplicated lower back DDD. In addition, the fusion technique and intensity of the conservative intervention may have differential effects on the outcomes of primary interest in LBP studies, including pain, function, quality of life, patient satisfaction, and work status. Finally, RCTs of fundamentally different interventions (e.g., surgery for pain relief versus rehabilitation for functional restoration) may have difficulty enrolling and randomizing patients, resulting in many studies with inadequate statistical power or other quality concerns (e.g., high dropout and/or crossover rates).

There were expected limitations on the available evidence in terms of (a) comprehensive comparisons of lumbar fusion to conservative management, and (b) long-term data on effectiveness and potential harms. As such, judgments about the effectiveness of these interventions rested predominantly upon individual consideration of each type of surgery and its relevant comparators, evaluation of procedure-specific risks, and linkage of shorter-term outcomes to higher-quality data on long-term effects where available.

Figure 1. Analytical Framework: Lumbar Fusion

Population, Intervention, Comparators, Outcomes, and Sources: PICOS

Specific details on the proposed scope (Population, Intervention, Comparators, Outcomes, and Sources: PICOS) are detailed in the following sections.

Population

The target population for this review included adults (age >17 years) with chronic (≥3 months) LBP and uncomplicated DDD. Specifically, as in the original review, studies of patients with conditions such as radiculopathy, spondylolisthesis (> Grade 1) or severe spinal stenosis, as well as those with acute trauma or systemic disease affecting the lumbar spine (e.g., malignancy) were excluded. We recognize that some studies of lumbar fusion will involve mixed patient populations; we abstracted data from these studies only if outcomes are reported separately for individuals with CLBP and otherwise uncomplicated DDD, or if >75% of patients carried such a diagnosis. Note that some surgical studies included patients who have attempted conservative management for varying lengths of time; these were included regardless of the duration and/or intensity of prior conservative management. Studies that include
patients with a history of prior back surgery for any indication will be analyzed separately from patients undergoing lumbar fusion surgery for the first time.

Intervention
We evaluated the effectiveness of the major technical approaches to lumbar fusion surgery, regardless of surgical technique (e.g., anatomic approach, laparoscopic vs. open) or type of hardware utilized.

Comparators
Given questions around the benefits of lumbar fusion versus nonsurgical management, we identified conservative management approaches as the primary comparator for this assessment. Conservative management options include physical therapy, intensive exercise/rehabilitation, CBT, and medication management, each alone or in combination. Other comparators of interest included minimally-invasive treatments (e.g., radiofrequency ablation, electrothermal therapy), if available. However, studies comparing lumbar fusion to artificial disc replacement were excluded, as artificial discs represent a separate review topic for the HCA.

Outcomes
Outcomes of interest included: 1) specified patient- and clinician-reported measures of pain, function, and disability; 2) opioid medication use; 3) requirements for repeat surgery or other retreatment according to type of initial surgery; 4) return to work and/or resumption of normal activities; 5) mortality, stratified according to cause of death where available; 6) other complications and adverse events; 7) measures of “treatment success” or “successful clinical outcome” (e.g., return to work and/or functional goals, cessation of pain medication, available composite measures); and 8) the total costs and cost-effectiveness associated with fusion in comparison to nonsurgical treatment approaches.

Functional status was recorded as measured by standard indices (e.g., Oswestry Disability Index [ODI], Roland-Morris Disability Questionnaire [RDQ]), back pain was recorded as measured by a visual analog scale (VAS), and health-related quality of life (HRQoL) was abstracted based on validated instruments (e.g., short-form [SF]-36 questionnaire). Of particular interest to this evaluation was measurement of treatment effects in comparison to varying intensities of conservative management (e.g., interdisciplinary rehabilitation vs. physical and/or behavioral therapy alone).

Recommendations from influential clinical societies and other authoritative sources inform interpretation of meaningful improvement as reported on validated measures for pain and/or function. For example, a mean 10-20 point change on a 100-point visual analog pain scale or 5-10 points on the RDQ are generally considered moderate improvements. Other published thresholds for clinically-meaningful improvement include at a 30% decrease from baseline on a chronic pain scale or an improvement of at least 20 points on the ODI. Importantly, while we sought data on these specific thresholds as reported in clinical studies, we abstracted all measures of clinically-meaningful change or treatment success as defined in each study, even if they differed from published guidance.

Information on the costs and cost-effectiveness of lumbar fusion procedures compared to alternative treatment was assessed using evidence from the available economic literature, including treatment-related costs, costs of long-term care (e.g., treatment switching, repeat surgery, complications, etc.), and indirect costs (e.g., productivity loss, caregiver burden).
Sources: Timeframe and Study Designs
Data on outcomes of interest were abstracted at all relevant timepoints. However, while perioperative benefits and risks of surgery (i.e., within 30 days) were of interest, so too were duration of benefit and other potential long-term effects. Because of this latter concern, we focused attention on longer-term comparative studies and/or timepoints in which at least 80% of the original sample was present.

We included randomized controlled trials (RCTs) as well as comparative observational studies without restrictions on study design parameters other than that there be explicit prospective or retrospective comparisons of at least one surgical procedure of interest to a nonsurgical intervention.

Our primary was good- or fair-quality RCTs and comparative observational studies. However, for completeness, we abstracted data from case series meeting the following criteria: (a) sample size ≥100, (b) minimum follow-up of two years, (c) ≥80% patient retention, and (d) ≥75% with uncomplicated DDD or findings stratified by indication for fusion.

Literature Search and Retrieval
The PICOS elements were operationalized in the form of search strategies constructed for each of the literature databases used, and a form of inclusion/exclusion criteria for application to the publications identified through implementation of the search strategy.

The timeframe spanned the period from January 2000 to the most recently published data available as of October 1, 2015 in the following electronic databases: MEDLINE (accessed through OVID), Cochrane Register of Controlled Trials, Databases of Abstracts of Reviews of Effects (DARE), OT Seeker, PEDro, ABI Inform, EconLit, and Health and Psychosocial Instruments.

Reference lists of all eligible studies were also searched and cross-referenced against public comments received by the HCA. Electronic searches were supplemented by manual review of retrieved references, previously published technology assessments, and systematic reviews. Further details on the literature search strategy can be found in Appendix A.

A single investigator screened titles and abstracts of all publications identified in the literature search, applying exclusion criteria if explicitly clear. A subset of excluded studies were reviewed by a second investigator as a quality control measure. The full text of all publications remaining after review of the titles and abstracts were retrieved, and the inclusion and exclusion criteria were applied to this set. As before, a subset of excluded studies were reviewed by a second investigator as a quality control measure.

The combined search results identified 2,052 potentially relevant studies for this assessment (Figure 2 on the following page). After elimination of duplicate and non-relevant references, we identified five randomized control trials, two secondary analyses and six longer-term follow-up studies of these RCTs, three comparative cohort studies, and three case series, for a total of 19 included studies.
Figure 2: PRISMA flow chart showing results of literature search

2052 potentially relevant references screened

1836 citations excluded
Population: 236
Intervention: 259
Comparator: 78
Outcomes: 76
Study Type: 520
Duplicates: 667

197 citations excluded
(outcomes not stratified, less than 75% DDD patients, patients had LBP with or without radiculopathy/leg pain, not a clinically-relevant outcome)

19 TOTAL
5 RCTs
2 secondary analyses
6 follow-up studies
3 comparative cohort studies
3 case series

Study Quality
Assessment of the quality of clinical trial reports and systematic reviews followed methods adapted specifically for studies of LBP from the Cochrane Back Review Group. For observational studies, we used the approach of the U.S. Preventive Services Task Force (see detailed descriptions below). Finally, while there are no published criteria for evaluating quality of case series due to their non-comparative nature, we identified specific quality criteria for inclusion of these studies as described above.

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study (follow-up at least 80 percent); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention paid to confounders in analysis. In addition, for RCTs, intention to treat analysis is used. Specifically for this review, target or mean/median duration of follow-up did not appreciably differ within study groups.

Fair: Studies will be graded "fair" if any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: generally comparable groups are assembled initially but some
question remains whether some (although not major) differences occurred with follow-up; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are addressed. Intention to treat analysis is done for RCTs. Specifically for this review, differences in baseline characteristics and/or duration of follow-up were allowed only if appropriate statistical methods were used to control for these differences (e.g., multiple regression, survival analysis).

Poor: Studies will be graded "poor" if any of the following fatal flaws exists: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. For RCTs, intention to treat analysis is lacking.

Overall strength of evidence for each key question was described as “high”, “moderate”, or “low”, and utilizing the evidence domains employed in the AHRQ approach. In keeping with standards set by the Washington HCA, however, assignment of strength of evidence focused primarily on study quality, quantity of available studies, and consistency of findings.

In addition, summary ratings of the comparative clinical effectiveness and comparative value of the procedures of interest (i.e., across multiple key questions) were assigned using ICER’s integrated evidence rating matrix. The matrix has been employed in previous Washington HCA assessments of virtual colonoscopy, coronary CT angiography, cervical fusion surgery, cardiac nuclear imaging, proton bean therapy, breast imaging in special populations, and bariatric surgery. The matrix can be found in Appendix C to this document.

Data Synthesis

Data on study design, population, and relevant outcomes were abstracted by a single reviewer, with additional review by a second reviewer as a quality control measure. Qualitative evidence tables for the studies selected for review can be found in Appendix B. The findings were summarized descriptively as responses to each of the key questions to which this report is responding.
9. Results

9.1 Overall Evidence Quality

There were a number of specific limitations affecting the quality of the studies in the evidence base. Among these was an imbalance in treatment groups with respect to factors potentially influencing outcomes, or a lack of consideration of such factors in the analysis of the resulting data. Often, but not always, such imbalances were addressed by authors, presenting treatment effect estimates adjusted for the factors of concern.

Also of concern was the lack of longer-term follow-up data in many studies, and the lack of strict criteria defining treatment groups. Many study populations were subject to substantial attrition rates, limiting the power of such studies to document effect sizes at follow-up. Additionally, treatment group definition was often heterogeneous. This precludes easy synthesis of findings with respect to both surgical and conservative interventions. Moreover, all of the identified RCTs were conducted in European countries and therefore represent health systems and treatment options which may differ substantially from U.S.-based settings. Further, pain duration in the RCTs ranged from seven to 11 years; in fact, duration of symptoms of <12 months was a protocol exclusion in many of these studies. Several studies also included some patients who had previous spinal surgery and did not stratify outcomes according to this variable. As such, these patients may represent a subset of the population that have more severe LBP and/or comorbid illnesses which may exacerbate symptoms.

Of the five RCTs identified for this review, we rated three24-26 (60%) to be of good quality based on the comparability of groups with respect to both baseline characteristics and duration of follow-up, and minimized sample attrition; and two22,27 RCTs (40%) were rated as of fair quality. Quality issues affecting the RCTs are described in detail below. Six28-31,33,35 of the ten prospective cohort studies were rated as good quality (60%), three34,37,41 as fair (30%), and one32 as poor (10%). A retrospective cohort study36 was rated as poor. The poor-quality ratings reflect the presence of at least one key quality issue not adequately addressed in either the design or analysis phase of the study.

In the study by Fairbank et al.,26 there was a substantial degree of crossover, with over 25% of patients randomized to intensive conservative management having had surgery by the end of two years; this is in contrast to only 4% of those randomized to surgery who crossed over to conservative management. A separate multiple imputation analysis was conducted to carry forward values for patients who crossed over or were lost to follow-up; this did not materially affect any primary findings. This study also described imbalances between treatment groups in several potentially important baseline characteristics; the authors also addressed this issue in the analysis phase, in this case by estimating the relative treatment effects in multivariate analyses controlling for these factors as additional independent variables.

In contrast to the Fairbank study, crossover rates in either direction between the group randomized to spinal fusion and the group randomized to non-intensive conservative management were relatively low (<10%) in the RCT by Fritzell et al.,27,41 and these crossovers were analyzed separately. However, the authors of this study failed to address any imbalances between the treatment groups with respect to factors possibly affecting treatment outcome; imbalances included mean pain duration between the groups and the presence of comorbidity. An additional limitation of this study included the lack of
definition around conservative treatment. These limitations were not severe, but because no effort was made to evaluate their effect, the quality of this study was graded as fair, rather than good.

Two RCTs by Brox et al., were limited by small sample size despite the incorporation of a power calculation in the study design (total sample n=60 and n=64 in the 2003 and 2006 studies, respectively). Both studies also had one year of follow-up, somewhat limiting the applicability of the evidence to questions regarding the duration of treatment effect. These limitations were deemed minimal enough to support a quality rating of good for both studies.

The RCT described by Ohtori et al. was also limited by sample size (total sample, n=41), and further by the lack of consistency in the type of fusion surgery performed in the surgical treatment group, as well as the method by which patients were selected for inclusion. These limitations downgraded the quality rating for this study to fair.

Key Question #1: What is the comparative clinical effectiveness of lumbar fusion surgery for patients with chronic low back pain and uncomplicated DDD relative to that of conservative management, minimally-invasive treatments, and other nonsurgical approaches?

We identified three good-quality RCTs, two fair-quality RCTs, five good- or fair-quality longer-term follow-up reports on these RCTs, one good-quality secondary analysis, one good-quality prospective cohort study, and one poor-quality retrospective cohort study (see Appendix B for study details) comparing lumbar fusion to conservative management in patients with uncomplicated DDD. Of note, none of these studies compared lumbar fusion to minimally-invasive treatments alone, and conservative approaches varied in duration and intensity across studies. Comparisons are further complicated by differences in study design, methods, and crossover rates. The variable nature of the comparator populations in these studies makes even indirect comparisons difficult if not impossible. Nevertheless, the available evidence suggests that lumbar fusion provides some advantage over lower-intensity conservative approaches (e.g., physical therapy or exercise alone) in improving pain and disability and returning to work over a shorter duration of follow-up (i.e., up to two years); however, differences diminish and are no longer statistically significant over longer durations of follow-up. Conversely, comparisons of lumbar fusion to more intensive and/or interdisciplinary forms of rehabilitation yield no differences in effectiveness.

We identified five RCTs comparing lumbar fusion to conservative treatment among patients with uncomplicated DDD. Four of these studies were evaluated in the original assessment for the HCA; only one additional RCT conducted in Japan was identified for this re-review. Three of these studies compared fusion to interdisciplinary rehabilitation with a cognitive-behavioral component. The remaining two RCTs compared fusion to non-intensive physical therapy, or an exercise treatment plan. While patients undergoing lumbar fusion had similar absolute levels of improvement in pain and function over one to two years of follow-up across four of the five RCTs, statistically-significant treatment effects favoring fusion for the primary outcome measures were noted only in the RCTs comparing fusion to less intensive or unstructured treatment approaches. None of these RCTs included patients who had previously undergone fusion surgery, though three allowed individuals with who had a prior discectomy or laminectomy.
Table 2 on the following page lists the study details of these five key RCTs. Several recent systematic reviews$^{18,42-44}$ evaluating these studies have noted that patient inclusion criteria and control treatment regimens may affect outcomes in a substantive way; more details on the effect of the treatment intensity in the conservative cohorts are reported in Key Question #4. The section below describes the short- and longer-term outcomes from these RCTs, as well as the nonrandomized comparative studies we identified as part of our literature search. The rate of harms associated with lumbar fusion versus conservative care are discussed in detail in Key Question #3.

Pain and Function

RCT-based evidence on lumbar fusion surgery versus intensive rehabilitation with a cognitive element comes from three studies$^{24-26}$ conducted in Norway and the UK. In the Norwegian RCTs,24,25 no significant differences were observed for pain (as measured by a 100-point VAS scale) or the Oswestry Disability Index (ODI) at 1 year of follow-up; medication use was also not significantly different in either study. Notably, in the later study25 which included only those patients who had a prior discectomy for disc herniation, absolute changes on the ODI were nominally in favor of the conservative cohort (12.8 vs. 8.9 for surgery). Both studies reported a 97% follow-up rate, with only 2.4% of patients across studies switching to the surgical group after randomization.

Although a significant difference in the ODI favoring lumbar fusion was observed in the UK RCT26 (-12.5 vs. -8.7, p=0.045) relative to IRP, the authors noted that this difference was only marginally significant. There were also no significant differences between groups for improvement on a shuttle walking test. These results are potentially confounded by differences between groups for follow-up at two years (78% and 84% in the surgical and conservative groups, respectively), with 28% of patients crossing over to the surgery compared to only 4% switching to the rehabilitation group. However, a separate multiple imputation analysis was conducted to carry forward values for patients who crossed over or were lost to follow-up; this did not materially affect any primary findings. This study included some patients that had undergone previous spinal surgery, though no further details were available.

In the Swedish RCT,27 significant differences favoring surgery were observed in the mean change from baseline to year two on both the 100-point VAS (-21.0 vs. -4.3, p=0.0002) and the ODI (-11.6 vs. -2.8, p=0.015) relative to non-intensive physical therapy. However, after six months of treatment the benefits of surgery began to diminish, and the authors observed that back pain increased significantly between one and two years of follow-up for the fusion cohort (p<0.0001). Although this RCT had low attrition with only 2% lost to follow-up, crossover was noted in both groups, including 25% of patients in the rehabilitation cohort and 3% in the surgical group. About one-fifth of patients had undergone previous successful surgery for disc herniation at least two years prior to entering the trial, and 15% of patients did not receive fusion.
Table 2. Study details for 5 key RCTs comparing fusion to conservative treatment in patients with uncomplicated DDD.

<table>
<thead>
<tr>
<th>Study (Country of Origin)</th>
<th>Quality</th>
<th>Sample Size</th>
<th>Setting Type</th>
<th>Entry Criteria</th>
<th>Patient Characteristics</th>
<th>Control Group Description</th>
<th>Fusion Group Description</th>
<th>Follow-up Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brox 2003<sup>24</sup> (Norway)</td>
<td>Good</td>
<td>64</td>
<td>Multicenter</td>
<td>Aged 25-60 CLBP ≥1 year Patients who had undergone previous spinal surgery were excluded</td>
<td>Age: 43 Pain duration: 10.8 years % male: 39</td>
<td>Cognitive intervention and individual exercises with increasing intensity</td>
<td>PLF with instrumentation and postoperative physiotherapy</td>
<td>1 year</td>
</tr>
<tr>
<td>Brox 2006<sup>25</sup> (Norway)</td>
<td>Good</td>
<td>60</td>
<td>Multicenter</td>
<td>Aged 25-60 CLBP ≥1 year All patients had prior discectomy for disc herniation</td>
<td>Age: 43 Pain duration: 8.0 years % male: 52 % prior discectomy: 100</td>
<td>Cognitive intervention and individual exercises with increasing intensity</td>
<td>PLF with instrumentation and postoperative physiotherapy</td>
<td>1 year</td>
</tr>
<tr>
<td>Fritzell 2001<sup>27</sup> (Sweden)</td>
<td>Fair</td>
<td>294</td>
<td>Multicenter</td>
<td>Aged 25-65 CLBP ≥2 years Patients with successful discectomy >2 years before fusion were allowed</td>
<td>Age: 43 Pain duration: 8.0 years % male: 49 % prior discectomy: 18.8</td>
<td>Non-intensive physical therapy + information and education aimed at pain relief</td>
<td>Noninstrumented posterolateral, instrumented posterolateral, or instrumented circumferential</td>
<td>2 years</td>
</tr>
<tr>
<td>Fairbank 2005<sup>26</sup> (UK)</td>
<td>Good</td>
<td>349</td>
<td>Multicenter</td>
<td>Aged 18-55 CLBP ≥1 year All patients eligible for surgery irrespective of previous root decompression or discectomy</td>
<td>Age: means reported by age groups Pain duration: 8.0 years % male: 49 % prior surgery: NR</td>
<td>75 hours of IRP, including daily muscle strengthening and exercise, CBT, and hydrotherapy</td>
<td>At the discretion of the surgeon (15% of patients received stabilization without fusion)</td>
<td>2 years</td>
</tr>
<tr>
<td>Ohtori 2011<sup>22</sup> (Japan)</td>
<td>Fair</td>
<td>41</td>
<td>Single center</td>
<td>CLBP ≥2 years Patients who had undergone previous spinal surgery were excluded</td>
<td>Age: 34 Pain duration: 7.3 years % male: 59</td>
<td>Exercise treatment, including 30 minutes of daily walking and muscle strengthening</td>
<td>Anterior interbody fusion or posterolateral fusion with pedicle screws</td>
<td>2 years</td>
</tr>
</tbody>
</table>
In the most recent RCT22 from Japan, there were statistically-significant improvements in favor of ABF and PLF versus exercise treatment on the ODI (-51.7 and -44.8 vs. -24.0), VAS (-6.1 and -4.0 vs. -3.0), and JOA (+1.4 and +1.3 vs. +0.5) for ABF, PLF, and exercise treatment, respectively, over two years of follow-up (all outcomes, p<0.01). No patients were reported being lost to follow-up, or switching to a different treatment group. However, this small, single-center study was largely focused on comparing differences between the two fusion techniques,45 and the control group was only “minimally-treated” with 30 minutes of physician-supervised daily exercises and stretching. Additionally, the study population was approximately 10 years younger than patients enrolled in the other RCTs, and half the patients were selected based on the use of “discoblock” (i.e., analgesic injections at specific sites) as a diagnostic tool, which may have more precisely identified patients that could benefit from fusion.46 All other RCTs included patients based only on radiographical evidence of DDD, with the exception of Fairbank26 (which did not specify imaging or disease levels).

In addition to the above-described RCTs, good- and fair-quality follow-up data were available for four of the five RCTs. In a combined study28 of the original Norwegian RCT cohorts24,25 (n=124, mean age 43, 45.2\% male) after a mean follow-up of four years (with 89\% of the original population remaining), the adjusted treatment effect between fusion and non-operative care was non-significant. After nine years, patients from both groups (n=99, mean age 43, 38.6\% male) who consented to long-term radiography follow-up had similar ODI scores.30 In a sensitivity analysis which included one-third of patients who crossed over to the surgery group, there were significantly more patients taking opioids on a daily or weekly basis in the surgical cohort compared to non-operated patients (44\% vs. 17\%, adjusted odds ratio [OR]: 4.0; 95\% CI: 1.5, 11.0; p=0.005), though no differences were observed in the intent-to-treat (ITT) analysis. Another fair-quality follow-up study33 with 261 patients (mean age 42, 47.5\% male) pooled from the Brox24,25 and Fairbank RCTs26 also found no significant differences between groups on the ODI or VAS, as well as for pain medication use after a mean of 11.4 years of follow-up. Finally, a recently published long-term study37 (n=251, mean age 59), which evaluated long-term data (mean of 12.8 years of follow-up) available from 85\% of the original Fritzell27 sample, did not find any significant differences between the two groups with respect to functional improvement (as measured on the ODI and VAS), pain medication use, or pain frequency in any of the modeled analyses.

In addition to RCT data, we found one large, good-quality prospective cohort study35 of 495 patients (mean age 43, 47.5\% male) comparing surgery (79\% instrumented fusion) to conservative treatment. No specific treatment regimen was prescribed to either patient group in this observational study; rather, patients who were diagnosed with discogenic pain and received surgery within six months were considered part of the surgical group, and all others meeting the inclusion criteria were part of the non-operative cohort. Although the surgical group showed statistically-significant improvements over conventional treatment on the RDQ (-8.8 vs. -1.8) after one year (p<0.001), the authors noted that the conservative group was minimally-treated, with only 5\% receiving CBT, and is likely biased in favor of surgery due to patient selection. In addition, there were significant differences in some baseline characteristics, including the proportion of patients who had undergone previous laminectomy (36\% vs. 21\% for the conservative group, p=0.004). Opioid pain medication use was not statistically-different between groups.

The final study36 identified as part of our literature search was a poor-quality retrospective cohort study (n=96, mean age 47, 50\% male) comparing lumbar fusion to conservative treatment, which included physical therapy, epidural injections, and medication. Patients who underwent previous spinal surgery were excluded. This study did not find any significant differences between groups for Numerical Rating Scale (NRS) pain scores, or the ODI after five years of follow-up. However, there are some substantial
methodological concerns with this study, including the failure to control for significant differences in patient characteristics between individuals at baseline and those lost to follow-up, which was more than half of the original population.

Quality of Life
Data regarding the effect of lumbar fusion on quality of life were available from the Fairbank RCT,\(^{26}\) as well as the follow-up study\(^{33}\) of the Fairbank and Brox RCTs. In the original Fairbank RCT,\(^{26}\) no statistically-significant differences were noted at 24 months for the 36-item short form (SF-36) mental or physical component summary scores, nor were differences observed in any specific subdomain. In the long-term follow-up study\(^{33}\) of Fairbank and Brox, there were no significant differences between groups on the EQ VAS for health-related quality of life (HRQoL) in both the ITT and as-treated analyses. The above-described poor-quality retrospective study\(^{36}\) found that HRQoL scores based on the ODI, SF-12 MCS, and SF-12 PCS were not statistically-different between groups.

Only one study\(^{35}\) that met our inclusion criteria found any significant differences between groups for quality of life; Mirza and colleagues found that both physical and mental component scores on the SF-36 questionnaire favored surgery over variable conservative treatments between six and 12 months of follow-up (p<0.001).

Patient Satisfaction
Six studies reported information on patient satisfaction, but used varying definitions. Life satisfaction following treatment was rated on a 10-point VAS scale in the first Brox\(^{24}\) study; there were no significant differences between groups after one year, nor were there any differences in the four-year,\(^{28}\) nine-year,\(^{28}\) or 11-year\(^{33}\) follow-up studies for the Brox\(^{24,25}\) and Fairbank\(^{26}\) pooled cohorts.

Fritzell et al.\(^{27}\) asked patients if they would go through the same treatment again and found significantly more patients in the surgical group answered “yes” after two years of follow-up (75% vs. 53%, p=0.002). However, after 12.8 years of follow-up the proportion of patients who approved of their assigned treatment was numerically higher in the conservatively-treated group, though these results were not significant in any analysis model.\(^{37}\)

The Ohtori RCT\(^{22}\) asked patients to state if their assigned treatment met their expectations according to criteria adopted from the North American Spine Society Low Back Outcome Instrument. After two years, 15 surgical and 10 non-operative patients voted that their treatment met their expectations, while two and six in the fusion and conventional management treatment groups, respectively, reported they were the same or worse after treatment. Results were not statistically-significant, although this small study was likely underpowered to detect differences between groups.

The above-described poor-quality retrospective study\(^{36}\) also measured patient satisfaction based on a study-specific four-point scale from “very satisfied” (1) to “very dissatisfied” (4), but there were no statistically-significant differences between the surgical and conservative groups over a mean follow-up of five years.

Return to Work
Data on the effect of lumbar fusion on return to work (RTW) come from the Norwegian and Swedish RCTs, and their subsequent follow-up studies. In first Brox study,\(^{24}\) the percentage of employed individuals who returned to work was numerically higher in the intensive rehabilitation control group, but did not reach statistical significance. The 2006 study,\(^{25}\) which evaluated patients with prior disc
herniation surgery, similarly found that although there were more patients from the intensive rehabilitation group working full-time, these numbers were too small to be evaluated statistically. In the pooled four-year\(^{28}\) and 11-year follow-up studies,\(^{33}\) these differences continued to be non-significant.

In contrast, the percentage of patients in the Fritzell RCT\(^{27}\) not working at baseline due to back pain who were employed at the end of the study was statistically-significantly in favor of the lumbar fusion group (39% vs. 23% for physical therapy, \(p=0.049\)). The “net” rate of back to work (i.e., subtracting those who stopped working during follow-up) was also significantly higher in the fusion group (36% vs. 13% for physical therapy, \(p=0.002\)). A subanalysis\(^{31}\) of the original RCT found that a shorter duration of sick leave prior to treatment was significantly associated with work status at follow-up in both the surgical (14 months for those working, and 31 months for those not working, \(p<0.0001\)) and conservative (13 months for those working, and 27 months for those not working, \(p=0.006\)) groups. Other variables, including sociodemographics (e.g., gender, smoking, comorbidity), pain (e.g., duration of pain, quality of pain), clinical findings (e.g., reflexes, sensation), psychological diagnosis (e.g., personality disorders), or radiography (e.g., Modic sign type 1), were not significantly associated with work status at follow-up. Moreover, in the long-term follow-up for the same cohorts, the proportion of those working full/part-time after 12.8 years was similar between groups.\(^{37}\)

Mental Health

The most frequently-reported outcome beyond those described above was depression. Of the previously-described studies, two RCTs,\(^{26,27}\) one secondary analysis,\(^{31}\) one follow-up study,\(^{37}\) and one prospective comparative cohort study,\(^{35}\) evaluated differences between surgical and conservatively-treated cohorts for changes on depression scales, including the Zung Depression Scale (ZDS)\(^{26,27,31}\) and the standard checklist-90 (SCL-90).\(^{35}\) Neither RCT\(^{26,27}\) found any significant differences between groups for depression. In the subanalysis of the Fritzell RCT,\(^{31}\) however, patients in the conservative group were significantly more depressed than the fusion cohort after two years of follow-up (31 vs. 37, \(p<0.0001\)). It is worth noting that the ZDS was modified from a 20-80-point scale, to a 0-100-point scale (where 100 represents maximal depression) for this study to capture “psychological distress,” which may have influenced this outcome. The authors also reported that more depressive symptoms at baseline were predictive of improvement for patients in the conservative group (OR 1.08, 95% CI: 1.02, 1.14); this effect was not significant in the fusion cohort, however. After a mean 12.8 years of follow-up, conservatively-treated patients were more depressed than those in the fusion group in the as-treated analysis (40.7 vs. 46.8 on a modified ZDS scale, \(p=0.006\)); this difference was not significant in any other analyses conducted in this study, however.

We identified only one observational study\(^{35}\) in our search that evaluated depression as an outcome. Although there were no statistical differences between groups for up to six months after treatment, patients in the fusion group were significantly less depressed than those receiving unstructured non-operative care after nine (+0.2 vs. -0.4, \(p=0.029\)) and 12 (0.0 vs. -0.4, \(p<0.001\)) months of follow-up from baseline based on a 0-4 depression scale.

Key Question #2: What are the rates of “treatment success” or “successful clinical outcome” of lumbar fusion as defined by measures of clinically-meaningful improvement in pain, function, quality of life, patient satisfaction, and/or work status?

Much of the work done to quantify clinically-significant improvement in measures of pain and function at the individual patient level came after the publication of the RCTs of interest. Two of the five RCTs
we identified for this assessment did not include any measurement of “successful” outcome. Findings from the other three RCTs mirrored those of continuous measures of effectiveness in that results favoring surgery were limited to studies that compared surgery to minimal or nonspecific approaches to conservative management. Only two studies evaluated the proportion of patients attaining pre-specified degrees of improvement using a validated instrument, neither of which was an RCT of interest in our assessment.

In recent years, multiple efforts have been undertaken to identify clinically-meaningful changes in measures at the individual patient level. These individual “success” outcome measures include a mean 10-20 point change on a 100-point visual analog pain scale or 5-10 points on the RDQ, which are generally considered moderate improvements. Other published thresholds for clinically-meaningful improvement include at least a 30% decrease from baseline on a chronic pain scale or an improvement of at least 20 points on the ODI. Patient-defined minimum acceptable outcomes also include discontinuation of opioid medication and return to some occupational activity, though individuals with significant psychosocial factors (e.g., compensation claims, psychological distress), may be less likely to report satisfaction with treatment despite achieving the desired outcomes.

Unfortunately, the development of measures of clinically-meaningful change at the individual level came after publication of all but the small Ohtori RCT. Recent nonrandomized studies have made use of published measures of clinically-meaningful improvement, but their number is extremely limited for patients with CLBP and uncomplicated DDD. A single good-quality prospective cohort study evaluated clinically-meaningful improvement between treatment groups based on a 30% or 5-point improvement on the Roland-Morris Disability Questionnaire (RDQ) and found that, after controlling for baseline differences, a significantly higher proportion of surgically-treated patients achieved this outcome (57% vs. 25%, p<0.001). In addition, 33% and 15% of patients in the surgical and conservative groups, respectively, achieved a composite measure of treatment success that included the above RDQ thresholds as well as a ≥30% improvement in pain intensity, no use of opioid pain medication, and a status of employed at 12 months (p<0.001). While these results favored surgery, the authors cautioned that the control group received a variety of interventions and overall, did not appear to receive services consistent with major guidelines for treatment of CLBP. For example, only half of patients received any physical therapy and 5% received a cognitive-behavioral intervention.

Only one case series that met our study inclusion criteria assessed a clinically-meaningful threshold of specific outcome measures for patients undergoing lumbar fusion surgery for uncomplicated DDD. Anderson et al. prospectively evaluated 106 patients who received fusion (ALIF technique with titanium cages and autogenous iliac bone graft) and found that patients who were employed before surgery were significantly more likely to be working after a mean 29.7 months of follow-up (90% vs. 43% for non-workers, OR 10.5, p=0.0008). An attempt to identify predictors of achieving 30% improvement on the RDQ using multivariate logistic regression found no statistically-significant associations between this outcome and work status, age, smoking history, gender, worker’s compensation status, pre-operative pain or RDQ scores, and type of fusion surgery.

In contrast, measures of success in earlier RCTs were limited to patient-reported or independent observer assessment of improvement after treatment. In the Fritzell RCT comparing fusion to physical therapy of varying intensity, 63% of patients in the surgical group rated their symptoms as “much better” or “better” compared to 29% receiving conservative management (p<0.0001). Results were rated as “excellent” or “good” by independent observers for 45% and 18% of patients in the surgical and conservative groups, respectively (p=0.005). In the long-term follow-up study to this RCT, the as-
treated (66% vs. 31%, p=0.004) and per-protocol analyses (65% vs. 37%, p=0.044) demonstrated that significantly more patients felt they were “much better/better” in the fusion group. This result was also demonstrated using a novel analysis not previously published which automatically classified the crossovers from the conservative group as “unchanged/worse” (65% vs. 22%, p<0.001). However, this difference was not significant in the ITT analysis.

Moreover, there were no statistically-significant differences in either patient or independent observer ratings of treatment success (defined as the three best grades for the Prolo Scale and the Global Back Question) in the two Brox24,25 RCTs comparing fusion to cognitive/exercise intervention. Measures of treatment success were not considered in either the Fairbank26 or the Ohtori22 RCTs.

Some of the studies include mention of clinically-meaningful change in their Discussion sections. Fairbank24 and Brox24 (2003) remark that the mean difference in ODI scores between groups did not approach 10.0, which was considered a clinically-meaningful difference. In fact, the confidence interval in the Fairbank RCT did not include 10.0, essentially ruling out any possible difference in favor of surgery. In the Brox 200625 RCT, which evaluated patients with prior discectomy, the observed mean difference on the ODI after adjustment for gender and pretreatment expectations was 9.7 points, and the confidence interval around this result included the possibility that exercise/cognitive therapy was superior to fusion.

Key Question #3: What are the rates of adverse events and other potential harms (perioperative, long-term adverse events, and reoperations) associated with lumbar fusion surgery compared to alternative treatment approaches?

Evidence on harms in published RCTs of treatments for patients with CLBP and uncomplicated DDD is limited by several factors. Many of these studies are too small to capture reliable data on complications that occur infrequently, and the relatively low rate of serious complications has led to standards for research reporting that often do not include a formal assessment of all complications. Other factors contributing to the dearth of data on harms include the lack of observational studies that focus on uncomplicated DDD patients, and the short-term nature of many studies, leading to a failure to observe adverse outcomes associated with surgical interventions that do not manifest until later years (e.g., repeat surgery). Harms associated with conservative treatment are rarely reported and are generally limited to non-compliance with the treatment protocol.

Unlike findings for clinical effectiveness, harms data are often not stratified for interventions that are used for multiple indications (e.g., both uncomplicated DDD and more specific diagnoses). Rather than look to studies comparing different technical approaches of lumbar fusion, which are subject to the same methodological concerns as studies with a conservative treatment comparator group (e.g., small sample sizes, shorter duration of follow-up, lack of standardized reporting), we have identified several large database studies evaluating harms associated with lumbar fusion across several indications and procedure types to provide additional context on the rate of adverse events. These data are evaluated separately from our study set because either the majority of patients did not have a primary indication of uncomplicated DDD (using our pre-specified threshold of ≥75% uncomplicated DDD per our inclusion criteria), or outcomes were not stratified for this population. It should be further noted that diagnostic specificity has been shown to be correlated with outcomes, so results from these studies should be interpreted with caution50.
Lumbar Fusion

For lumbar fusion procedures, we have categorized harms as surgery-related mortality, overall adverse events (as reported in the included studies), and requirements for retreatment (e.g., reoperation/revision surgery). Although these studies used various technical approaches to fusion, we did not make any attempt to stratify outcomes by surgical method. Such data, if available, are summarized for Key Question #4. In addition, the available long-term studies did not report any additional complications except the need for additional surgery beyond the original study duration.

Mortality

No data on perioperative mortality attributable to lumbar fusion were reported in any systematic review, RCT, or observational study that met our inclusion criteria. Overall mortality was reported in the Mannion study; 7.1% (10/140) patients died in the fusion group and 0.8% (1/121) patients died in the conservative treatment group during the 11-year follow-up period for the Brox and Fairbank cohorts. The authors noted that they could not definitively determine if these deaths were associated with CLBP or its treatment given that some patients had illnesses unrelated to back pain, nor was this difference statistically tested. Hedlund et al. reported that after a mean 12.8 years of follow-up of the Fritzell cohorts, 20 patients (6.8%) had died for reasons unrelated to chronic LBP; the authors did not report this outcome on a per-group basis, however.

Adverse Events

The most frequently-reported adverse events occurred during the perioperative period and included dural tears, bleeding, and wound infection, occurring at a rate of 9-18% in available RCTs and observational studies. Notably, the only RCT published since the original review did not evaluate the rate of complications in either treatment group, nor did the one good-quality prospective cohort study we identified.

In the Fairbank RCT, a total of 19 patients experienced complications from surgery (10.8%), which were primarily dural tears and problems with surgical implants (2.8% each). In the 2003 Brox RCT, complications included two wound infections, two bleedings, one dural tear, and one venous thrombosis. Overall 6 patients (18.2%) experienced a complication, and all presented as early complications; there were no late complications associated with surgery. The 2006 Brox RCT reported wound complications in only two patients (8.7%). During long-term follow-up for these studies, no additional complications related to surgery were reported. Fritzell et al. reported 53 early complications occurring in 17% of patients, and 13 (6%) of patients suffered a late complication (defined as more than two weeks after surgery), including nine patients who developed nerve root pain related to the pedicle screw implant.

We identified only one small, poor-quality prospective comparative cohort study which evaluated outcomes for patients with uncomplicated DDD (n=46, mean age 55, 59% male) undergoing minimally-invasive TLIF compared to those who had a previous discectomy undergoing fusion for the first time. Although more patients in the revision group experienced dural tears, overall there were no statistically-significant differences in perioperative complications between the groups.

In addition to the above-described comparative studies, we identified two longer-term case series in our study set that reported complications from fusion surgery. Schoenfeld et al. found that 5% of 143 active military personnel had a postoperative complication following a one- or two-level TLIF procedure, including wound infection, seroma, and radiculitis, with an additional 4% presenting with pseudarthrosis at the last point of follow-up (mean: 34.9 months). Another one of these studies which evaluated 118
patients undergoing one- or two-level ALIF did not report any intraoperative or major complications after surgery over two years of follow-up, but nine patients (7.6%) had persistent pain, two patients (<1%) experienced a hematoma, and one patient received a permanent disability rating.

Subsequent Treatment
Data from available studies indicate that requirements for additional surgery vary widely in both reported rate and indication for such surgery. Across all studies, the rate of reoperation and/or revision surgery averaged approximately 12.5% across studies over a mean of five years of follow-up. As shown in Figure 3 below, reoperation continues to be a concern even years after initial surgery. Studies of shorter duration (i.e., up to two years) had a lower reported rate of reoperation (4%-11%) compared to the limited number of studies with longer follow-up periods (15%-32%). Indications for additional surgery include hardware removal, repeat fusion, alternative lumbar surgery (e.g., discectomy), or some combination. The figure below represents those studies in our set that reported on the rate of reoperations. It is difficult to distinguish between revision surgery and reoperations for two reasons: 1) studies often use these terms interchangeably, and 2) patients can undergo surgery for multiple indications (e.g., a combination of hardware removal and repeat fusion), so reasons for repeat surgery are not always differentiated. One study reported these outcomes separately; of the 38 (15%) patients requiring additional surgery, 17 involved hardware removal, 11 required repeat fusion, nine had a combination procedure, and one underwent a discectomy.

Figure 3. Rate of reoperations/revision procedures across all studies reporting this outcome.

Interestingly, only one of these studies associated repeat surgery with adjacent segment degeneration, which is considered a major concern with lumbar fusion and can cause recurrent lumbar pain. Lamml and colleagues reported that one-third of the additional surgical procedures were performed due to degeneration adjacent to the primary fusion level. Two additional long-term studies in our sample evaluated this outcome but with conflicting results. Froholdt et al. (n=48, mean age 43, 42.8% male) included patients from the Brox RCTs who had radiographs available for review after nine years, and found no differences between the surgical and conservative groups after a mean of nine years follow-
up. In contrast, another follow-up study\(^{34}\) which included 369 patients (mean age 43, 46.7% male) who participated in the Brox,\(^{24,25}\) Fairbank,\(^{26}\) and Fritzell\(^{27}\) RCTs who consented to long-term radiographic follow-up over a mean duration of 13.1 years found a significant correlation between surgery and adjacent segment degeneration by assessing adjacent disc height (TE: -0.44 standard deviations, 95% CI: -0.77, -0.11; \(p=0.01\)), but this relationship was not associated with statistically-significant changes in patient-reported measurements of pain or disability.

Conservative Care

Conservative treatment in the available studies was typically not subject to a specific protocol, and involved a variety of non-operative treatment, including medications, physical or exercise therapy, intensive rehabilitation, and cognitive interventions. No attempt has been made to systematically evaluate potential harms from studies focused specifically on conservative management modalities.

Mortality

No cases of 30-day or overall mortality attributable to conventional or non-operative care, including interdisciplinary rehabilitation, physical therapy, or exercise treatment, have been reported in any systematic review, RCT, or observational study that met our inclusion criteria.

Complications

There were no reported complications of conservative or non-operative care, including interdisciplinary rehabilitation, physical therapy, or exercise treatment, in any systematic review, RCT, or observational study that met our inclusion criteria.

Subsequent Treatment

The only subsequent treatment associated with the conventional or non-operative care group in any study was related to non-adherence to the treatment protocol (i.e., cross-over to surgical cohort) due to persistent complaints or exacerbation of symptoms, though these were not described in detail and not necessarily related to conservative treatment.

Large Database Studies of Lumbar Fusion

As mentioned previously, we identified seven large database studies evaluating complications for fusion across several indications (e.g., stenosis, isthmic spondylolisthesis, scoliosis, etc.) that did not meet our inclusion criteria but are described here to provide additional information on complications associated with lumbar fusion. Three studies\(^{52-54}\) used the National Inpatient Sample (NIS) database, two\(^{55,56}\) evaluated data from Washington State-specific databases, and one\(^{57}\) reviewed the Swedish Spine registry for the 2011 calendar year. One of these studies\(^{58}\) did not specify the spinal outcomes database being reviewed. There is some concern in the clinical community around reviewing large databases studies for outcomes of lumbar fusion due to diagnosis coding ambiguity in claims data.\(^{59}\) We have nevertheless described the results of these studies for context below.

The most recent database study\(^{58}\) retrospectively reviewed 1,498 patients with one- and two-year patient-reported outcomes data and found that across all indications for lumbar fusion, the rate of post-operative complications was 7.7%, the majority of which were either cerebrospinal fluid leak, bleeding requiring transfusion, nerve root injury, and surgical site infections. Those patients with DDD with or without radiculopathy made up the largest proportion of patients that experienced any complication (39.7%) compared to those with spondylolisthesis (33.6%), spinal stenosis (13.6%), deformity (9.6%), or instability (3.6%). Although the authors concluded that there were no significant differences in
functional improvement (as measured on the ODI, VAS, or SF-36) between those who did and did not experience complications, these outcomes were not specifically tied to a DDD diagnosis.

Another recent database study54 which used NIS data to evaluate three different primary interbody fusion cohorts (923,038 fusions) over nine years. Patients with uncomplicated DDD represented a majority of patients for each fusion group (80.1%, 60.6%, and 78.6% for anterior lumbar interbody fusion [ALIF], posterior/transforaminal lumbar interbody fusion [P/TLIF], and combined anterior-posterior interbody fusion [APF], respectively, mean across groups: 64.2%). Table 3 below represents the rate of complications among these groups, showing a significantly higher rate for APF for 12 of 16 complications, and a significantly higher rate of mortality for ALIF. These rates were not adjusted for differences in baseline characteristics.

<table>
<thead>
<tr>
<th>Complications</th>
<th>ALIF (%)</th>
<th>P/TLIF (%)</th>
<th>APF (%)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>0.25</td>
<td>0.15</td>
<td>0.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>0.17</td>
<td>0.13</td>
<td>0.11</td>
<td>0.0017</td>
</tr>
<tr>
<td>Device Related</td>
<td>5.43</td>
<td>2.44</td>
<td>3.89</td>
<td><0.001</td>
</tr>
<tr>
<td>Neurologic</td>
<td>0.37</td>
<td>0.96</td>
<td>0.55</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiac</td>
<td>0.90</td>
<td>0.87</td>
<td>1.23</td>
<td><0.001</td>
</tr>
<tr>
<td>Peripheral Vascular</td>
<td>0.22</td>
<td>0.08</td>
<td>0.28</td>
<td><0.001</td>
</tr>
<tr>
<td>Respiratory</td>
<td>1.65</td>
<td>1.25</td>
<td>2.20</td>
<td><0.001</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>4.83</td>
<td>2.20</td>
<td>5.56</td>
<td><0.001</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>0.84</td>
<td>1.02</td>
<td>1.11</td>
<td><0.001</td>
</tr>
<tr>
<td>Postoperative Shock</td>
<td>0.08</td>
<td>0.08</td>
<td>0.13</td>
<td>0.0002</td>
</tr>
<tr>
<td>Hematoma/Seroma</td>
<td>0.63</td>
<td>0.62</td>
<td>0.82</td>
<td><0.001</td>
</tr>
<tr>
<td>Intraoperative Accidental Puncture/Laceration of Nerve/Blood vessel</td>
<td>3.41</td>
<td>3.43</td>
<td>4.20</td>
<td><0.001</td>
</tr>
<tr>
<td>Wound Dehiscence</td>
<td>0.27</td>
<td>0.15</td>
<td>0.37</td>
<td><0.001</td>
</tr>
<tr>
<td>Postop Infection</td>
<td>0.74</td>
<td>0.43</td>
<td>0.74</td>
<td><0.001</td>
</tr>
<tr>
<td>Acute Anemia secondary to Hemorrhage</td>
<td>7.39</td>
<td>11.42</td>
<td>11.60</td>
<td><0.001</td>
</tr>
<tr>
<td>Acute Respiratory Distress Syndrome</td>
<td>1.36</td>
<td>0.75</td>
<td>1.36</td>
<td><0.001</td>
</tr>
<tr>
<td>Venous Thromboembolic Events</td>
<td>0.62</td>
<td>0.41</td>
<td>0.73</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table key: ALIF, anterior lumbar interbody fusion; APF, anterior-posterior interbody fusion; ARDS, acute respiratory distress syndrome; CNS, central nervous system; GI, gastrointestinal; GU, genitourinary; P/TLIF, posterior/transforaminal lumbar interbody fusion; VTEs, venous thromboembolic events.

Note: Highest percentage is given in \textbf{bold}. p-Value is from chi-square test.

Those studies52,53 that did not meet our inclusion criteria (primarily because they did not have a majority of patients with uncomplicated DDD or report outcomes specific to this population), but reviewed large samples from the NIS database, evaluated whether mortality was associated with the incidence of specific complications of lumbar fusion across multiple diagnoses. The first study52 identified a sample of 220,522 patients who had a fusion procedure (ALIF, PLF, or APLF) for degenerative diseases of the lumbar spine and found that the incidence of postoperative ileus was significantly higher in those who had ALF surgery relative to PLF surgery (4.9 vs. 26.0 per 1,000). Presence of postoperative ileus was
associated with significantly higher Charlson comorbidity index (CCI) scores (3.05 and 2.13 for PLF and ALPF, respectively, p<0.001), and rates of mortality in both the ALF (1.5 vs. 4.1 deaths per 1,000, p=0.025) and PLF (1.1 vs. 4.0 deaths per 1,000, p<0.001) fusion groups. The second study evaluated the incidence and potential risk factors of cerebral vascular accidents (CVA) following lumbar fusion surgery. A total of 340 CVAs out of 264,891 fusions (1.3 per 1,000) were identified between 2002-2011, and were associated with a greater mortality rate (73.7 vs. 0.8 per 1,000 patients) compared to those who did not have a CVA. Risk factors associated with CVA include advanced age (64.4 vs. 55.0 years for no CVA) and preoperative comorbidies as demonstrated on the CCI (4.03 vs. 2.52 for no CVA) (both outcomes, p<0.001).

Two additional database studies reviewed Washington state-specific data to identify complications and mortality associated with lumbar fusion procedures. One of these studies used the Comprehensive Hospital Abstract Reporting System (CHARS) registry of all nonfederal hospitals in Washington State and identified 5,091 adults who underwent a primary fusion procedure for degenerative diseases of the lumbar spine between 2004 to 2007. The overall complication rate for patients with DDD (n=1,097 or 18% of the total population) within the first 90 days after surgery was 4.2%, 2.1% had a repeat lumbar fusion surgery, and there were no deaths. During the one year follow-up, an additional 3.2% had a reoperation, but no deaths or complications were observed. The second study identified all workers’ compensation (WC) claimants (n=2,378) who underwent fusion from 1994 through 2001 and found a 90-day perioperative mortality rate of 0.29% (95% CI: 0.11, 0.60) and a 3-year cumulative mortality rate of 1.93% (95% CI: 1.41, 2.57). Interestingly, patients without a specific indication for surgery were more likely to experience the adverse consequences of narcotic use; a diagnosis of DDD was associated with the highest risk of analgesic-related mortality (Risk Ratio [RR] 2.71, 95% CI: 1.17, 6.28).

The final database study retrospectively reviewed the Swedish National Spine Register from 2011. In a cohort of 3,066 patients who had fusion surgery, 14% underwent reoperations over a mean three years of follow-up, of which 53% were related to removal of an implant and 47% were related to other complications from surgery. A minority of patients (8%) were listed as having a sole diagnosis of DDD and 38% of patients had previous lumbar spinal surgery; however, no further details on complications were reported.

Key Question #4: What is the differential effectiveness and safety of lumbar fusion according to factors such as age, sex, race or ethnicity, pre-existing conditions (e.g., smoking history), intensity of conservative management (e.g., interdisciplinary rehabilitation vs. physical and/or behavioral therapy alone) technical approach to fusion (e.g., posterolateral vs. interbody, minimally-invasive vs. open procedures), initial versus repeat surgery, insurance status (e.g., worker’s compensation vs. other), and treatment setting (e.g., inpatient vs. ambulatory surgery)?

*There is little evidence to suggest that greater surgical intensity is related to changes in outcome in the long-term; advantages to less-intensive surgery (e.g., the effect of minimally-invasive surgery [MIS] compared to open surgery was positive on HRQoL) were noted in the short-term but did not persist in longer-term follow-up >2 years. On the other hand, our review suggests that more intensive and interdisciplinary rehabilitation featuring behavioral intervention may be both superior to usual-care approaches featuring only physical or exercise therapy, and that these more intensive approaches produces comparable outcomes compared to lumbar fusion. WC status appears to have a
differential treatment effect, negatively affecting some surgical outcomes (but not those of conservative management). This effect on surgical outcomes was inconsistent, however, as were the effects of age and gender. Our review did not find smoking status or BMI to be predictive of surgical outcome. These findings suggest that it will be difficult to use such factors to define subgroups of patients with uncomplicated DDD in whom surgical or conservative interventions would be preferentially indicated.

There are scant and often conflicting data addressing intervention-associated and patient-based factors that may influence outcomes following treatment for uncomplicated DDD. Several factors (e.g., age, gender, complexity of fusion) are often adjusted for in analysis of the effect of treatment for uncomplicated DDD on various outcomes of interest; however, the rationale for variable selection and/or results of stratified analyses suggesting differential effects are rarely provided.

The evidence on differential effects of lumbar fusion according to various patient- and treatment-defined subgroups is summarized in the sections that follow. We gave priority to evidence from comparative studies where available, but also used data from fusion case series to augment our analyses.

Intervention Intensity

There have been five major RCTs published comparing spinal fusion to non-operative care among patients with non-specific LBP. Three of these studies24-26 compared fusion to “intensive” interdisciplinary rehabilitation with a cognitive-behavioral component, while control therapy in the remaining two RCTs was at the discretion of the treating physician and mainly involving non-intensive physical therapy in one27 and exercise in another.22 The results of these studies with respect to comparative effectiveness and harms associated with treatment have been presented previously in responses to Key Questions 1 and 2, but are summarized in further detail below.

Surgical Intensity

Within the primary review scope, patients undergoing spinal fusion had similar levels of improvement in pain and function over one to two years of follow-up across four of the five identified RCTs comparing surgical to conservative treatment. However, statistically-significant treatment effects favoring fusion were noted only in the RCTs comparing non-intensive physical therapy or exercise to posterior lumbar interbody fusion (PLIF) without decompression or ALIF or PLIF with or without variable screw placement.27 This is in contrast to a lack of significant findings in only one of these RCTs26 comparing intensive conservative management strategies to PLIF with posterior transpedicular screws. In addition, a subanalysis41 of a RCT27 found no significant differences between three different techniques of fusion, including PLF both with and without instrumentation and PLIF with instrumentation.

Our review did not identify any publications describing the effect of previous spinal surgery on any outcome for patients with uncomplicated DDD compared to conservative therapy. One RCT25 reported no benefit of lumbar fusion over intensive conservative management among patients with previous surgery for disc herniation; this finding mirrors the lack of benefit noted for lumbar fusion over intensive conservative management among patients with no previous surgery. Two additional RCTs26,27 included some patients with previous spinal surgery but did not stratify outcomes for these patients. Additionally, a poor-quality prospective study32 of minimally-invasive TLIF with instrumentation performed in 25 patients as a primary surgical intervention and in 21 patients as a revision surgery for patients who had a previous discectomy documented no pain or function differences between primary
and revision surgery at one year; these findings support the observation that there are few differences in primary versus revision surgery among patients with uncomplicated DDD treated with a surgical intervention.

The effect of the number of vertebrae levels fused compared to conservative management was not evaluated in the five RCTs or comparative cohort studies identified in our review. However, two case series that met our inclusion criteria evaluated the effect of single versus multi-level fusion on outcomes in the population of interest. Anderson el al. assessed outcomes in a population of 106 patients with discogenic LBP and followed for a mean of 29.7 months after treatment with varying intensity of ALIF (according to number of levels fused). Using a multivariate regression model, the authors evaluated the effect of single-versus multiple-level fusion on a number of different outcome measures: RTW, a 30% improvement in the VAS pain score, or an increase of at least 30% on the RDQ. Fusion level was not found to be statistically-significantly associated with any of these outcomes. In another case series, the effect of differing levels of fusion (1, 2, or 3 or more) was evaluated in 143 active duty military personnel (mean age 36.3 years), of whom 118 (83%) were DDD patients, treated with TLF and followed for a mean of 34.9 months. A univariate analysis found that the number of levels fused was not significantly associated with the likelihood medical separation (i.e., an inability to remain on active duty).

We did not identify any studies that met our inclusion criteria and compared minimally-invasive versus open lumbar fusion surgery, or the use of instrumentation versus no instrumentation. However, we did find several systematic reviews and comparative studies that included some proportion of patients with DDD and evaluated these factors. One of these was a systematic review reporting the effect of minimally-invasive versus open surgery for patients undergoing PLIF surgery. The findings of this review suggest that minimally-invasive techniques may be associated with better HRQoL outcomes in the short-term, though the effect was variable, and not present at all in longer term follow-up (>2 years). In addition, the authors noted that the included studies were considerably heterogeneous due to variable patient characteristics and diverse technical specifications associated with surgery. Nevertheless, recent reports reflecting these findings include a prospective study of 66 patients undergoing single level TLIF, comparing those treated with open (n=33, of which 14 were patients with DDD) versus MIS (n=33, of which 13 were patients with DDD), which found significantly lower VAS pain scores at six months post-surgery among those treated with a minimally-invasive approach; no longer term data were presented. Likewise, a retrospective study of 64 patients being treated for LBP and receiving either minimally-invasive TLIF or open TLIF for the treatment of single level DDD or Grade 1 spondylolisthesis with or without leg pain reported lower VAS pain scores in the early post-operative period for the minimally-invasive treatment, with no longer term data presented. In contrast, a prospective study with 190 morbidly obese patients with for LBP and/or radiculopathy undergoing open versus minimally-invasive TLIF did not find any significant differences for any outcome of clinical effectiveness or postoperative complications. Given that the mean BMI in the study sample was 35.3 kg/m², these results may only reflect this subset of the population.

The effect of instrumentation in lumbar fusion surgery was assessed in a retrospective analysis of 1,310 DDD patients undergoing lumbar fusion, examining the effect of varying levels of surgical instrumentation on HRQoL, pain and function, and RTW. Patients undergoing non-instrumented fusion (n=115) had higher levels of pain as measured on a VAS scale than those undergoing instrumented interbody fusion (p=0.02), although no differences in either HRQoL (as measured using the EQ-5D) or disability (as measured using the ODI) were noted. A RCT of patients with DDD treated with PLF (n=72) versus PLIF (n=73) reported no differences in ODI or VAS scores between the two groups at
36 months.65 These findings were also supported by a prospective study of patients with DDD treated with PLF (n=82) and PLIF (n=80), in which no difference between the two groups was noted on the ODI.66

The use of cages in lumbar fusion surgery was evaluated in a recent systematic literature review, which reported that single cage lumbar interbody fusion had significantly lower rates of complications than did two-cage fusion surgery (OR 0.30, 95% CI: 0.10, 0.95).67 Supporting this finding are those of a retrospective population-based cohort study of 1,950 CLBP patients treated with lumbar fusion surgery and receiving Washington State workers compensation who were followed by for a mean of 6.6 years; in this study, the use of cages or instrumentation was associated with increased complication rate compared with bone-only fusion surgery (OR 2.20, 95% CI: 1.16, 4.16), without any improvement in disability or reoperation rates.68

Surgical Approach

The primary focus of our review was on comparisons of lumbar fusion to conservative management; we nevertheless summarize available data comparing different forms of fusion below, with a focus on uncomplicated DDD where possible.

There exists little conclusive evidence documenting the effect of surgical approach on the outcomes of lumbar fusion among patients with uncomplicated DDD. A five-year RCT comparing the clinical outcomes of posterior midline fusion (n=25) compared to a paraspinal approach (n=25) in DDD patients reported significant improvement in outcomes for both groups, but no differences between groups.69 Another RCT with two years of follow-up reported no statistically-significant differences in function (ODI) or pain (VAS) between groups of DDD patients with radiculopathy treated with TLIF (n=51) or PLF (n=47).70 Evaluating the hypothesis that APF, with its anterior approach, may result in a higher incidence of major complications than TLIF, a respective analysis of 68 DDD patients treated with APF compared to 65 with TLIF reported higher rates of intra-operative complications associated with APF, and higher rates of post-operative complications associated with TLIF, but with similar clinical outcomes in both groups.71 A retrospective database analysis similarly documented a significantly increased incidence of postoperative ileus ALF surgery compared to PLF surgery (74.9 vs. 26.0 per 1,000; p<0.001).52 A prospective observational study documented two-year outcomes associated with posterior fusion with translaminar screw fixation compared to TLIF in a cohort of 120 patients with DDD, and reported no difference in either clinical outcomes or treatment satisfaction.72

Surgical Setting

Our review did not identify any publications describing the effect of inpatient versus outpatient surgery on the relative effect of surgical intervention for uncomplicated DDD compared to conservative therapy.

Conservative Management Intensity

Conservative management in the five identified RCTs22,24-27 incorporated a range of options, and differed in intensity. Table 4 on the following page describes the various components of the conservative management programs in each of these RCTs.
Table 4. Components of Conservative Management Programs Incorporated as Comparators in RCTs Evaluating Lumbar Fusion in the Treatment of Uncomplicated DDD

<table>
<thead>
<tr>
<th>Publication</th>
<th>Comparator</th>
<th>Intensity</th>
<th>Components of Conservative Management Program</th>
<th>Program Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brox, 2003²⁴</td>
<td>PLIF</td>
<td>75 hours/3 weeks</td>
<td>Individualized endurance and coordination exercises</td>
<td>Brox, 2003²⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rehab specialist lecture - Daily reinforcement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fear avoidance Belief modification</td>
<td></td>
</tr>
<tr>
<td>Fairbank, 2005²⁶</td>
<td>Various fusion</td>
<td>60-110 hours/3 weeks</td>
<td>Individualized endurance and coordination exercises</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBT: Fear avoidance and belief modification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydrotherapy</td>
<td></td>
</tr>
<tr>
<td>Fritzell, 2001²⁷</td>
<td>PLF, ALIF, or PLIF*</td>
<td>NR</td>
<td>Ad hoc physical therapy</td>
<td></td>
</tr>
<tr>
<td>Ohtori, 2011²²</td>
<td>ALIF or PLIF*</td>
<td>1095 hours/2 years</td>
<td>½ hour daily muscle stretching 1 hour daily walking</td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant treatment effect of surgery over conservative management
The conservative management programs differ with respect to the intensity of the intervention, with three24-26 programs providing intensive treatment over a period of less than one month, and another two22,27 providing treatment either over a longer period of time or with an undefined intensity. While comparisons across these RCTs are complicated by differences in study design, methods, and crossover, there are discernable patterns.42 Patients undergoing lumbar fusion had similar levels of improvement in pain and function over one to two years of follow-up across all four of the five identified RCTs comparing surgical to conservative treatment outcomes. However, statistically-significant treatment effects favoring fusion were noted only in the two RCTs22,27 comparing fusion to non-intensive physical therapy or exercise. In contrast, there appears to be relative benefit conferred by intensive conservative management compared to surgery.24-26 No particular component of the management programs appears to be substantially associated with a greater relative benefit compared to surgery; such greater relative benefit appears instead associated with structure and intensity of the program over the short-term perioperative period.

Our review did not identify any studies directly comparing conservative management programs of varying intensity. Outside the scope of our review, there is evidence describing the relative effectiveness of varying intensity of conservative management. Several RCTs describe the efficacy of intensive interdisciplinary rehabilitation programs compared to specific physical therapy regimens.73,74 Findings from those RCTs comparing higher intensity conservative management to some form of physical therapy were consistent, in that no significant treatment effects favoring the more intensive program were observed for any primary outcome measure; substantial improvements in pain, disability, and function were observed in both treatment groups. Several systematic reviews describing the effectiveness of higher intensity programs have also been published. One review75 found that intensive interdisciplinary rehabilitation programs (>100 hours) were associated with clinically-important improvement in function compared to usual care, while another review76 did not find such an association between program intensity and clinical benefit. In sum, there is moderate evidence that intensive conservative management programs confer some level of incremental benefit over usual care, but not necessarily over less intensive programs of physical therapy.

Sociodemographic Factors

Age

Our review identified three good-quality studies evaluating age as a potential predictor of treatment outcomes: one31 RCT and two40,49 case series, all of which have been previously described. The RCT31 is a secondary analysis of data derived from the Swedish Lumbar Spine Study.27,41 Hagg et al. found that working status at the end of the two-year follow-up was associated with younger age (evaluated as a continuous variable) in the surgical treatment group, but not in the conservative cohort, indicating a differential effect of age on treatment outcomes. In contrast, a case series40 evaluating 143 active duty military personnel found that younger individuals were at a significantly greater risk of medical separation – that is, they were unable to remain on active duty (OR 0.93 per year increase in age, 95% CI: 0.87, 0.98; p=0.01).

Our review identified another case-series49 with conflicting results relative to those above. Using a multivariate regression model, the authors evaluated the effect of age on a number of different outcome measures: returning to work, a 30% improvement in the VAS pain score, or an increase of at least 30% on the RDQ.49 Age was not found to be significantly associated with any of these outcomes.
Outside of the scope of the current review, there are similarly conflicting data around the relationship between age and the outcome of surgical treatment for CLBP. A retrospective population-based cohort study of 1,950 patients treated with lumbar fusion surgery and receiving Washington State workers compensation reported that in a multivariate analysis age greater than 30 was significantly associated with post-operative disability, and to the greatest degree for those over 60 (OR 3.07, 95% CI: 1.71, 5.51). In contrast to this finding, a case-series of 620 patients with DDD treated with single level PLF, and followed at least three years, found that only 24.4% returned to work in within two years postoperatively. Negative predictors of RTW included age more than 50 years at fusion (OR 0.66; 95% CI: 0.45, 0.95).

Gender

Our review identified two RCTs evaluating the effects of fusion with posterior transpedicular screws and postoperative physiotherapy compared to cognitive intervention and exercises; both publications report that “men had inferior results after surgery.” However, these results were quantified neither in the surgery nor conservative treatment groups.

We also identified two case series describing outcomes in a population of 106 patients with discogenic back pain treated with ALIF and followed for a mean of 29.7 months. Using a multivariate regression model, the authors evaluated the effect of gender on a number of different outcome measures, including returning to work, or a 30% improvement on either the VAS or RDQ. Gender was not found associated with any of these outcomes.

In another case series of 143 active duty military personnel (mean age 36.3 years), of whom 118 (83%) were DDD patients, treated with TLIF and followed for a mean of 34.9 months, neither gender, nor smoking status, nor levels of fusion were significantly associated with medical separation (an inability to remain on active duty).

Workers’ Compensation

Our review identified one good-quality secondary analysis of an RCT and one case-series describing WC as a potential predictor of outcomes. Hagg et al. found that WC status was negatively associated with patient global assessment (p=0.049) and work status (p=0.035) in the surgical group, but not in the conservative group, indicating a differential effect of WC on treatment.

A previously-described case-series evaluated the effect of WC on a number of different outcome measures, including pain and function; WC status was not found to be statistically-significantly associated with any of these outcomes. The multivariate model also included pre-surgery work status as a potential predictor of success, and this was independently associated with RTW (OR 10.5, 95% CI: 2.64, 41.4; p=0.0008), but not improvements on the VAS or RDQ.

Outside of the scope of this review are several sources of information which may further illustrate the variation in findings around the effect of WC status on the outcome of treatment of patients with CLBP. In contrast with the inconsistent findings above, compensation status, whether through litigation or WC, is in general consistently associated with poor outcomes after any surgical intervention, as reported in a systematic review of 211 clinical trials with relevant information. Several other publications describe primary studies of lumbar fusion which add additional specific evidence to the association of WC and outcomes in groups treated thusly. A previously-described nonrandomized comparative prospective study found no significant differences in clinical outcomes between those receiving WC compared to the non-WC group, either overall, or stratified by the open versus minimally-invasive technique. These
findings were in contrast to those of a prospective non-comparative study of 125 patients undergoing ALIF over a two-year period (of whom 27 were patients with uncomplicated DDD), which documented a significantly lower rate of clinical success (as defined by a score of 1 or 2 on the Patient Satisfaction Index [PSI]) among patients receiving WC (68% success rate) compared to those not (91% success rate) (p=0.006). This negative relationship did not hold true in the analysis of either the ODI or the SF-12 PCS or MCS, however.

Psychological Factors

Our review identified two good-quality studies describing psychosocial factors as potential predictors of the effect of treatment. The first was performed in the context of a good-quality multicenter study which was derived from the Swedish Lumbar Spine Study. The authors evaluated factors they deemed as potential predictors of various treatment outcomes in surgical and conservative (non-intensive physical therapy) patient groups. Outcome measures included reduction of disability (≥50% reduction of the ODI score), patient global assessment of treatment effect (improvement/no improvement), and work status at the conclusion of two years of follow-up. Using a stepwise, forward multiple logistic regression analysis, the authors found that neurotic personality (measured using the Karolinska Scales of Personality) was statistically-significantly negatively associated with improvement in patient global assessment in the surgical group (p=0.006). However, this association was not significant in the conservatively-treated group, indicating a differential effect of neurotic personality traits on treatment.

Conversely, in this same study, depressive symptoms measured using the ZDS were negatively associated with improvement in the patient global assessment score in the conservative group but not in the surgical group, suggesting a differential effect of this trait on treatment. There was no association, differential or otherwise, noted for depression, ODI scores, or work status in either the surgical or conservative treatment groups.

Outside of the scope of the current review, there are data which may further illustrate nuances of the relationship between psychological comorbidities and outcomes of treatment for uncomplicated DDD. A retrospective case series followed 620 patients with DDD treated with single-level PLF for at least three years; 24.4% returned to work in within two years postoperatively. Negative predictors of RTW included psychological comorbidity (defined as undergoing psychotherapy) before fusion (OR 0.30; 95% CI: 0.14, 0.62). In addition, a systematic literature review documented that psychological factors may in fact modify the treatment effect of fusion versus conservative treatment, with the outcome of fusion less favorable among patients with personality disorder, neuroticism, or depression. Supporting these findings is a retrospective population-based cohort study of 1,950 chronic back pain patients treated with lumbar fusion surgery and receiving Washington State workers compensation followed by for a mean of 6.6 years. This study reports that psychological comorbidities, characterized as including depression, dysthymia, manic-depressive disorders, stress, affective psychoses, or adjustment disorders, were associated with a higher risk of disability two years after lumbar fusion (OR 1.51, 95% CI: 1.05, 2.26).
Lifestyle Factors

Smoking
Our review identified two case series describing the effect of smoking on surgical outcomes. In the first study, smoking was not found to be associated with returning to work, a 30% improvement in the VAS pain score, or an increase of at least 30% on the RDQ. The other study found that for uncomplicated DDD patients treated with TLIF and followed for a mean of 34.9 months, smoking status was not significantly associated with medical separation (i.e., an inability to remain on active duty).

BMI
Our review did not identify any studies presenting BMI-specific data as a characteristic of interest in patients with uncomplicated DDD. Outside the scope of this review, however, there is literature describing the association of BMI with the outcome of surgical treatment for back pain. A prospective non-comparative study of 125 patients undergoing ALIF over a 2-year period (of whom 27 were patients with uncomplicated DDD), documented no significantly different rates of clinical success (as defined by a score of 1 or 2 on the PSI) among patients in varying BMI strata, nor differences in the ODI and the PCS and MCS of the SF-12. Another study which evaluated 190 patients undergoing lumbar fusion for degenerative spinal diseases found that in a logistic regression model, BMI was a risk factor for ASD (OR 1.68, 95% CI: 1.27-2.21, p<0.001) with 11.9% of patients with a BMI ≥25 mg/kg² being diagnosed with ASD two years following surgery; other measurements of effectiveness were not assessed, however. A previously-described prospective study comparing open TLIF to minimally-invasive TLIF in in morbidly obese patients (mean BMI: 35.3 kg/m²) found that both groups improved significantly from baseline and did not find any significant differences between groups for any outcome, including changes on the VAS for back/leg pain, ODI, or SF-36 PCS of MCS.

Key Question #5: What are the costs and potential cost-effectiveness of lumbar fusion relative to alternative treatment approaches?

Economic evaluations of lumbar spinal fusion in patients with uncomplicated DDD are limited both in number and in quality. Available evidence on the costs of lumbar fusion surgery suggest that in-hospital costs alone can approach $100,000 in the U.S., particularly for more complex forms of surgery. The results of two RCT-based economic evaluations mirrored findings for clinical outcomes. A comparison of fusion to interdisciplinary rehabilitation in which no material differences in clinical effectiveness were observed yielded a two-year cost-effectiveness estimate of >$100,000 per quality-adjusted life-year gained. A second comparison of fusion to variable approaches for physical therapy produced calculated cost per unit improvement in pain and function as well as per case of symptom improvement or RTW rather than traditional cost-effectiveness measures such as unadjusted or quality-adjusted survival. Finally, a survey-based study of LBP patients’ willingness to pay for surgery indicated a willingness to pay more than the actual observed costs of surgery for discectomy and decompression alone, but not for lumbar fusion.

While many studies in the available literature have documented increases in both the utilization and costs of lumbar fusion surgery, relatively few have focused specifically on costs and potential cost-effectiveness in the target population for this assessment—patients with DDD and CLBP not attributable to other conditions (e.g., severe stenosis, acute trauma, etc.) and without radiculopathy. We summarize the available economic evidence for patients with uncomplicated DDD below, as well as those from
selected other studies commenting on cost data and/or trends relevant to fusion surgery. Costs are presented in terms of 2014 US dollars, and were updated as necessary based on the medical care component of the U.S. Consumer Price Index.80

\textbf{Utilization and Costs of Fusion in the U.S.}

Given the policy interest around the use and appropriateness of fusion procedures in the U.S., it is not surprising that utilization of these procedures has been closely tracked. We chose to focus on comprehensive evaluations that have been performed most recently. One such study focused specifically on the use of lumbar fusion for DDD employed the Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample to evaluate trends from 2000-2009.81 Population-adjusted utilization of fusion surgery increased 2.4-fold during this period, with the greatest increases seen in anterior approaches to fusion. Another relatively recent study used Medicare claims data to examine trends from 2002-2007 in utilization, outcome, and cost, although the focus of attention in this evaluation was on patients with spinal stenosis.16 Results suggested a more than 15-fold increase (from 1.3 to 19.9 per 100,000 beneficiaries) in the rate of “complex” fusion procedures (i.e., more than two disk levels or a combined anterior/posterior approach), and an incidence of life-threatening complications with complex fusion (5.6%) more than two-fold higher than among patients undergoing decompressive surgery without fusion. Adjusted hospital charges (in 2014 United States Dollars [USD]) ranged from $27,480 for decompression alone to $67,773 for simple fusion to $92,766 for complex fusion.

Martin and colleagues also explored whether differences in worker’s compensation coverage policy for lumbar fusion in a variety of degenerative conditions had an impact on utilization and costs.82 State inpatient databases were compared for California, which requires coverage in any situation in which a second opinion agrees with the first, and Washington, which applies utilization review criteria, requires imaging confirmation of spinal instability, and limits the initial procedure to a single disc level. In 2008-2009, the age- and sex-adjusted rate of lumbar fusion in the worker’s compensation population was 19.0 per 100,000 employed adults in California and 12.9 per 100,000 in Washington (p<0.001). Rates of reoperation and readmission within three months of the initial procedure were also statistically-significantly higher in California. Finally, after adjustment for age, sex, comorbidity, and indication for fusion, mean hospitalization costs (2014 USD) were over 20% higher in California ($59,168 versus $48,271 for Washington, p<0.001).

\textbf{Cost-Effectiveness of Lumbar Fusion in DDD}

Two of the RCTs summarized in our assessment featured within-trial economic evaluations. In one, Rivero-Arias and colleagues evaluated the cost-effectiveness of lumbar fusion over a two-year period83 based on clinical, utility, and micro-costed data collected during Fairbank’s RCT comparing lumbar fusion to intensive rehabilitation.26 Costs were calculated based on itemized resources and unit costs for surgical, rehabilitation, and follow-up services utilized. Utility estimates were based on direct collection of data from the EQ-5D questionnaire at multiple timepoints. Interestingly, while productivity loss was also costed, these estimates do not appear to have been used in the evaluation, which is described as having been conducted from the perspective of the British National Health Service.83

Two-year costs for surgery and rehabilitation (in 2014 US dollars) totaled $18,345 and $10,604 respectively. There was no statistically-significant difference in quality-adjusted survival between groups. Cost-effectiveness (2014 USD) was $113,838 per quality-adjusted life year (QALY) gained for surgery. The authors concluded that such a ratio would not represent a cost-effective use of resources
over a two-year window, and sensitivity analyses suggested that cost-effectiveness might only be approached if differences in utility persisted over the long term and/or greater than 20% of rehabilitation patients opted for surgery each year.

The other trial-based evaluation comes from the Swedish Lumbar Spine Study and also involved costing of resources consumed during the two-year study. Unfortunately, cost-effectiveness was expressed not in terms of cost per QALY or life-year gained, but in terms of unit improvements in disability, treatment success, and RTW. In primary analyses, cost-effectiveness of fusion (in 2014 USD) versus usual care was estimated to be $2,363 per unit improvement on the ODI. Original cost-effectiveness calculations appeared to treat differences in RTW and significant clinical improvement as whole numbers rather than proportions. When considered as proportions (i.e., differences in the probability of these outcomes), cost-effectiveness was $54,527 per significant clinical improvement and $81,011 per RTW, respectively.

We identified two additional cost-effectiveness evaluations that made use of clinical data, although not from studies that were considered for our evidence review. Adogwa and colleagues examined the cost-effectiveness of TLIF in 45 patients with Grade 1 spondylolisthesis, while Glassman et al. assessed the cost-effectiveness of PLIF among patients with DDD as well as other conditions (e.g., disc herniation). In both studies, however, costs and QALYs at two years were compared to those before surgery in the same population rather than to a control group receiving a contemporaneous intervention. In Adogwa’s study, cost-effectiveness was estimated to be $46,428 per QALY gained (2014 USD) at two years. In the Glassman evaluation, the cost-effectiveness of fusion (2014 USD) was $34,565 per QALY gained when only direct health care costs were considered and $56,443 per QALY gained when costs of lost productivity were added. Again, these ratios are calculated in relation to a pre-surgical state rather than to the costs and outcomes associated with an alternative treatment.

Other Economic Evaluations

Fayssoux and colleagues estimated the indirect costs associated with surgery for single-level DDD by using pooled data from an RCT of lumbar fusion and artificial disc replacement. In the first year postoperatively, rates of full- or part-time employment declined from approximately 54% at baseline to less than 30% at 6 weeks, but returned to baseline levels by one year. Lost wages totaled approximately $2,900 per patient in the first year. By the end of the second year of follow-up, 63% of patients reported full- or part-time employment.

Another study involved the use of a post-surgery evaluation of the value that patients ascribe to individual surgical procedures for LBP. A total of 115 Swiss patients who had undergone discectomy, decompressive surgery, or fusion for a variety of degenerative lumbar conditions were surveyed regarding the maximum they would be willing to pay for each of these procedures, controlling for other factors such as satisfaction with the procedure, family income, and other financial resources. For both discectomy and decompression, the maximum willingness-to-pay (WTP) threshold for surgery was higher than the actual cost of the surgical procedures. For lumbar fusion, however, patients reported a maximum willingness-to-pay level of $19,712 (2014 USD), compared to an actual average hospital cost of $24,676 (p<0.05).

Finally, Alvin and colleagues conducted a systematic review to document variation in cost-calculation methods in economic evaluations of cervical and spinal lumbar surgery. A total of 37 economic evaluations were identified. Sources of costs varied widely, with approximately one-third of evaluations using public-payer reimbursement, another one-third based on procedure micro-costing approaches,
and the remainder using cost-to-charge ratios or other government data sources. Of perhaps greater concern, one-quarter of the cost-effectiveness evaluations that stated use of a societal perspective did not include calculations of indirect costs, and there was great variation in the types of direct costs considered.
10. Recommendations for Future Research

Evidence reviewed in this assessment suggests that, overall, lumbar fusion does not provide incremental clinical benefit in comparison to various forms of coordinated and interdisciplinary rehabilitation programs in patients with uncomplicated DDD. Even where benefits were seen (i.e., in comparison to less-intense forms of physical and exercise therapy), they tended to diminish over longer periods of follow-up.

While these findings seem to relegate the use of lumbar fusion to treatment of very last resort in patients with uncomplicated DDD, there are still unanswered questions regarding treatment alternatives in this patient population. For one, the literature comparing interdisciplinary rehabilitation to other forms of conservative management has produced inconsistent results. A 2011 ICER appraisal\(^97\) attempted to identify the components of interdisciplinary rehabilitation most closely associated with treatment success. Not only were these components difficult to quantify, but available evidence suggests inconsistent effects for interdisciplinary rehabilitation on pain, function, and RTW when compared to usual care, and no material clinical benefits when compared to physical therapy alone. The field requires further refinement to define the characteristic components of interdisciplinary rehabilitation so that (a) programs can be compared on an equal footing; and (b) a minimum set of components can be identified for successful program application in community-based as well as more heavily-resourced settings. In addition, a measure of success reported too-infrequently in rehabilitation studies is avoidance of surgery itself. This should be a standard component of clinical trials moving forward.

There is also a dearth of evidence comparing lumbar fusion to minimally-invasive treatment alternatives in patients with uncomplicated DDD. While the evidence for some of these alternatives has also been questioned, stakeholders would benefit from understanding whether a “stepped care” approach would benefit patients with longstanding back pain.

Finally, the only way to understand whether fusion has any place in treatment is to conduct studies in more broadly-representative populations. This could be accomplished through either RCTs or registry-based studies, and should involve both community and academic settings, multiple types of insurance coverage, and patients with back pain of varying duration. These studies could also be coupled with evaluations (randomized or otherwise) of screening protocols designed to triage patients toward certain types of treatments. For example, such protocols might appropriately steer patients with pronounced psychological distress or fear of activity toward the educational components of rehabilitation, while those with refractory pain despite exercise and physical therapy might derive greater benefit from more invasive treatment.
References

Appendix A: Literature Search Strategy

Databases: MEDLINE, EMBASE, Cochrane Register of Controlled Trials, Databases of Abstracts of Reviews of Effects (DARE), OT Seeker, PEDro, ABI Inform, EconLit, and Health and Psychosocial Instruments

Search Date: October 2, 2015

Ovid Search Terms:
1. exp low back pain/ or exp lumbar vertebrae/ or exp lumbosacral region/
2. (low back pain or lumbar or lumbar spine or lumbosacral).ti,ab
3. 1 or 2
4. exp arthrodesis/
5. (arthrod* or lumbar fusion* or interbody or posterolateral).ti,ab
6. 4 or 5
7. exp intervertebral disc degeneration/
8. (dis* degenerat* or degenerat* dis* or discogenic).ti,ab.
9. 7 or 8
10. 3 and 6 and 9
11. limit to (humans and english language and yr="2000 -Current")

Embase Search Terms:
1. 'lumbar vertebra'/exp OR 'lumbar':ab,ti OR 'lumbar spine':ab,ti OR 'lumbosacral':ab,ti OR 'low back pain'/exp OR 'low back pain':ab,ti
2. 'arthrodesis'/de OR 'spine fusion'/exp OR 'arthrod*':ab,ti OR 'lumbar fusion':ab,ti OR 'interbody':ab,ti OR 'posterolateral':ab,ti
3. 'intervertebral disk degeneration'/de OR 'intervertebral disk degeneration'/de OR (dis* NEXT/1 degenerat*):ab,ti OR (degenerat* NEXT/1 dis*):ab,ti OR 'discogenic pain'/de OR 'discogenic':ab,ti
4. #1 AND #2 AND #3
5. #4 AND [humans]/lim AND [english]/lim AND [2000-2015]/py

Include:
- **Population:** adults with chronic (≥3 months) lumbar pain and degenerative disk disease (also called spondylosis)
 - Note: patients with a history of prior back surgery for any indication should also be included
- **Interventions/Comparator:** all major technical approaches to lumbar fusion surgery, regardless of surgical technique or hardware utilized, versus nonsurgical management, including conservative approaches of varying intensity (e.g., physical therapy, intensive exercise/rehabilitation, CBT, medication) OR minimally-invasive treatments (e.g., radiofrequency ablation, electrothermal therapy)
- **Outcomes:** patient- and clinician-reported measures of pain, function, and disability; opioid medication use; requirements for repeat surgery/retreatment; RTW and/or resumption of normal activities; complications and mortality; costs
- **Sources:** systematic reviews & meta-analyses, RCTs, comparative cohort studies, case series with at least 100 patients and at least 2 years of follow-up
Exclude:

- **Population**: patients with other spinal conditions such as radiculopathy, >Grade 1 degenerative spondylolisthesis, isthmic spondylolisthesis, or severe spinal stenosis, as well as acute trauma or systemic disease affecting the lumbar spine
 - *Note: studies with mixed patient populations should be included ONLY if outcomes are reported separately for individuals with DDD alone*
- **Interventions/Comparator**: other surgical procedures, including discectomy/laminectomy and artificial disc replacement
 - *Note: keep if used in combination with lumbar fusion*
- **Outcomes**: general surgical outcomes (e.g., blood loss, response to anesthesia, operating time)
- **Sources**: case series with less than 100 patients and less than 2 years of follow-up; case reports; conference abstracts; letters; reviews (not systematic); dissertations
Appendix B: Summary Evidence Tables

<table>
<thead>
<tr>
<th>Author</th>
<th>Study Design</th>
<th>Study Quality</th>
<th>Intervention</th>
<th># of Patients</th>
<th>Inclusion Criteria</th>
<th>Follow-up</th>
<th>Outcomes</th>
<th>Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson 200649</td>
<td>Case series (prospective)</td>
<td>Poor</td>
<td>ALIF with titanium cages and autogenous iliac bone graft</td>
<td>n=106</td>
<td>CLBP ≥ 6 months</td>
<td>Mean 29.7 months with 95% follow-up after one year and 81% @ 24 months</td>
<td>VAS: -2.2</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RDQ: -4.7</td>
<td>Workers’ comp (# of patients working): preop yes - 13/50 no - 36/50 postop yes - 28/50 no - 22/50 Proportion patients working at follow-up who were working before surgery was 92% compared with 43% who did not work before surgery (p=0.0001, OR 10.5) and was independent of workers' comp status In Multivariate Logistic Regression of 30% Improvement in RDQ or VAS Score: no significant differences between groups for any measured outcomes</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Study Design</td>
<td>Study Quality</td>
<td>Intervention</td>
<td># of Patients</td>
<td>Inclusion Criteria</td>
<td>Patient Characteristics</td>
<td>Follow-up</td>
<td>Outcomes</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td>--</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Brox 2003²⁴</td>
<td>RCT</td>
<td>Good</td>
<td>1) fusion with posterior transpedicular screws and postoperative physiotherapy 2) cognitive intervention and exercises</td>
<td>n=64</td>
<td>Age 25–60 years Pain duration ≥1 year ≥30 on ODI Degeneration at L4–L5 and/or L5–S1</td>
<td>Age: 1) 44.1, 2) 42.4</td>
<td>12 months with 97% follow-up</td>
<td>ODI: 1) -15.6 2) -13.3 Difference of 2.3; after controlling for gender and pretreatment beliefs differences, difference of 2.7, p=NS for both</td>
</tr>
<tr>
<td>Brox 2006²⁵</td>
<td>RCT</td>
<td>Good</td>
<td>1) fusion with posterior transpedicular screws 2) cognitive intervention and exercises</td>
<td>n=60</td>
<td>Age 25–60 years Pain duration ≥1 year Disc degeneration at L4–L5 and/or L5–S1 All patients had undergone prior surgery for disc herniation</td>
<td>Age: 1) 42, 2) 43 % male: 1) 38, 2) 65 % smoking: 1) 72, 2) 58 ODI: 1) 47.0 2) 45.1</td>
<td>12 months</td>
<td>ODI: 1) -8.9 2) -12.8 Difference of -3.7, 95% CI: -13.5 to 6.2 After controlling for gender and pretreatment beliefs differences, difference of -7.3, 95% CI: -21.7, 1.7 ODI scores for the men in the surgery group did</td>
</tr>
<tr>
<td>Author</td>
<td>Study Design</td>
<td>Study Quality</td>
<td>Intervention</td>
<td># of Patients</td>
<td>Inclusion Criteria</td>
<td>Patient Characteristics</td>
<td>Follow-up</td>
<td>Outcomes</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Brox 2010<sup>28</sup></td>
<td>Follow-up to Brox 2003 and 2006</td>
<td>Good</td>
<td>1) fusion with posterior transpedicular screws 2) cognitive intervention and exercises</td>
<td>n=124 1) 66 2) 58 (merged patients from prior randomized trials)</td>
<td>Age 25-60 years Pain duration ≥1 year Disc degeneration at L4–L5 and/or L5–S1 ≥1 year of symptoms after or without previous surgery for disk herniation</td>
<td>Age: 1) 42.7, 2) 42.4 % male: 1) 41, 2) 50 % previous surgery: 1) 44, 2) 53 % smoking: 1) 36, 2) 30 ODI: 1) 44.4, 2) 43.0</td>
<td>48 months 1) 92% follow-up 2) 86% follow-up p=NR</td>
<td>ITT ODI: 1) -14.4, 2) -16.4 Adjusted TE of 1.1; 95% CI: 5.9, 8.2 As-treated ODI: 1) -15.3 2) -15.3 Adjusted TE -1.6; 95% CI: -8.9, 5.6 (outcomes adjusted for age, gender, baseline score and previous disc surgery)</td>
</tr>
</tbody>
</table>

The 2 men who had surgery after follow-up did not improve.

Patients randomized to cognitive intervention and exercise improved significantly from baseline to 1-year follow-up in all variables except back pain (p=0.07), RTW (p=0.13), and emotional distress (p=0.08).
<table>
<thead>
<tr>
<th>Author</th>
<th>Study Design</th>
<th>Study Quality</th>
<th>Intervention</th>
<th># of Patients</th>
<th>Inclusion Criteria</th>
<th>Patient Characteristics</th>
<th>Follow-up</th>
<th>Outcomes</th>
<th>Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAIRBANK 2005<sup>26</sup></td>
<td>RCT</td>
<td>Good</td>
<td>1) fusion (choice of technique was allowed)</td>
<td>n=349</td>
<td>Age 18-55</td>
<td>Age: means reported for age ranges</td>
<td>24 months</td>
<td>ODI scores improved slightly more in favor of surgery (-4.1, 95% CI: -8.1, -0.1, p=0.045)</td>
<td>Complications from surgery 19/176 (10.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) intensive rehabilitation program (exercise targeted to individual’s need)</td>
<td>1) 176</td>
<td>Pain duration at ≥1 year</td>
<td>% male: 1) 44.9, 2) 53.8</td>
<td>follow-up</td>
<td>After imputation for missing follow-up data the mean difference was -4.5 (95% CI: -8.2, 0.8, p=0.02)</td>
<td>Reoperations 11/176 (6.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) 173</td>
<td></td>
<td>% smoking: 1) 43.2, 2) 42.8</td>
<td></td>
<td>No differences between groups for surgery vs. control on any other outcome, including SF-36 PCS (+9.4 vs. +7.6), SF-36 MCS, (+4.2 vs. +0.7), or mental health (0-100 scale; +6.4 vs. +8.1)</td>
<td>Mortality NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n=294</td>
<td>Aged 25–65 years with CLBP</td>
<td>% previous surgery: 1) 8, 2) 8.1</td>
<td></td>
<td>No complications associated with nonsurgical group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1) 222</td>
<td>Referred by PCP</td>
<td>ODI: 1) 46.5, 2) 44.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) 72</td>
<td></td>
<td>SF-36 PCS: 1) 19.4, 2) 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SF-36 MCS: 1) 43.2, 2) 44.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Study Design</td>
<td>Study Quality</td>
<td>Intervention</td>
<td># of Patients</td>
<td>Inclusion Criteria</td>
<td>Patient Characteristics</td>
<td>Follow-up</td>
<td>Outcomes</td>
<td>Harms</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
<td>---------------</td>
<td>--</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fritzell 2002</td>
<td>Secondary analysis to Fritzell 2001</td>
<td>Fair</td>
<td>1a) PLF</td>
<td>N=222</td>
<td>Aged 25–65 years with CLBP Referred by PCP Pain ≥2 years from L4–L5 and/or L5–S1</td>
<td>Age: 43</td>
<td>24 months with 98% follow-up</td>
<td>p=NS any outcome by surgery type, including ODI (-10.8, -14.8, -8.8), GFS (-12.3, -17.6, -16.3), ZDS (-8.8, -7.6, -7.1) for PLF, PLF with VSP, and ALIF/PLIF, respectively</td>
<td>Late complications: overall: 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1b) PLF w/VSP</td>
<td>1a) 73</td>
<td></td>
<td>% male: 49.5</td>
<td>Cross-over @ year 2: 1 5 1b 9 1c 4</td>
<td>Work status- significant difference in favor of surgery expressed as “net back to work”</td>
<td>Early complications: overall: 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1c) ALIF or PLIF</td>
<td>1b) 74</td>
<td></td>
<td>% smoking: 1) 40.6, 49.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1c) 75</td>
<td></td>
<td>% previous surgery: 18.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VAS back: 64.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VAS leg: 35.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ODI: 47.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZDS: 39.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Study Design:
- 1) PLF
- 1b) PLF w/VSP
- 1c) ALIF or PLIF

Intervention:
- or PLIF
- 2) nonsurgical (physical therapy, cognitive training, pain relief)

Follow-up:
- Cross-over @ year 2 (n): 1) 18 2) 7

Outcomes:
- VAS back: 16.7 (p=0.0002)
- VAS leg: 13.3 (p=0.005)
- ODI: 8.8 (p=0.015)
- ZDS: 39.1 (p=NS)

Harms:
- Late complications: 13 (6%)
- Reoperations: 16 (7.8%) unintended reoperations related to complications in the fusion cohort
- 2 patients in the surgical group died within 2 years from baseline (not related to surgery)
<table>
<thead>
<tr>
<th>Author</th>
<th>Study Design</th>
<th>Study Quality</th>
<th>Intervention</th>
<th># of Patients</th>
<th>Inclusion Criteria</th>
<th>Patient Characteristics</th>
<th>Follow-up</th>
<th>Outcomes</th>
<th>Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Froholdt 2012</td>
<td>Follow-up to Brox 2010</td>
<td>Good</td>
<td>see Brox 2010</td>
<td>n=99</td>
<td>See Brox 2010</td>
<td>Age: 1) 43.0, 2) 42.6</td>
<td>9 years</td>
<td>80% from original study (Brox 2010) Patients who did not attend the 9-year follow-up were not different from dropouts at baseline or the latest follow-up before 9 years</td>
<td>Overall reoperations: 19/60 (32%) No infections and mortality NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1) 55, 2) 44</td>
<td></td>
<td>% male: 1) 35, 2) 43</td>
<td></td>
<td></td>
<td>2 patients (implant-related infections) Reoperations: 1a) 2 1b) 0 2c) 1 No complications in nonsurgical group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ODI: 1) 62.4, 2) 63.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pain duration: 1) 62.4, 2) 63.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% smoking: 1) 55, 2) 51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*(p=0.002) and also as “back to work” (p=0.049) % net back to work by surgical type: 1a) 35 1b) 35 1c) 37

RTW (full-time) 1) 35% 2) 36% p=NS

ODI change (ITT analysis): 1) 20.2 2) 19.8

Adjusted TE: 1.9, 95% CI: 7.8, 11.6
<table>
<thead>
<tr>
<th>Author</th>
<th>Study Design</th>
<th>Study Quality</th>
<th>Intervention</th>
<th># of Patients</th>
<th>Inclusion Criteria</th>
<th>Patient Characteristics</th>
<th>Follow-up</th>
<th>Outcomes</th>
<th>Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Froholdt 2013</td>
<td>Follow-up to Brox 2010</td>
<td>Good</td>
<td>see Brox 2010</td>
<td>n=48</td>
<td>See Brox 2010 Patients with baseline and follow-up x-rays</td>
<td>Age: 1) 44.0, 2) 41.7 % male: 1) 48, 2) 56 Pain duration (years): 1) 9.6, 2) 8.3 Back pain: 1) 65, 2) 60 % smoking: 1) 48 2) 48</td>
<td>9 years</td>
<td>NR</td>
<td>p=NS for adjacent disc degeneration at 9 years follow-up; poor correlation between radiological adjacent segment degeneration and clinical symptoms ranging from r=0.04 (p=0.79) to r=0.36 (p=0.01)</td>
</tr>
<tr>
<td>Haag 2003</td>
<td>Secondary analysis of Fritzell 2001</td>
<td>Good</td>
<td>1) fusion 2) nonsurgical (See Fritzell 2001 for details)</td>
<td>1) 201, 2) 63</td>
<td>See Fritzell 2001</td>
<td>% with worker's comp who consider back problem better/not better after surgery, mean ODI for those who consider back problem better/not better after surgery, mean GFS for those who consider back problem better/not better were not different between groups % with worker's compensation who are working/not working 1) 29/45; p=0.035</td>
<td>2 years</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Study Design</td>
<td>Study Quality</td>
<td>Intervention</td>
<td># of Patients</td>
<td>Inclusion Criteria</td>
<td>Patient Characteristics</td>
<td>Follow-up</td>
<td>Outcomes</td>
<td>Harms</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Hedlund 2015 | Follow-up to Fritzell 2001 | Fair | 1) fusion | 1) 187 | See Fritzell 2001 for details | Age: 59
No other baseline characteristics reported for those included in follow-up | 12.8 years | % patients much better/better As-treated 1) 66 2) 31 p=0.004 Per-protocol 1) 65 2) 37 p=0.044 GCAC 1) 65 2) 22 p<0.001 No significant differences b/w groups for any other outcome | Complications NR beyond the 2 year f/u of the original study |

Mean ZDS for back problem better/not better after surgery:
1) 39/39
2) 48/40; p=0.007

p=NS within groups unless reported; other baseline variables not statistically associated with improvement in back problem or work status
<table>
<thead>
<tr>
<th>Author</th>
<th>Study Design</th>
<th>Study Quality</th>
<th>Intervention</th>
<th># of Patients</th>
<th>Inclusion Criteria</th>
<th>Patient Characteristics</th>
<th>Follow-up</th>
<th>Outcomes</th>
<th>Harms</th>
</tr>
</thead>
</table>
| Kang 2014 | Prospective cohort | Poor | Minimally-invasive TLIF | n=46 | DDD without instability including spinal stenosis, either primary or revision (prior discectomy) | Age: 1) 57.4, 2) 51.5
| | | | | | 1) 56, 2) 54.6
| | | | | | % male 1) 56, 2) 66
| | | | | | VAS leg pain: 1) 7.9, 2) 7.6
| | | | | | VAS back pain: 1) 7.7, 2) 7.7
| | | | | | ODI: 1) 54.6, 2) 66
| | | | | | 1) 17.6, 2) 16.3
| | | | | | p=0.45
| | | | | | VAS for leg pain: 1) -6.1, 2) -6.2
| | | | | | VAS for back pain: 1) -5.7, 2) -4.9
| | | | | | ODI: 1) -16.6, 2) -14.8
| | | | | | (all outcomes measured at 1 year and p=NS)
| Lammli 2014 | Case series | Poor | 1-level or 2-level ALIF with recombinant human bone morphogenetic protein 2 | n=118 | Age 18-70 Failed conservative care >3 months; No psychological contraindications for surgery Completed 2-yr follow-up | Age: 43
| | | | | | % male: 41.5
| | | | | | % smoking: 33.1
| | | | | | % prior surgery: 32.2
| | | | | | VAS: 6.35
| | | | | | 2 years
| | | | | | Average ODI improvement: 17%, p=0.036
| | | | | | VAS: -3.33, p<0.0001
| | | | | | Improved function, n (%): 60 (62.5)
| | | | | | Maintained functionality, n (%): 25 (26.0)
| | | | | | Worse functional outcomes n (%): 11
| | | | | | No intraoperative or major complications
| | | | | | Hematoma (n): 2
| | | | | | Additional surgical procedures (n): 9
<p>| | | | | | Operations not related to adjacent level or |</p>
<table>
<thead>
<tr>
<th>Author</th>
<th>Study Design</th>
<th>Study Quality</th>
<th>Intervention</th>
<th># of Patients</th>
<th>Inclusion Criteria</th>
<th>Patient Characteristics</th>
<th>Follow-up</th>
<th>Outcomes</th>
<th>Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannion 2013</td>
<td>Follow-up to Brox 2003, Brox 2006, and Fairbank 2005</td>
<td>Good</td>
<td>1) fusion 2) nonsurgical (multidisciplinary cognitive-behavioral and exercise rehabilitation)</td>
<td>n=261 1) 140 2) 121</td>
<td>Participated in Brox 2003, Brox 2006, or Fairbank 2005 and consented to radiographical long-term follow-up</td>
<td>Age: 41.8 % male: 47.5 % previous spine surgery: 19.1 % smoking: 39.0 ODI: 1) 45.1 2) 42.3</td>
<td>11.4 years</td>
<td>(11.4)</td>
<td>fusion site (n): 3 Degeneration at level adjacent to fusion (n): 3 Pseudoarthrosis at fusion level (n): 3</td>
</tr>
<tr>
<td>Mannion 2014</td>
<td>Follow-up to Fritzell 2001, Brox 2003, Brox 2006, and Fairbank 2005</td>
<td>Fair</td>
<td>1) fusion 2) nonsurgical (see Fritzell 2001, Brox 2003, Brox 2006, or Fairbank 2005)</td>
<td>n=369 1) 272 2) 97</td>
<td>Participated in Fritzell 2001, Brox 2003, Brox 2006, or Fairbank 2005 and consented to radiographical</td>
<td>Age: 1) 43.1 2) 41.4 % male 1) 45.6 2) 49.5</td>
<td>13.1 years</td>
<td>NR</td>
<td>Fusion associated with lower adjusted disc space height of the adjacent (cranial)</td>
</tr>
<tr>
<td>Author</td>
<td>Study Design</td>
<td>Study Quality</td>
<td>Intervention</td>
<td># of Patients</td>
<td>Inclusion Criteria</td>
<td># of Patients</td>
<td>Follow-up</td>
<td>Outcomes</td>
<td>Harms</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td>--</td>
<td>---------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Mirza 2013<sup>35</sup></td>
<td>Prospective cohort</td>
<td>Good</td>
<td>1) surgery (instrumented fusion, artificial disc replacement, laminectomy or discectomy) 2) nonsurgical (all those who did not receive surgery within 6 months)</td>
<td>n=495</td>
<td>LBP for ≥6 months and MRI scan showing disc degeneration at one or two lumbar discs</td>
<td>n=495</td>
<td>12 months</td>
<td>30% improvement in pain intensity: 1) 71% 2) 35% p<0.001</td>
<td>Reoperation rate, n (%): 8 (11) No other complications or mortality reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1) 86*</td>
<td>Age: 1) 42.1, 2) 42.7</td>
<td>1) 86*</td>
<td></td>
<td>30% improvement on RDQ: 1) 57 2) 25 p<0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) 409</td>
<td>% male: 1) 45, 2) 48</td>
<td>2) 409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*68 (79%)</td>
<td>% previous surgery: 1) 36, 2) 21 p=0.004</td>
<td>*68 (79%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fusion, 10</td>
<td>% smoking: 1) 21, 2) 29</td>
<td>fusion, 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>artificial disc replacement, 8 laminectomy or discectomy</td>
<td></td>
<td>artificial disc replacement, 8 laminectomy or discectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Study Design</td>
<td>Study Quality</td>
<td>Intervention</td>
<td># of Patients</td>
<td>Inclusion Criteria</td>
<td>Patient Characteristics</td>
<td>Follow-up</td>
<td>Outcomes</td>
<td>Harms</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Ohtori 2011</td>
<td>RCT</td>
<td>Fair</td>
<td>1) exercise treatment 2) anterior discectomy + ABF 3) PLF without decompression</td>
<td>n=41 1) 20 2) 15 3) 6</td>
<td>LBP ≥2 years with no accompanying radicular pain</td>
<td>Age: 1) 33, 2) 35, 3) 37 % male: 1) 50, 2) 66.7, 3) 66.7 Pain duration (years): 1) 7, 2) 7, 3) 9 VAS: 1) 7.7, 2) 7.4, 3) 6.5 JOA: 1) 0.7, 2) 1.1, 3) 0.7 ODI: 1) 64, 2) 62, 3) 66</td>
<td>1) 3 years 2) 4 years 3) 4 years</td>
<td>Change VAS after 2 years 1) -3.0 2) -6.1 3) -4 Change JOA after 2 years 1) +0.5 2) +1.4 3) +1.3 Change ODI after 2 years 1) -24 2) -51.7 3) -44.8 (2) & (3) vs. (1) for all 3 outcomes: p<0.01 (2) vs. (3) for VAS and ODI: p<0.05</td>
<td>NR</td>
</tr>
<tr>
<td>Schoenfeld 2013</td>
<td>Case series</td>
<td>Poor</td>
<td>TLIF</td>
<td>n=143</td>
<td>All TLIF procedures performed on active duty</td>
<td>Age: 36.3 % male: 87 34.9 months (42.5 months for those who)</td>
<td>Able to remain on active duty: 65% Younger individuals at</td>
<td>Sustained a complication, n (5): 7 (5%)</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Study Design</td>
<td>Study Quality</td>
<td>Intervention</td>
<td># of Patients</td>
<td>Inclusion Criteria</td>
<td>Patient Characteristics</td>
<td>Follow-up</td>
<td>Outcomes</td>
<td>Harms</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Smith 2014<sup>98</sup></td>
<td>Retrospective cohort</td>
<td>Poor</td>
<td>1) Fusion 2) Nonsurgical (physical therapy, epidural injections, medication)</td>
<td>n=96 1) 53 2) 43</td>
<td>Symptoms of axial low back pain, attempted conservative therapy for a minimum of 6 weeks, and a 1-level or a 2-adjacent level positive discogram that</td>
<td>Age: 1) 47.0, 2) 47.3 NRS pain score: 1) 7.8, 2) 8.0 % male: 1) 47.2 , 2) 53.5</td>
<td>1) 63 months 2) 58 months p=NS</td>
<td>increased risk of separation after TLIF OR 0.93 per each year increase in age (95% CI: 0.87, 0.98) Junior Enlisted personnel at increased risk of medical separation vs. Senior Enlisted and Officers: OR 6.42 (95% CI: 2.20, 18.74)</td>
<td>Postoperative infection, n (%): 3 (2%) Seroma, n (5): 3 (2%) L5 radiculitis, n (%): (0.7%) Required revision: 7 (5%) Underwent MEB for medically separation, n (%): 50 (35%) Pseudoarthrosis, n (%): 6 (4%) Fusion could not be reliably assessed (n): 54</td>
</tr>
<tr>
<td>Author</td>
<td>Study Design</td>
<td>Study Quality</td>
<td>Intervention</td>
<td># of Patients</td>
<td>Inclusion Criteria</td>
<td>Patient Characteristics</td>
<td>Follow-up</td>
<td>Outcomes</td>
<td>Harms</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>was concordant with lumbar DDD based on MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>end of evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smoking demonstrated a significant negative effect on ODI, SF-12 MCS, SF-12 PCS, and the satisfaction scale, and higher BMI had a significant negative effect on the satisfaction scale score.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C: ICER Integrated Evidence Ratings

Formulary decisions require a rigorous evaluation of available evidence, a process that entails judgments regarding the quality of individual clinical studies and, ultimately, an assessment of the entire body of evidence regarding a therapeutic agent. To support this latter step, the Institute for Clinical and Economic Review (ICER) has developed the ICER Evidence Rating Matrix™. This user’s guide to the ICER Matrix was developed with funding provided by the Comparative Effectiveness Research Collaborative Initiative (CER-CI), a joint initiative of the Academy of Managed Care Pharmacy, the International Society of Pharmacoeconomics and Outcomes Research, and the National Pharmaceutical Council (http://www.npcnow.org/issue/cer-collaborative-initiative). The ICER Matrix presents a framework for evaluating the comparative benefits and risks of therapies in a consistent, transparent system leading to an evidence rating that can guide coverage and formulary placement decisions. The purpose of this user’s guide is to help members of Pharmacy and Therapeutics Committees and other decision-makers understand the approach embodied in the matrix, and to help them apply it in a reliable, consistent fashion.

The updated ICER Evidence Rating Matrix is shown below, with a key to the single letter ratings on the following page. Fundamentally, the evidence rating reflects a joint judgment of two critical components:

a) The magnitude of the difference between a therapeutic agent and its comparator in “net health benefit” – the balance between clinical benefits and risks and/or adverse effects (horizontal axis); AND

b) The level of certainty that you have in your best point estimate of net health benefit (vertical axis).
A
B+
C+
P/I
I

Negative Comparable Small Substantial
Net Benefit Net Benefit Net Benefit Net Benefit
High
Certainty
Moderate
Certainty
Low
Certainty

Negative Comparable Small Substantial
Net Benefit Net Benefit Net Benefit Net Benefit
The letter ratings are listed below, according to the level of certainty in the best estimate of net health benefit.

High Certainty
- A = Superior
- B = Incremental
- C = Comparable
- D = Inferior

Moderate Certainty
- B+ = Incremental or Better
- C+ = Comparable or Better
- P/I = Promising but Inconclusive
- I = Insufficient

Low Certainty
- I = Insufficient

Steps in Applying the ICER Evidence Rating Matrix

1. **Establish the specific focus of the comparison to be made and the scope of evidence you will be considering.** This process is sometimes referred to as determining the “PICO” – the Population, Intervention, Comparator(s), and Outcomes of interest. Depending on the comparison, it is often helpful to also define the specific Time Horizon and Setting that will be considered relevant.

2. **Estimate the magnitude of the comparative net health benefit.** Working from the scope of evidence established, it is important to quantify findings from the body of evidence on specific clinical benefits, risks, and other potentially important outcomes, such as adherence, so you can compare these side-by-side for the therapeutic agent and comparator. Some organizations compare each outcome, risk, etc. separately without using a quantitative measure to try to sum the overall comparative balance of benefits and risks between the therapeutic agent and the comparator. For these organizations the estimate of comparative net health benefit must be made qualitatively. Other organizations summarize the balance of benefits and risks using formal mathematical approaches such as health utility analysis, which generates a quantitative summary measure known as the quality-adjusted life year (QALY). What is most important, however, is full and transparent documentation of your rationale for assigning the magnitude of comparative net health benefit into one of four possible categories:

 - **Negative**: the drug produces a net health benefit inferior to that of the comparator
 - **Comparable**: the drug produces a net health benefit comparable to that of the comparator
 - **Small**: the drug produces a small positive net health benefit relative to the comparator
 - **Substantial**: the drug produces a substantial (moderate-large) positive net health benefit relative to the comparator
3. **Assign a level of certainty to the estimate of comparative net health benefit.** Given the strength of the evidence on comparative benefits and risks, a “conceptual confidence interval” around the original estimate of comparative net health benefit can be made, leading you to an assignment of the overall level of certainty in that estimate. Rather than assigning certainty by using a fixed equation weighting different attributes of the body of evidence, we recommend formal documentation of the consideration of 5 major domains related to strength of evidence: (1) Level of Bias—who much risk of bias is there in the study designs that comprise the entire evidence base? (2) Applicability—how generalizable are the results to real-world populations and conditions? (3) Consistency—do the studies produce similar treatment effects, or do they conflict in some ways? (4) Directness—are direct or indirect comparisons of therapies available, and/or are direct patient outcomes measured or only surrogate outcomes, and if surrogate outcomes only, how validated are these measures? (5) Precision—does the overall database include enough robust data to provide precise estimates of benefits and harms, or are estimates/confidence intervals quite broad?

If you believe that your “conceptual confidence interval” around the point estimate of comparative net health benefit is limited to the boundaries of one of the four categories of comparative net health benefit above, your level of certainty is “high”. “Moderate” certainty reflects conceptual confidence intervals extending across two or three categories, and may include drugs for which your conceptual confidence interval includes a small likelihood of a negative comparative net health benefit. When the evidence cannot provide enough certainty to limit your conceptual confidence interval within two to three categories of comparative net health benefit, then you have “low” certainty.

4. **Assign a joint rating in the Evidence Rating Matrix.** The final step is the assignment of the joint rating of magnitude of comparative net health benefit and level of certainty. As shown again in the figure on the following page, when your certainty is “high,” the estimate of net benefit is relatively assured, and so there are distinct labels available: a rating of A indicates a high certainty of a substantial comparative net benefit. As the magnitude of comparative net health benefit decreases, the rating moves accordingly, to B (incremental), C (comparable), and finally D, indicating an inferior or negative comparative net health benefit for the therapeutic agent relative to the comparator.

When the level of certainty in the point estimate is only “moderate,” the summary ratings differ based on the location of the point estimate and the ends of the boundaries of the conceptual confidence interval for comparative net health benefit. The ratings associated with moderate certainty include B+ (incremental or better), which indicates a point estimate of small or substantial net health benefit and a conceptual confidence interval whose lower end does not extend into the comparable range. The rating C+ (comparable or better) reflects a point estimate of either comparable, small, or substantial net health benefit and a lower bound of the conceptual confidence interval that does not extend into the inferior range. These ratings may be particularly useful for new drugs that have been tested using noninferiority trial designs, or those involving modifications to an existing agent to provide adherence or safety advantages.

Another summary rating reflecting moderate certainty is P/I (promising but inconclusive). This rating is used to describe an agent with evidence suggesting that it provides a comparable, small, or substantial net benefit over the comparator. However, in contrast to ratings B+ and C+, P/I is the rating given when the conceptual confidence interval includes a small likelihood that the comparative net health benefit might actually be negative. In our experience the P/I rating is a common rating when assessing the evidence on novel agents that have received regulatory approval.
with evidence of some benefit over placebo or the standard of care, but without robust evidence regarding safety profiles when used in community practice.

The final rating category is I (insufficient). This is used in two situations: (a) when there is moderate certainty that the best point estimate of a drug’s comparative net health benefit is comparable, but there is judged to be a moderate-high likelihood that further evidence could reveal that the comparative net health benefit is actually negative; and (b) any situation in which the level of certainty in the evidence is "low," indicating that limitations in the body of evidence are so serious that no firm point estimate can be given and/or the conceptual confidence interval for comparative net health benefit extends across all 4 categories. This rating would be a common outcome for assessments of the comparative effectiveness of two active drugs, when there are rarely good head-to-head data available; this rating might also commonly reflect the evidence available to judge the comparative effectiveness of a drug being used for an off-label indication.

Comparative Clinical Effectiveness

<table>
<thead>
<tr>
<th>Level of Certainty in the Evidence</th>
<th>High Certainty</th>
<th>Moderate Certainty</th>
<th>Low Certainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Benefit</td>
<td>A</td>
<td>B</td>
<td>I</td>
</tr>
<tr>
<td>Substantial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>D</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

Comparative Net Health Benefit