Appendix I. Bibliography of Excluded Studies With Reasons

Table I1. Excluded Studies, With Reasons

Study Citation	Reason for Exclusion
Aboueisha, MA, Evans, L, Allotey, et al. A 5-year propensity-matched analysis of perioperative outcomes in patients with chronic kidney disease undergoing bariatric surgery. <i>Surg Endosc.</i> 2023. 37:2335-2346 10.1007/s00464-022-09756-z	Study Design
Abu Dayyeh, BK, Maselli, DB, Rapaka, et al. Adjustable intragastric balloon for treatment of obesity: a multicentre, open-label, randomised clinical trial. <i>Lancet</i> . 2021. 398:1965-1973 10.1016/S0140-6736(21)02394-1	Follow-up
Acevedo, E, Jr, Lu, X, et al. Outcomes in racial minorities after robotic Roux-en-Y gastric bypass and sleeve gastrectomy: a retrospective review of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database. <i>Surg Obes Relat Dis.</i> 2021. 17:595-605 10.1016/j.soard.2020.10.019	Study Design
Adams, TD, Davidson, LE, Litwin, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012. 308:1122-31 10.1001/2012.jama.11164	Population
Adams, TD, Gress, RE, Smith, et al. Long-term mortality after gastric bypass surgery. <i>N Engl J Med.</i> 2007. 357:753-61 10.1056/NEJMoa066603	Study Design
Afraz, S, Dang, JT, Modasi, et al. Bariatric surgery outcomes in oxygen-dependent patients: analysis of the MBSAQIP database. <i>Surg Obes Relat Dis.</i> 2019. 15:1571-1580 10.1016/j.soard.2019.06.030	Study Design
Aguiar, I, Santos, I, Nacif, et al. Obstructive sleep apnea and pulmonary function in morbid obesity before and after bariatric surgery: a randomized controlled clinical trial. <i>Sleep Medicine</i> . 2013. 14:#pages# 10.1016/j.sleep.2013.11.535	Publication Type
Albacete, S, Verhoeff, K, Mocanu, et al. A 5-year characterization of trends and outcomes in elderly patients undergoing elective bariatric surgery. <i>Surg Endosc.</i> 2023. 37:5397-5404 10.1007/s00464-023-10029-6	Study Design
Alizadeh, RF, Li, S, Gambhir, et al. Laparoscopic Sleeve Gastrectomy or Laparoscopic Gastric Bypass for Patients with Metabolic Syndrome: An MBSAQIP Analysis. <i>Am Surg.</i> 2019. 85:1108-1112 10.1177/0003134819085010	Study Design
Al-Mazrou, AM, Bellorin, O, Dakin, et al. Implementation of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program and outcomes of bariatric surgery. Am J Surg. 2023. 225:362-366 10.1016/j.amjsurg.2022.09.059	Study Design
Alothman, S, Cornejo, J, Adrales, et al. Comparative outcomes of bariatric surgery in patients with ESRD on dialysis in the modern era of renal transplantation: analysis using the 2015-2020 MBSAQIP database. <i>Surg Endosc</i> . 2023. 37:7106-7113 10.1007/s00464-023-10200-z	Study Design
Altieri, MS, Yang, J, Telem, et al. Lap band outcomes from 19,221 patients across centers and over a decade within the state of New York. <i>Surg Endosc</i> . 2016. 30:1725-32 10.1007/s00464-015-4402-8	Study Design
Aminian, A, Kashyap, SR, Wolski, et al. Patient-reported Outcomes After Metabolic Surgery Versus Medical Therapy for Diabetes: Insights From the STAMPEDE Randomized Trial. <i>Ann Surg.</i> 2021. 274:524-532 10.1097/SLA.0000000000000003	
Aminian, A, Zajichek, A, Arterburn, et al. Association of Metabolic Surgery With Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes and Obesity. <i>JAMA</i> . 2019. 322:1271-1282 10.1001/jama.2019.14231	Study Design
Amirian, H, Torquati, A, Omotosho, et al. Racial Disparity in 30-Day Outcomes of Metabolic and Bariatric Surgery. <i>Obes Surg.</i> 2020. 30:1011-1020 10.1007/s11695-019- 04282-9	Study Design

Study Citation	Reason for Exclusion
Arterburn, D, Bogart, A, Coleman, et al. Comparative effectiveness of bariatric surgery vs. nonsurgical treatment of type 2 diabetes among severely obese adults. <i>Obes Res Clin Pract.</i> 2013. 7:e258-68 10.1016/j.orcp.2012.08.196	Study Design
Arterburn, D, Wellman, R, Emiliano, et al. Comparative Effectiveness and Safety of Bariatric Procedures for Weight Loss: A PCORnet Cohort Study. <i>Ann Intern Med.</i> 2018. 169:741-750 10.7326/M17-2786	Study Design
Arterburn, DE, Olsen, MK, Smith, et al. Association between bariatric surgery and long- term survival. JAMA. 2015. 313:62-70 10.1001/jama.2014.16968	Study Design
Auger, N, Ukah, UV, Monnier, et al. Risk of Severe Maternal Morbidity After Bariatric Surgery: Retrospective Cohort Study. <i>Ann Surg.</i> 2021. 274:e230-e235 10.1097/SLA.000000000004973	Study Design
Bailly, L, Schiavo, L, Sebastianelli, et al. Preventive effect of bariatric surgery on type 2 diabetes onset in morbidly obese inpatients: a national French survey between 2008 and 2016 on 328,509 morbidly obese patients. <i>Surg Obes Relat Dis.</i> 2019. 15:478-487 10.1016/j.soard.2018.12.028	Study Design
Bakker, JP, Tavakkoli, A, Rueschman, et al. Gastric Banding Surgery versus Continuous Positive Airway Pressure for Obstructive Sleep Apnea: A Randomized Controlled Trial. <i>Am</i> <i>J Respir Crit Care Med</i> . 2018. 197:1080-1083 10.1164/rccm.201708-1637LE	Publication Type
Balamurugan, G, Leo, SJ, Sivagnanam, et al. Comparison of Efficacy and Safety Between Roux-en-Y Gastric Bypass (RYGB) vs One Anastomosis Gastric Bypass (OAGB) vs Single Anastomosis Duodeno-ileal Bypass with Sleeve Gastrectomy (SADI-S): a Systematic Review of Bariatric and Metabolic Surgery. <i>Obes Surg.</i> 2023. 33:2194-2209 10.1007/s11695-023-06602-6	Study Design
Balasubaramaniam, V, Pouwels, S. Remission of Type 2 Diabetes Mellitus (T2DM) after Sleeve Gastrectomy (SG), One-Anastomosis Gastric Bypass (OAGB), and Roux-en-Y Gastric Bypass (RYGB): A Systematic Review. <i>Medicina (Kaunas).</i> 2023. 59:19 10.3390/medicina59050985	Study Design
Barbat, S, Thompson, KJ, McKillop, et al. Ambulatory bariatric surgery: does it really lead to higher rates of adverse events?. <i>Surg Obes Relat Dis.</i> 2020. 16:1713-1720 10.1016/j.soard.2020.06.051	Study Design
Basdevant, A, Paita, M, Rodde-Dunet, et al. A nationwide survey on bariatric surgery in France: two years prospective follow-up. <i>Obes Surg.</i> 2007. 17:39-44 10.1007/s11695-007-9004-7	Study Design
Becerra, AZ, Khalid, SI, Morgenstern, et al. The Association Between Bariatric Surgery and Psychiatric Disorders: a National Cohort Study. <i>Obes Surg.</i> 2022. 32:1110-1118 10.1007/s11695-022-05896-2	Study Design
Belle, SH, Berk, PD, Chapman, et al. Baseline characteristics of participants in the Longitudinal Assessment of Bariatric Surgery-2 (LABS-2) study. <i>Surg Obes Relat Dis.</i> 2013. 9:926-35 10.1016/j.soard.2013.01.023	Population
Belle, SH, Berk, PD, Courcoulas, et al. Safety and efficacy of bariatric surgery: Longitudinal Assessment of Bariatric Surgery. <i>Surg Obes Relat Dis.</i> 2007. 3:116-26 10.1016/j.soard.2007.01.006	Population
Berger, ER, Huffman, KM, Fraker, et al. Prevalence and Risk Factors for Bariatric Surgery Readmissions: Findings From 130,007 Admissions in the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program. <i>Ann Surg.</i> 2018. 267:122-131 10.1097/SLA.000000000002079	Study Design

Study Citation	Reason for Exclusion
Bharani, T, Sheu, EG, Robinson, et al. Procedure Matters in Gender-Associated Outcomes following Metabolic-Bariatric Surgery: Five Year North American Matched Cohort Analysis. <i>Obes Surg.</i> 2023. 33:3090-3096 10.1007/s11695-023-06722-z	Study Design
Bhasker, AG, Prasad, A, Raj, et al. OSSI (Obesity and Metabolic Surgery Society of India) Guidelines for Patient and Procedure Selection for Bariatric and Metabolic Surgery. <i>Obes</i> <i>Surg</i> . 2020. 30:2362-2368 10.1007/s11695-020-04497-1	Setting
Bhatti, JA, Nathens, AB, Thiruchelvam, et al. Self-harm Emergencies After Bariatric Surgery: A Population-Based Cohort Study. <i>JAMA Surg.</i> 2016. 151:226-32 10.1001/jamasurg.2015.3414	Aim
Bielawska, B, Ouellette-Kuntz, H, Patel, et al. Severe nutritional complications after bariatric surgery in Ontario adults: a population-based descriptive study. <i>Surg Obes Relat Dis.</i> 2020. 16:1784-1793 10.1016/j.soard.2020.06.028	Study Design
Bischoff, SC, Ockenga, J, Eshraghian, et al. Practical guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. <i>Clin Nutr.</i> 2023. 42:987-1024 10.1016/j.clnu.2023.03.021	Publication Type
Block, JP. Bariatric surgery leads to 3-year resolution of diabetes in 24% to 38% of patients. <i>Journal of clinical outcomes management</i> . 2014. 21:301-303 #DOI#	Publication Type
Blonde, L, Umpierrez, GE, Reddy, et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. <i>Endocr Pract</i> . 2022. 28:923-1049 10.1016/j.eprac.2022.08.002	Outcomes
Bolen, SD, Chang, HY, Weiner, et al. Clinical outcomes after bariatric surgery: a five-year matched cohort analysis in seven US states. <i>Obes Surg.</i> 2012. 22:749-63 10.1007/s11695-012-0595-2	Population
Bonouvrie, DS, Beamish, AJ, Leclercq, et al. Laparoscopic roux-en-Y gastric bypass versus sleeve gastrectomy for teenagers with severe obesity - TEEN-BEST: study protocol of a multicenter randomized controlled trial. <i>BMC Surg.</i> 2020. 20:117 10.1186/s12893-020-00778-9	Publication Type
Boza, C, Gamboa, C, Salinas, et al. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy: a case-control study and 3 years of follow-up. <i>Surg Obes</i> <i>Relat Dis.</i> 2012. 8:243-9 10.1016/j.soard.2011.08.023	Population
Brathwaite, BM, Howell, RS, Petrone, et al. Safety of Bariatric Surgery in Patients With Congestive Heart Failure: Results of an 11-Year Retrospective Study. <i>Am Surg.</i> 2022. 88:1195-1200 10.1177/0003134821991975	Study Design
Breen, C, O'Connell, J, Geoghegan, et al. Obesity in Adults: A 2022 Adapted Clinical Practice Guideline for Ireland. <i>Obes Facts</i> . 2022. 15:736-752 10.1159/000527131	Publication Type
Brown, AM, Yang, J, Zhang, et al. Bariatric Surgery Lowers the Risk of Major Cardiovascular Events. <i>Ann Surg.</i> 2022. 276:e417-e424 10.1097/SLA.000000000004640	Study Design
Burguera, B, Jesus Tur, J, Escudero, et al. An Intensive Lifestyle Intervention Is an Effective Treatment of Morbid Obesity: The TRAMOMTANA Study-A Two-Year Randomized Controlled Clinical Trial. <i>Int J Endocrinol.</i> 2015. 2015:194696 10.1155/2015/194696	Population
Burns, EM, Naseem, H, Bottle, et al. Introduction of laparoscopic bariatric surgery in England: observational population cohort study. <i>BMJ</i> . 2010. 341:c4296 10.1136/bmj.c4296	Study Design
Busetto, L, Angrisani, L, Basso, et al. Safety and efficacy of laparoscopic adjustable gastric banding in the elderly. <i>Obesity (Silver Spring)</i> . 2008. 16:334-8 10.1038/oby.2007.85	Study Design
Caiazzo, R, Lassailly, G, Leteurtre, et al. Roux-en-Y gastric bypass versus adjustable gastric banding to reduce nonalcoholic fatty liver disease: a 5-year controlled longitudinal study. <i>Ann Surg.</i> 2014. 260:893-8; discussion 898-9 10.1097/SLA.000000000000945	Population

Study Citation	Reason for Exclusion
Callaway Kim, K, Argetsinger, S, Wharam, et al. Acute Care Utilization and Costs Up to 4 Years After Index Sleeve Gastrectomy or Roux-en-Y Gastric Bypass: A National Claims- based Study. Ann Surg. 2023. 277:e78-e86 10.1097/SLA.000000000004972	Population
Canakis, A, Wall-Wieler, E, Liu, et al. Type 2 Diabetes Remission After Bariatric Surgery and Its Impact on Healthcare Costs. <i>Obes Surg.</i> 2023. 18:18 10.1007/s11695-023-06856-0	Population
Carlin, AM, Zeni, TM, English, et al. The comparative effectiveness of sleeve gastrectomy, gastric bypass, and adjustable gastric banding procedures for the treatment of morbid obesity. <i>Ann Surg.</i> 2013. 257:791-7 10.1097/SLA.0b013e3182879ded	Study Design
Carlsson, LM, Peltonen, M, Ahlin, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. <i>N Engl J Med</i> . 2012. 367:695-704 10.1056/NEJMoa1112082	Mean BMI over 35; no stratification
Carlsson, LMS, Sjoholm, K, Jacobson, et al. Life Expectancy after Bariatric Surgery in the Swedish Obese Subjects Study. <i>N Engl J Med</i> . 2020. 383:1535-1543 10.1056/NEJMoa2002449	Population
Carmona, MN, Santos-Sousa, H, Lindeza, et al. Comparative Effectiveness of Bariatric Surgeries in Patients with Type 2 Diabetes Mellitus and BMI >/= 25 kg/m(2): a Systematic Review and Network Meta-Analysis. <i>Obes Surg.</i> 2021. 31:5312-5321 10.1007/s11695-021-05725-y	Study Design
Carr, P, Keighley, T, Petocz, et al. Efficacy and safety of endoscopic sleeve gastroplasty and laparoscopic sleeve gastrectomy with 12+ months of adjuvant multidisciplinary support. <i>BMC Prim Care</i> . 2022. 23:26 10.1186/s12875-022-01629-7	Study Design
Casillas, RA, Kim, B, Fischer, et al. Comparative effectiveness of sleeve gastrectomy versus Roux-en-Y gastric bypass for weight loss and safety outcomes in older adults. <i>Surg Obes Relat Dis.</i> 2017. 13:1476-1483 10.1016/j.soard.2017.03.011	Study Design
Catheline, JM, Fysekidis, M, Bendacha, et al. Prospective, multicentric, comparative study between sleeve gastrectomy and Roux-en-Y gastric bypass, 277 patients, 3 years follow-up. <i>J Visc Surg.</i> 2019. 156:497-506 10.1016/j.jviscsurg.2019.04.013	Comparator
Celio, AC, Wu, Q, Kasten, et al. Comparative effectiveness of Roux-en-Y gastric bypass and sleeve gastrectomy in super obese patients. <i>Surg Endosc</i> . 2017. 31:317-323 10.1007/s00464-016-4974-y	Study Design
Ceriani, V, Sarro, G, Micheletto, et al. Long-term mortality in obese subjects undergoing malabsorptive surgery (biliopancreatic diversion and biliointestinal bypass) versus medical treatment. <i>Int J Obes (Lond)</i> . 2019. 43:1147-1153 10.1038/s41366-018-0244-5	Population
Chaar, ME, Lundberg, P, Stoltzfus, et al. Thirty-day outcomes of sleeve gastrectomy versus Roux-en-Y gastric bypass: first report based on Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database. <i>Surg Obes Relat Dis.</i> 2018. 14:545-551 10.1016/j.soard.2018.01.011	Study Design
Chan, DL, Cruz, JR, Mui, et al. Outcomes with Intra-gastric Balloon Therapy in BMI < 35 Non-morbid Obesity: 10-Year Follow-Up Study of an RCT. <i>Obes Surg.</i> 2021. 31:781-786 10.1007/s11695-020-04986-3	Comparator
Chao, GF, Yang, J, Peahl, et al. Comparative effectiveness of sleeve gastrectomy vs Roux- en-Y gastric bypass in patients giving birth after bariatric surgery: reinterventions and obstetric outcomes. <i>Surg Endosc.</i> 2022. 36:6954-6968 10.1007/s00464-022-09063-7	Aim
Chaturvedi, R, Gracner, T, Tysinger, et al. The Long-term Value of Bariatric Surgery Interventions for American Adults With Type 2 Diabetes Mellitus. <i>Ann Surg.</i> 2022. 08:08 10.1097/SLA.000000000005517	Population

Study Citation	Reason for Exclusion
Cheng, S, Lee, PC, Sim, et al. Cost-savings of short stay sleeve gastrectomy and walk-in hydration clinic versus conventional inpatient care. <i>Surg Endosc.</i> 2023. 37:8349-8356 10.1007/s00464-023-10414-1	Setting
Cheng, V, Grinberg, GG, Ashbrook, et al. Predictors of Complications Following Bariatric Surgery for Adolescent Patients. <i>Am Surg</i> . 2023. #volume#:31348231175463 10.1177/00031348231175463	Study Design
Chhabra, KR, Telem, DA, Chao, et al. Comparative Safety of Sleeve Gastrectomy and Gastric Bypass: An Instrumental Variables Approach. <i>Ann Surg.</i> 2022. 275:539-545 10.1097/SLA.0000000000004297	Study Design
Chow, A, Mocanu, V, Verhoeff, et al. Trends in the Utilization of Intragastric Balloons: a 5-Year Analysis of the MBSAQIP Registry. <i>Obes Surg.</i> 2022. 32:1649-1657 10.1007/s11695-022-06005-z	Study Design
Christou, NV, MacLean, LD. Effect of bariatric surgery on long-term mortality. Adv Surg. 2005. 39:165-79 10.1016/j.yasu.2005.04.005	Publication Type
Christou, NV, Sampalis, JS, Liberman, et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. <i>Ann Surg</i> . 2004. 240:416-23; discussion 423-4 10.1097/01.sla.0000137343.63376.19	Study Design
Clapp, B, Abi Mosleh, K, Corbett, et al. Early Bowel Obstruction after Bariatric Surgery: An Analysis of the 2020-2021 MBSAQIP Database. <i>Surg Laparosc Endosc Percutan Tech</i> . 2023. 33:499-504 10.1097/SLE.000000000001227	Study Design
Clapp, B, Corbett, J, Ahmad, et al. When do leaks occur? An analysis of the metabolic and bariatric surgery accreditation and quality improvement program. <i>Surg Obes Relat Dis.</i> 2023. 19:1128-1133 10.1016/j.soard.2023.04.334	Study Design
Clapp, B, Corbett, J, Jordan, et al. Single-anastomosis duodenoileal bypass with sleeve in the United States: a first comparative safety analysis of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database. <i>Surg Obes Relat Dis.</i> 2023. 19:11-17 10.1016/j.soard.2022.08.016	Study Design
Clapp, B, Janik, MR, El Badaoui, et al. Five-Year Analysis of the MBSAQIP Database: Are We Getting Better?. <i>J Am Coll Surg.</i> 2022. 234:1211-1220 10.1097/XCS.0000000000000177	Study Design
Clapp, B, Mehta, K, Corbett, et al. Duodenal switch versus Roux-en-Y gastric bypass: a perioperative risk comparative analysis of the MBSAQIP Database (2015-2019). <i>Surg Obes Relat Dis.</i> 2022. 18:253-259 10.1016/j.soard.2021.10.014	Study Design
Clapp, B, Mosleh, KA, Corbett, et al. One Anastomosis Gastric Bypass Versus Single Anastomosis Duodenoileostomy with Sleeve: Comparative Analysis of 30-Day Outcomes Using the MBSAQIP. <i>Obes Surg.</i> 2023. 33:720-724 10.1007/s11695-023-06452-2	Study Design
Clapp, B, Ponce, J, DeMaria, et al. American Society for Metabolic and Bariatric Surgery 2020 estimate of metabolic and bariatric procedures performed in the United States. <i>Surg Obes Relat Dis</i> . 2022. 18:1134-1140 10.1016/j.soard.2022.06.284	Study Design
Cohen, RV, Pereira, TV, Aboud, et al. Effect of Gastric Bypass vs Best Medical Treatment on Early-Stage Chronic Kidney Disease in Patients With Type 2 Diabetes and Obesity: A Randomized Clinical Trial. JAMA Surg. 2020. 155:e200420 10.1001/jamasurg.2020.0420	Setting
Cohen, RV, Pereira, TV, Aboud, et al. Microvascular Outcomes after Metabolic Surgery (MOMS) in patients with type 2 diabetes mellitus and class I obesity: rationale and design for a randomised controlled trial. <i>BMJ Open</i> . 2017. 7:e013574 10.1136/bmjopen-2016-013574	Setting
Committee, Asmbs Clinical Issues. Bariatric surgery in class I obesity (body mass index 30- 35 kg/m(2)). <i>Surg Obes Relat Dis</i> . 2013. 9:e1-10 10.1016/j.soard.2012.09.002	Publication Date

Study Citation	Reason for Exclusion
Cornthwaite, K, Prajapati, C, Lenguerrand, et al. Pregnancy outcomes following different types of bariatric surgery: A national cohort study. <i>Eur J Obstet Gynecol Reprod Biol</i> . 2021. 260:10-17 10.1016/j.ejogrb.2021.02.031	Population
Coughlin, JW, Nauman, E, Wellman, et al. Preoperative Depression Status and 5 Year Metabolic and Bariatric Surgery Outcomes in the PCORnet Bariatric Study Cohort. Ann Surg. 2023. 277:637-646 10.1097/SLA.000000000005364	Study Design
Courcoulas, AP, Belle, SH, Neiberg, et al. Three-Year Outcomes of Bariatric Surgery vs Lifestyle Intervention for Type 2 Diabetes Mellitus Treatment: A Randomized Clinical Trial. JAMA Surg. 2015. 150:931-40 10.1001/jamasurg.2015.1534	Population
Courcoulas, AP, Christian, NJ, Belle, et al. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA. 2013. 310:2416-25 10.1001/jama.2013.280928	Population
Courcoulas, AP, Gallagher, JW, Neiberg, et al. Bariatric Surgery vs Lifestyle Intervention for Diabetes Treatment: 5-Year Outcomes From a Randomized Trial. <i>J Clin Endocrinol Metab</i> . 2020. 105:866-76 10.1210/clinem/dgaa006	Population
Courcoulas, AP, Goodpaster, BH, Eagleton, et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. <i>JAMA Surg.</i> 2014. 149:707-15 10.1001/jamasurg.2014.467	Population
Courcoulas, AP, King, WC, Belle, et al. Seven-Year Weight Trajectories and Health Outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) Study. <i>JAMA Surg</i> . 2018. 153:427-434 10.1001/jamasurg.2017.5025	Population
Cui, B, Wang, G, Li, et al. Disease-specific mortality and major adverse cardiovascular events after bariatric surgery: a meta-analysis of age, sex, and BMI-matched cohort studies. <i>Int J Surg.</i> 2023. 109:389-400 10.1097/JS9.0000000000000066	Study Design
Cummins, CB, Nunez Lopez, O, Hughes, et al. Adolescent Bariatric Surgery: Effects of Socioeconomic, Demographic, and Hospital Characteristics on Cost, Length of Stay, and Type of Procedure Performed. <i>Obes Surg.</i> 2019. 29:757-764 10.1007/s11695-018-03657-8	Study Design
Dang, JT, Switzer, NJ, Sun, et al. Evaluating the safety of intragastric balloon: An analysis of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program. <i>Surg Obes Relat Dis</i> . 2018. 14:1340-1347 10.1016/j.soard.2018.05.003	Study Design
Davidson, LE, Adams, TD, Kim, et al. Association of Patient Age at Gastric Bypass Surgery With Long-term All-Cause and Cause-Specific Mortality. <i>JAMA Surg.</i> 2016. 151:631-7 10.1001/jamasurg.2015.5501	Study Design
De Luca, M, Zese, M, Bandini, et al. Metabolic bariatric surgery as a therapeutic option for patients with type 2 diabetes: A meta-analysis and network meta-analysis of randomized controlled trials. <i>Diabetes Obes Metab</i> . 2023. 25:2362-2373 10.1111/dom.15117	Study Design
De Luca, M, Zese, M, Silverii, et al. Bariatric Surgery for Patients with Overweight/Obesity. A Comprehensive Grading Methodology and Network Metanalysis of Randomized Controlled Trials on Weight Loss Outcomes and Adverse Events. <i>Obes Surg.</i> 2023. 02:02 10.1007/s11695-023-06909-4	Study Design
DeMaria, EJ, Pate, V, Warthen, et al. Baseline data from American Society for Metabolic and Bariatric Surgery-designated Bariatric Surgery Centers of Excellence using the Bariatric Outcomes Longitudinal Database. <i>Surg Obes Relat Dis.</i> 2010. 6:347-55 10.1016/j.soard.2009.11.015	Study Design
Dixon, JB, O'Brien, PE, Playfair, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. <i>JAMA</i> . 2008. 299:316-23 10.1001/jama.299.3.316	Population

Study Citation	Reason for Exclusion
Dixon, JB, Schachter, LM, O'Brien, et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. <i>JAMA</i> . 2012. 308:1142-9 10.1001/2012.jama.11580	Population
Dixon, JB, Strauss, BJ, Laurie, et al. Changes in body composition with weight loss: obese subjects randomized to surgical and medical programs. <i>Obesity (Silver Spring)</i> . 2007. 15:1187-98 10.1038/oby.2007.639	Outcomes
Doumouras, AG, Lee, Y, Paterson, et al. Association Between Bariatric Surgery and Major Adverse Diabetes Outcomes in Patients With Diabetes and Obesity. JAMA Netw Open. 2021. 4:e216820 10.1001/jamanetworkopen.2021.6820	Study Design
Doumouras, AG, Wong, JA, Paterson, et al. Bariatric Surgery and Cardiovascular Outcomes in Patients With Obesity and Cardiovascular Disease:: A Population-Based Retrospective Cohort Study. <i>Circulation</i> . 2021. 143:1468-1480 10.1161/CIRCULATIONAHA.120.052386	Study Design
Dugan, N, Thompson, KJ, Barbat, et al. Male gender is an independent risk factor for patients undergoing laparoscopic sleeve gastrectomy or Roux-en-Y gastric bypass: an MBSAQIP(R) database analysis. <i>Surg Endosc.</i> 2020. 34:3574-3583 10.1007/s00464-019-07106-0	Study Design
Ebadinejad, A, Shahshahani, M, Hosseinpanah, et al. Comparison of hypertension remission and relapse after sleeve gastrectomy and one-anastomosis gastric bypass: a prospective cohort study. <i>Hypertens Res.</i> 2023. 46:1287-1296 10.1038/s41440-023-01180-7	Setting
Edwards, MA, Agarwal, S, Mazzei, et al. Racial disparities in bariatric perioperative outcomes among the elderly. <i>Surg Obes Relat Dis.</i> 2022. 18:62-70 10.1016/j.soard.2021.09.012	Study Design
Edwards, MA, Bruff, A, Mazzei, et al. Racial disparities in perioperative outcomes after metabolic and bariatric surgery: a case-control matched study. <i>Surg Obes Relat Dis.</i> 2020. 16:1111-1123 10.1016/j.soard.2020.04.035	Study Design
Edwards, MA, Coombs, S, Spaulding, et al. Racial disparity in causes for readmission following bariatric surgery. <i>Surg Obes Relat Dis.</i> 2022. 18:241-252 10.1016/j.soard.2021.10.015	Study Design
Edwards, MA, Hussain, MWA, Spaulding, et al. Gastric Bypass Mortality Trends in Racial Cohorts: Are We Improving?. <i>Obes Surg.</i> 2023. 33:1411-1421 10.1007/s11695-023-06541-2	Study Design
Edwards, MA, Mazzei, M, Agarwal, et al. Exploring perioperative outcomes in metabolic and bariatric surgery amongst the elderly: an analysis of the 2015-2017 MBSAQIP database. <i>Surg Obes Relat Dis</i> . 2021. 17:1096-1106 10.1016/j.soard.2021.02.026	Study Design
Edwards, MA, Muraleedharan, D, Spaulding, et al. Racial disparities in reasons for mortality following bariatric surgery. <i>J Racial Ethn Health Disparities</i> . 2023. 10:526-535 10.1007/s40615-022-01242-5	Study Design
Egan, RJ, Morgan, JD, Norton, et al. The Impact of Laparoscopic Adjustable Gastric Banding on an NHS Cohort of Type 2 Diabetics: a Prospective Cohort Study. <i>Obes Surg.</i> 2017. 27:824-825 10.1007/s11695-017-2541-9	Publication Type
El Chaar, M, King, K, Al-Mardini, et al. Thirty-Day Outcomes of Bariatric Surgery in Adolescents: a First Look at the MBSAQIP Database. <i>Obes Surg</i> . 2021. 31:194-199 10.1007/s11695-020-04866-w	Study Design
Elkhoury, D, Elkhoury, C, Gorantla, et al. Improving Access to Child and Adolescent Weight Loss Surgery: A Review of Updated National and International Practice Guidelines. <i>Cureus</i> . 2023. 15:e38117 10.7759/cureus.38117	Publication Type

Study Citation	Reason for Exclusion
Elnahas, Al, Reid, JN, Lam, et al. Risk factors for abdominal reoperations in bariatric patients. <i>Surg Obes Relat Dis</i> . 2022. 18:233-240 10.1016/j.soard.2021.10.016	Study Design
Eskandaros, MS, Abbass, A, Zaid, et al. Laparoscopic One Anastomosis Gastric Bypass Versus Laparoscopic Roux-en-Y Gastric Bypass Effects on Pre-existing Mild-to-Moderate Gastroesophageal Reflux Disease in Patients with Obesity: a Randomized Controlled Study. <i>Obes Surg.</i> 2021. 31:4673-4681 10.1007/s11695-021-05667-5	Setting
Espinet Coll, E, Del Pozo Garcia, AJ, Turro Arau, et al. Spanish Intragastric Balloon Consensus Statement (SIBC): practical guidelines based on experience of over 20 000 cases. <i>Rev Esp Enferm Dig.</i> 2023. 115:22-34 10.17235/reed.2022.9322/2022	Study Design
Farina, MG, Baratta, R, Nigro, et al. Intragastric balloon in association with lifestyle and/or pharmacotherapy in the long-term management of obesity. <i>Obes Surg.</i> 2012. 22:565-71 10.1007/s11695-011-0514-y	Comparator
Feigel-Guiller, B, Drui, D, Dimet, et al. Laparoscopic Gastric Banding in Obese Patients with Sleep Apnea: A 3-Year Controlled Study and Follow-up After 10 Years. <i>Obes Surg.</i> 2015. 25:1886-92 10.1007/s11695-015-1627-5	Population
Feng, X, Andalib, A, Brethauer, et al. How safe is bariatric surgery in patients with class I obesity (body mass index 30-35 kg/m(2))?. <i>Surg Obes Relat Dis.</i> 2019. 15:253-260 10.1016/j.soard.2018.12.006	Study Design
Finkelstein, EA, Allaire, BT, Globe, et al. The business case for bariatric surgery revisited: a non-randomized case-control study. <i>PLoS One.</i> 2013. 8:e75498 10.1371/journal.pone.0075498	Publication Date
Finks, JF, English, WJ, Carlin, et al. Predicting risk for venous thromboembolism with bariatric surgery: results from the Michigan Bariatric Surgery Collaborative. <i>Ann Surg.</i> 2012. 255:1100-4 10.1097/SLA.0b013e31825659d4	Study Design
Fisher, DP, Johnson, E, Haneuse, et al. Association Between Bariatric Surgery and Macrovascular Disease Outcomes in Patients With Type 2 Diabetes and Severe Obesity. JAMA. 2018. 320:1570-1582 10.1001/jama.2018.14619	Study Design
Foster, MW, Gershuni, VM, Tewksbury, et al. Laparoscopic Sleeve Gastrectomy Carries a Lower Perioperative Mortality Including Sudden Cardiac Death over Roux-en-Y Gastric Bypass in Patients with a Prior Cardiac History: An MBSAQIP Analysis. <i>Obes Surg.</i> 2020. 30:812-818 10.1007/s11695-019-04363-9	Study Design
Fuentes, N, Reyes, JA, Souferi, et al. Effect of Smoking History on 30-Day Morbidity Following Bariatric Surgery. <i>Am Surg</i> . 2023. #volume#:31348231156766 10.1177/00031348231156766	Study Design
Fuller, NR, Pearson, S, Lau, et al. An intragastric balloon in the treatment of obese individuals with metabolic syndrome: a randomized controlled study. <i>Obesity (Silver Spring)</i> . 2013. 21:1561-70 10.1002/oby.20414	Mean BMI over 35; no stratification
Furlan, SF, Drager, LF, Santos, et al. Three-year effects of bariatric surgery on obstructive sleep apnea in patients with obesity grade 1 and 2: a sub-analysis of the GATEWAY trial. <i>Int J Obes (Lond)</i> . 2021. 45:914-917 10.1038/s41366-021-00752-2	Setting
Gambhir, S, Inaba, CS, Alizadeh, et al. Venous thromboembolism risk for the contemporary bariatric surgeon. <i>Surg Endosc</i> . 2020. 34:3521-3526 10.1007/s00464-019-07134-w	Study Design
Gamme, G, Dang, JT, Switzer, et al. Evaluating the safety of bariatric surgery for weight loss in class I obesity: A propensity-matched analysis of North American data. <i>Surg Obes Relat</i> <i>Dis.</i> 2019. 15:629-635 10.1016/j.soard.2019.01.024	Study Design
Garneau, P, Glazer, S, Jackson, et al. Guidelines for Canadian bariatric surgical and medical centres: a statement from the Canadian Association of Bariatric Physicians and Surgeons. <i>Can J Surg.</i> 2022. 65:E170-E177 10.1503/cjs.020719	Aim

Study Citation	Reason for Exclusion
Garneau, P, Glazer, S, Jackson, et al. Guidelines for Canadian bariatric surgical and medical centres: a statement from the Canadian Association of Bariatric Physicians and Surgeons. <i>Can J Surg.</i> 2022. 65:E170-E177 10.1503/cjs.020719	Outcomes
Garvey, WT, Mechanick, JI, Brett, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for Medical Care of Patients with Obesity. <i>Endocr Pract.</i> 2016. 22 Suppl 3:1-203 10.4158/EP161365.GL	Publication Date
Gero, D, Raptis, DA, Vleeschouwers, et al. Defining Global Benchmarks in Bariatric Surgery: A Retrospective Multicenter Analysis of Minimally Invasive Roux-en-Y Gastric Bypass and Sleeve Gastrectomy. <i>Ann Surg.</i> 2019. 270:859-867 10.1097/SLA.000000000003512	Study Design
Ghiassi, S, El Chaar, M, Aleassa, et al. ASMBS position statement on the relationship between obesity and cancer, and the role of bariatric surgery: risk, timing of treatment, effects on disease biology, and qualification for surgery. <i>Surg Obes Relat Dis.</i> 2020. 16:713- 724 10.1016/j.soard.2020.03.019	Aim
Gill, RS, Majumdar, SR, Rueda-Clausen, et al. Comparative effectiveness and safety of gastric bypass, sleeve gastrectomy and adjustable gastric banding in a population-based bariatric program: prospective cohort study. <i>Can J Surg.</i> 2016. 59:233-41 10.1503/cjs.013315	Population
Giouleka, S, Tsakiridis, I, Koutsouki, et al. Obesity in Pregnancy: A Comprehensive Review of Influential Guidelines. <i>Obstet Gynecol Surv.</i> 2023. 78:50-68 10.1097/OGX.0000000000001091	Publication Type
Goldberg, I, Yang, J, Nie, et al. Safety of bariatric surgery in patients older than 65 years. Surg Obes Relat Dis. 2019. 15:1380-1387 10.1016/j.soard.2019.05.016	Study Design
Gomez, V, Woodman, G, Abu Dayyeh, et al. Delayed gastric emptying as a proposed mechanism of action during intragastric balloon therapy: Results of a prospective study. <i>Obesity (Silver Spring)</i> . 2016. 24:1849-53 10.1002/oby.21555	Setting
Gondal, AB, Hsu, CH, Khoubyari, et al. Development of a bariatric surgery specific risk assessment tool for perioperative myocardial infarction. <i>Surg Obes Relat Dis.</i> 2019. 15:462-468 10.1016/j.soard.2018.12.032	Study Design
Grant, HM, Perez-Caraballo, A, Romanelli, et al. Metabolic and bariatric surgery is likely safe, but underutilized in adolescents aged 13-17 years. <i>Surg Obes Relat Dis.</i> 2021. 17:1146-1151 10.1016/j.soard.2021.02.030	Study Design
Greenstein, AJ, Wahed, AS, Adeniji, et al. Prevalence of adverse intraoperative events during obesity surgery and their sequelae. <i>J Am Coll Surg.</i> 2012. 215:271-7 e3 10.1016/j.jamcollsurg.2012.03.008	Mean BMI over 35; no stratification
Gribsholt, SB, Thomsen, RW, Svensson, et al. Overall and cause-specific mortality after Roux-en-Y gastric bypass surgery: A nationwide cohort study. <i>Surg Obes Relat Dis.</i> 2017. 13:581-587 10.1016/j.soard.2016.10.007	Study Design
Grunstein, RR, Stenlof, K, Hedner, et al. Impact of obstructive sleep apnea and sleepiness on metabolic and cardiovascular risk factors in the Swedish Obese Subjects (SOS) Study. <i>Int</i> <i>J Obes Relat Metab Disord</i> . 1995. 19:410-8 #DOI#	Population
Grunstein, RR, Stenlof, K, Hedner, et al. Impact of self-reported sleep-breathing disturbances on psychosocial performance in the Swedish Obese Subjects (SOS) Study. <i>Sleep.</i> 1995. 18:635-43 10.1093/sleep/18.8.635	Population
Gudur, AR, Geng, C, Radlinski, et al. Endoscopic Sleeve Gastroplasty: A Safe Bariatric Intervention for Class III Obesity (BMI > 40). <i>Obes Surg</i> . 2023. 33:1133-1142 10.1007/s11695-023-06475-9	Study Design

Study Citation	Reason for Exclusion
Gudur, AR, Geng, CX, Kshatri, et al. Comparison of endoscopic sleeve gastroplasty versus surgical sleeve gastrectomy: a Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database analysis. <i>Gastrointest Endosc.</i> 2023. 97:11-21 e4 10.1016/j.gie.2022.07.017	Study Design
Gupta, PK, Gupta, H, Kaushik, et al. Predictors of pulmonary complications after bariatric surgery. <i>Surg Obes Relat Dis.</i> 2012. 8:574-81 10.1016/j.soard.2011.04.227	Study Design
Gupta, PK, Miller, WJ, Sainath, et al. Determinants of resource utilization and outcomes in laparoscopic Roux-en-Y gastric bypass: a multicenter analysis of 14,251 patients. <i>Surg Endosc.</i> 2011. 25:2613-25 10.1007/s00464-011-1612-6	Population
Haddad, A, Kow, L, Herrera, et al. Innovative Bariatric Procedures and Ethics in Bariatric Surgery: the IFSO Position Statement. <i>Cas Lek Cesk</i> . 2023. 161:285-295 #DOI#	Aim
Hall, ME, Cohen, JB, Ard, et al. Weight-Loss Strategies for Prevention and Treatment of Hypertension: A Scientific Statement From the American Heart Association. <i>Hypertension</i> . 2021. 78:e38-e50 10.1161/HYP.000000000000202	Outcomes
Hampton, L, Mocanu, V, Verhoeff, et al. Asian race is not associated with increased 30-day serious complications or mortality: a MBSAQIP analysis of 594,837 patients. <i>Surg Endosc.</i> 2023. 37:3893-3900 10.1007/s00464-023-09898-8	Study Design
Hany, M, Aboudeeb, MF, Shapiro-Koss, et al. Safety and Effect of Bariatric Metabolic Surgeries for Psychiatric Patients with Obesity: A Retrospective Matched Case-control Trial. <i>Obes Surg.</i> 2023. 33:2115-2124 10.1007/s11695-023-06627-x	Setting
Haskins, IN, Ju, T, Whitlock, et al. Older Age Confers a Higher Risk of 30-Day Morbidity and Mortality Following Laparoscopic Bariatric Surgery: an Analysis of the Metabolic and Bariatric Surgery Quality Improvement Program. <i>Obes Surg.</i> 2018. 28:2745-2752 10.1007/s11695-018-3233-9	Study Design
Hinojosa, MW, Varela, JE, Parikh, et al. National trends in use and outcome of laparoscopic adjustable gastric banding. <i>Surg Obes Relat Dis.</i> 2009. 5:150-5 10.1016/j.soard.2008.08.006	Study Design
Hoeltzel, GD, Swendiman, RA, Tewksbury, et al. How safe is adolescent bariatric surgery? An analysis of short-term outcomes. <i>J Pediatr Surg.</i> 2022. 57:1654-1659 10.1016/j.jpedsurg.2021.08.018	Study Design
Hofso, D, Nordstrand, N, Johnson, et al. Obesity-related cardiovascular risk factors after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. <i>Eur J Endocrinol.</i> 2010. 163:735-45 10.1530/EJE-10-0514	Population
Horwitz, D, Padron, C, Kelly, et al. Long-term outcomes comparing metabolic surgery to no surgery in patients with type 2 diabetes and body mass index 30-35. <i>Surg Obes Relat Dis.</i> 2020. 16:503-508 10.1016/j.soard.2020.01.016	Population
Horwitz, D, Saunders, JK, Ude-Welcome, et al. Three-year follow-up comparing metabolic surgery versus medical weight management in patients with type 2 diabetes and BMI 30-35. The role of sRAGE biomarker as predictor of satisfactory outcomes. <i>Surg Obes Relat Dis.</i> 2016. 12:1337-1341 10.1016/j.soard.2016.01.016	Population
Hoskuldsdottir, G, Engstrom, M, Rawshani, et al. Comparing effects of obesity treatment with very low energy diet and bariatric surgery after 2 years: a prospective cohort study. <i>BMJ Open</i> . 2022. 12:e053242 10.1136/bmjopen-2021-053242	Population
Hoskuldsdottir, G, Mossberg, K, Wallenius, et al. Design and baseline data in the BAriatic surgery SUbstitution and Nutrition study (BASUN): a 10-year prospective cohort study. BMC Endocr Disord. 2020. 20:23 10.1186/s12902-020-0503-z	Population

Study Citation	Reason for Exclusion
Hoskuldsdottir, G, Sattar, N, Miftaraj, et al. Potential Effects of Bariatric Surgery on the Incidence of Heart Failure and Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus and Obesity and on Mortality in Patients With Preexisting Heart Failure: A Nationwide, Matched, Observational Cohort Study. <i>J Am Heart Assoc.</i> 2021. 10:e019323 10.1161/JAHA.120.019323	Study Design
Howard, R, Yang, J, Thumma, et al. Health Care Use and Adverse Events After Sleeve Gastrectomy and Gastric Bypass Among Adolescents With Severe Obesity Insured by Medicaid. JAMA. 2022. 328:1972-1974 10.1001/jama.2022.14843	Publication Type
Huang, YM, Lin, YK, Lee, et al. Long-term outcomes of metabolic surgery in overweight and obese patients with type 2 diabetes in Asia. <i>Diabetes Obes Metab.</i> 2021. 23:742-753 10.1111/dom.14279	Population
Hui, BY, Khorgami, Z, Puthoff, et al. Postoperative sepsis after primary bariatric surgery: an analysis of MBSAQIP. <i>Surg Obes Relat Dis.</i> 2021. 17:667-672 10.1016/j.soard.2020.12.008	Study Design
Hui, BY, Roberts, A, Thompson, et al. Outcomes of Bariatric Surgery in African Americans: an Analysis of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) Data Registry. <i>Obes Surg.</i> 2020. 30:4275-4285 10.1007/s11695-020- 04820-w	Study Design
Hung, SL, Chen, CY, Chin, et al. The long-term risk of cardiovascular events in patients following bariatric surgery compared to a non-surgical population with obesity and the general population: a comprehensive national cohort study. <i>Langenbecks Arch Surg.</i> 2021. 406:189-196 10.1007/s00423-020-02027-2	Study Design
Hutter, MM, Schirmer, BD, Jones, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. <i>Ann Surg.</i> 2011. 254:410-20; discussion 420-2 10.1097/SLA.0b013e31822c9dac	Comparator
Ibrahim, MY, Elshennawy, AS, Wassef, et al. One Anastomosis Gastric Bypass Versus Long Biliopancreatic Limb Roux-en-Y Gastric Bypass. <i>Obes Surg.</i> 2022. 32:779-785 10.1007/s11695-021-05874-0	Setting
Ikramuddin, S, Billington, CJ, Lee, et al. Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study): 2-year outcomes of a 5-year, randomised, controlled trial. <i>Lancet Diabetes Endocrinol</i> . 2015. 3:413-422 10.1016/S2213-8587(15)00089-3	Population
Ikramuddin, S, Korner, J, Lee, et al. Durability of Addition of Roux-en-Y Gastric Bypass to Lifestyle Intervention and Medical Management in Achieving Primary Treatment Goals for Uncontrolled Type 2 Diabetes in Mild to Moderate Obesity: A Randomized Control Trial. <i>Diabetes Care.</i> 2016. 39:1510-8 10.2337/dc15-2481	Population
Ikramuddin, S, Korner, J, Lee, et al. Lifestyle Intervention and Medical Management With vs Without Roux-en-Y Gastric Bypass and Control of Hemoglobin A1c, LDL Cholesterol, and Systolic Blood Pressure at 5 Years in the Diabetes Surgery Study. JAMA. 2018. 319:266- 278 10.1001/jama.2017.20813	Population
Ikramuddin, S, Korner, J, Lee, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. <i>JAMA</i> . 2013. 309:2240-9 10.1001/jama.2013.5835	Population
Inge, TH, Coley, RY, Bazzano, et al. Comparative effectiveness of bariatric procedures among adolescents: the PCORnet bariatric study. <i>Surg Obes Relat Dis.</i> 2018. 14:1374-1386 10.1016/j.soard.2018.04.002	Study Design

Study Citation	Reason for Exclusion
Inge, TH, Laffel, LM, Jenkins, et al. Comparison of Surgical and Medical Therapy for Type 2 Diabetes in Severely Obese Adolescents. <i>JAMA Pediatr</i> . 2018. 172:452-460 10.1001/jamapediatrics.2017.5763	Study Design
Ivanics, T, Nasser, H, Leonard-Murali, et al. Dehydration risk factors and impact after bariatric surgery: an analysis using a national database. <i>Surg Obes Relat Dis</i> . 2019. 15:2066-2074 10.1016/j.soard.2019.09.054	Study Design
Jackson, TN, Cox, BP, Grinberg, et al. National usage of bariatric surgery for class I obesity: an analysis of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program. <i>Surg Obes Relat Dis.</i> 2023. 19:1255-1262 10.1016/j.soard.2023.05.014	Study Design
Jackson, WL, Lewis, SR, Bagby, et al. Laparoscopic sleeve gastrectomy versus laparoscopic Roux-en-Y gastric bypass in the pediatric population: a MBSAQIP analysis. <i>Surg Obes Relat Dis.</i> 2020. 16:254-260 10.1016/j.soard.2019.11.009	Study Design
Jamal, MH, Corcelles, R, Shimizu, et al. Thromboembolic events in bariatric surgery: a large multi-institutional referral center experience. <i>Surg Endosc.</i> 2015. 29:376-80 10.1007/s00464-014-3678-4	Study Design
Jamaly, S, Carlsson, L, Peltonen, et al. Surgical obesity treatment and the risk of heart failure. <i>Eur Heart J.</i> 2019. 40:2131-2138 10.1093/eurheartj/ehz295	Population
Janik, MR, Mustafa, RR, Rogula, et al. Safety of laparoscopic sleeve gastrectomy and Roux- en-Y gastric bypass in elderly patients - analysis of the MBSAQIP. <i>Surg Obes Relat Dis.</i> 2018. 14:1276-1282 10.1016/j.soard.2018.04.008	Study Design
Jogiat, U, Mocanu, V, Birch, et al. Pulmonary Complications Are a Strong Independent Predictor of 30-Day Mortality Following Elective Bariatric Surgery. <i>Obes Surg.</i> 2022. 32:696-703 10.1007/s11695-021-05882-0	Study Design
Johansson, K, Svensson, PA, Soderling, et al. Long-term risk of anaemia after bariatric surgery: results from the Swedish Obese Subjects study. <i>Lancet Diabetes Endocrinol</i> . 2021. 9:515-524 10.1016/S2213-8587(21)00141-8	Population
Johari, Y, Ooi, G, Burton, et al. Long-Term Matched Comparison of Adjustable Gastric Banding Versus Sleeve Gastrectomy: Weight Loss, Quality of Life, Hospital Resource Use and Patient-Reported Outcome Measures. <i>Obes Surg</i> . 2020. 30:214-223 10.1007/s11695- 019-04168-w	Study Design
Johnson, RJ, Johnson, BL, Blackhurst, et al. Bariatric surgery is associated with a reduced risk of mortality in morbidly obese patients with a history of major cardiovascular events. <i>Am Surg.</i> 2012. 78:685-92 10.1177/000313481207800623	Study Design
Kalarchian, MA, King, WC, Devlin, et al. Surgery-related gastrointestinal symptoms in a prospective study of bariatric surgery patients: 3-year follow-up. <i>Surg Obes Relat Dis.</i> 2017. 13:1562-1571 10.1016/j.soard.2017.03.028	Population
Kapur, A, Thodiyil, P. Primary laparoscopic sleeve gastrectomy versus gastric bypass: a propensity-matched comparison of 30-day outcomes. <i>Surg Obes Relat Dis.</i> 2021. 17:1369-1382 10.1016/j.soard.2021.01.022	Study Design
Karason, K, Lindroos, AK, Stenlof, et al. Relief of cardiorespiratory symptoms and increased physical activity after surgically induced weight loss: results from the Swedish Obese Subjects study. Arch Intern Med. 2000. 160:1797-802 10.1001/archinte.160.12.1797	Population
Kashyap, SR, Bhatt, DL, Schauer, et al. Bariatric surgery vs. advanced practice medical management in the treatment of type 2 diabetes mellitus: rationale and design of the Surgical Therapy And Medications Potentially Eradicate Diabetes Efficiently trial (STAMPEDE). <i>Diabetes Obes Metab.</i> 2010. 12:452-4 10.1111/j.1463-1326.2009.01172.x	Mean BMI over 35; no stratification

Study Citation	Reason for Exclusion
Kashyap, SR, Bhatt, DL, Wolski, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. <i>Diabetes Care.</i> 2013. 36:2175-82 10.2337/dc12-1596	Mean BMI over 35; no stratification
Kelleher, DC, Merrill, CT, Cottrell, et al. Recent national trends in the use of adolescent inpatient bariatric surgery: 2000 through 2009. <i>JAMA Pediatr</i> . 2013. 167:126-32 10.1001/2013.jamapediatrics.286	Study Design
Kenngott, HG, Clemens, G, Gondan, et al. DiaSurg 2 trialsurgical vs. medical treatment of insulin-dependent type 2 diabetes mellitus in patients with a body mass index between 26 and 35 kg/m2: study protocol of a randomized controlled multicenter trialDRKS00004550. <i>Trials</i> . 2013. 14:183 10.1186/1745-6215-14-183	Publication Type
Kermansaravi, M, Parmar, C, Chiappetta, et al. Patient Selection in One Anastomosis/Mini Gastric Bypass-an Expert Modified Delphi Consensus. <i>Obes Surg.</i> 2022. 32:2512-2524 10.1007/s11695-022-06124-7	Study Design
Kichler, K, Rosenthal, RJ, DeMaria, et al. Reoperative surgery for nonresponders and complicated sleeve gastrectomy operations in patients with severe obesity. An international expert panel consensus statement to define best practice guidelines. <i>Surg Obes Relat Dis.</i> 2019. 15:173-186 10.1016/j.soard.2018.11.006	Aim
Kim, J, Nimeri, A, Khorgami, et al. Metabolic bone changes after bariatric surgery: 2020 update, American Society for Metabolic and Bariatric Surgery Clinical Issues Committee position statement. <i>Surg Obes Relat Dis.</i> 2021. 17:1-8 10.1016/j.soard.2020.09.031	Aim
Kim, J, Waitzman, N, Simper, et al. Effects of Post-operative Nutritional Disorders Following Bariatric Surgery on Health Care Cost and Use. <i>Obes Surg.</i> 2021. 31:2503-2510 10.1007/s11695-021-05279-z	Population
Kim, TH, Daud, A, Ude, et al. Early U.S. outcomes of laparoscopic gastric bypass versus laparoscopic adjustable silicone gastric banding for morbid obesity. <i>Surg Endosc</i> . 2006. 20:202-9 10.1007/s00464-005-0243-1	Study Design
Kjaer, MM, Lauenborg, J, Breum, et al. The risk of adverse pregnancy outcome after bariatric surgery: a nationwide register-based matched cohort study. <i>Am J Obstet Gynecol</i> . 2013. 208:464 e1-5 10.1016/j.ajog.2013.02.046	Population
Klebanoff, MJ, Corey, KE, Samur, et al. Cost-effectiveness Analysis of Bariatric Surgery for Patients With Nonalcoholic Steatohepatitis Cirrhosis. <i>JAMA Netw Open</i> . 2019. 2:e190047 10.1001/jamanetworkopen.2019.0047	Population
Konttinen, H, Sjoholm, K, Jacobson, et al. Prediction of Suicide and Nonfatal Self-harm After Bariatric Surgery: A Risk Score Based on Sociodemographic Factors, Lifestyle Behavior, and Mental Health: A Nonrandomized Controlled Trial. <i>Ann Surg.</i> 2021. 274:339- 345 10.1097/SLA.0000000000003742	Outcomes
Koschker, AC, Warrings, B, Morbach, et al. Cardio-psycho-metabolic outcomes of bariatric surgery: design and baseline of the WAS trial. <i>Endocr Connect</i> . 2022. 11:09 10.1530/EC-21-0338	Population
Koschker, AC, Warrings, B, Morbach, et al. Effect of bariatric surgery on cardio-psycho- metabolic outcomes in severe obesity: A randomized controlled trial. <i>Metabolism</i> . 2023. 147:155655 10.1016/j.metabol.2023.155655	Population
Kostic, AM, Leifer, VP, Gong, et al. Cost-Effectiveness of Surgical Weight-Loss Interventions for Patients With Knee Osteoarthritis and Class III Obesity. Arthritis Care Res (Hoboken). 2023. 75:491-500 10.1002/acr.24967	Population

Study Citation	Reason for Exclusion
Kostic, AM, Leifer, VP, Selzer, et al. Cost-Effectiveness of Weight-Loss Interventions Prior to Total Knee Replacement for Patients With Class III Obesity. <i>Arthritis Care Res (Hoboken)</i> . 2023. 75:1752-1763 10.1002/acr.25044	Population
Kow, L, Sharaiha, RZ, O'Kane, et al. Methodology and Results of a Joint IFSO-WGO Delphi Survey of 94 Intercontinental, Interdisciplinary Experts in Obesity Management. <i>Obes Surg.</i> 2023. 33:3337-3352 10.1007/s11695-023-06757-2	Study Design
Kraljevic, M, Delko, T, Kostler, et al. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic mini gastric bypass in the treatment of obesity: study protocol for a randomized controlled trial. <i>Trials.</i> 2017. 18:226 10.1186/s13063-017-1957-9	Publication Type
Kristensson, FM, Andersson-Assarsson, JC, Svensson, et al. Effects of Bariatric Surgery in Early- and Adult-Onset Obesity in the Prospective Controlled Swedish Obese Subjects Study. <i>Diabetes Care</i> . 2020. 43:860-866 10.2337/dc19-1909	Population
Kumar, SB, Hamilton, BC, Wood, et al. Is laparoscopic sleeve gastrectomy safer than laparoscopic gastric bypass? a comparison of 30-day complications using the MBSAQIP data registry. <i>Surg Obes Relat Dis.</i> 2018. 14:264-269 10.1016/j.soard.2017.12.011	Study Design
Kwon, Y, Ha, J, Lee, et al. Comparative risk of anemia and related micronutrient deficiencies after Roux-en-Y gastric bypass and sleeve gastrectomy in patients with obesity: An updated meta-analysis of randomized controlled trials. <i>Obes Rev.</i> 2022. 23:e13419 10.1111/obr.13419	Study Design
Ladak, F, Dang, JT, Switzer, et al. Rates of reoperation and nonoperative intervention within 30 days of bariatric surgery. <i>Surg Obes Relat Dis</i> . 2019. 15:431-440 10.1016/j.soard.2018.12.035	Study Design
Lagerros, YT, Brandt, L, Sundbom, et al. Risk of Delayed Discharge and Reoperation of Gastric Bypass Patients with Psychiatric Comorbidity-a Nationwide Cohort Study. <i>Obes Surg.</i> 2020. 30:2511-2518 10.1007/s11695-020-04483-7	Study Design
Landin, MD, Gordee, A, Lerebours, et al. Trends in risk factors for readmission after bariatric surgery 2015-2018. <i>Surg Obes Relat Dis.</i> 2022. 18:581-593 10.1016/j.soard.2021.12.026	Study Design
Lauren, BN, Lim, F, Krikhely, et al. Estimated Cost-effectiveness of Medical Therapy, Sleeve Gastrectomy, and Gastric Bypass in Patients With Severe Obesity and Type 2 Diabetes. JAMA Netw Open. 2022. 5:e2148317 10.1001/jamanetworkopen.2021.48317	Population
Lee, WJ, Chong, K, Lin, et al. Laparoscopic sleeve gastrectomy versus single anastomosis (mini-) gastric bypass for the treatment of type 2 diabetes mellitus: 5-year results of a randomized trial and study of incretin effect. <i>Obes Surg.</i> 2014. 24:1552-62 10.1007/s11695-014-1344-5	Setting
Lee, WJ, Ser, KH, Lee, et al. Laparoscopic Roux-en-Y vs. mini-gastric bypass for the treatment of morbid obesity: a 10-year experience. <i>Obes Surg</i> . 2012. 22:1827-34 10.1007/s11695-012-0726-9	Setting
Lee, WJ, Yu, PJ, Wang, et al. Laparoscopic Roux-en-Y versus mini-gastric bypass for the treatment of morbid obesity: a prospective randomized controlled clinical trial. <i>Ann Surg.</i> 2005. 242:20-8 10.1097/01.sla.0000167762.46568.98	Setting
Lennerz, BS, Wabitsch, M, Lippert, et al. Bariatric surgery in adolescents and young adults safety and effectiveness in a cohort of 345 patients. <i>Int J Obes (Lond)</i> . 2014. 38:334-40 10.1038/ijo.2013.182	Population
Lent, MR, Benotti, PN, Mirshahi, et al. All-Cause and Specific-Cause Mortality Risk After Roux-en-Y Gastric Bypass in Patients With and Without Diabetes. <i>Diabetes Care</i> . 2017. 40:1379-1385 10.2337/dc17-0519	Study Design

Study Citation	Reason for Exclusion
Leonard-Murali, S, Nasser, H, Ivanics, et al. Perioperative Outcomes of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Patients with Diabetes Mellitus: an Analysis of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) Database. <i>Obes Surg.</i> 2020. 30:111-118 10.1007/s11695-019-04175-x	Study Design
Lester, ELW, Padwal, RS, Birch, et al. The real-world cost-effectiveness of bariatric surgery for the treatment of severe obesity: a cost-utility analysis. <i>CMAJ Open</i> . 2021. 9:E673-E679 10.9778/cmajo.20200188	Setting
Lewis, KH, Argetsinger, S, Arterburn, et al. Comparison of Ambulatory Health Care Costs and Use Associated With Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy. <i>JAMA Netw</i> <i>Open</i> . 2022. 5:e229661 10.1001/jamanetworkopen.2022.9661	Population
Leyba, JL, Aulestia, SN, Llopis, et al. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for the treatment of morbid obesity. A prospective study of 117 patients. <i>Obes Surg.</i> 2011. 21:212-6 10.1007/s11695-010-0279-8	Setting
Leyba, JL, Llopis, SN, Aulestia, et al. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for the treatment of morbid obesity. a prospective study with 5 years of follow-up. <i>Obes Surg.</i> 2014. 24:2094-8 10.1007/s11695-014-1365-0	Setting
Li, M, Liu, Y, Lee, et al. Efficacy and safety of one anastomosis gastric bypass versus Roux- en-Y gastric bypass for type 2 diabetes remission (ORDER): protocol of a multicentre, randomised controlled, open-label, superiority trial. <i>BMJ Open</i> . 2022. 12:e062206 10.1136/bmjopen-2022-062206	Publication Type
Li, X, Hu, X, Fu, et al. Efficacy and Safety of One Anastomosis Gastric Bypass Versus Roux- en-Y Gastric Bypass for Obesity: a Meta-analysis and Systematic Review. <i>Obes Surg.</i> 2023. 33:611-622 10.1007/s11695-022-06401-5	Study Design
Liakopoulos, V, Franzen, S, Svensson, et al. Pros and cons of gastric bypass surgery in individuals with obesity and type 2 diabetes: nationwide, matched, observational cohort study. <i>BMJ Open</i> . 2019. 9:e023882 10.1136/bmjopen-2018-023882	Study Design
Liang, Z, Wu, Q, Chen, et al. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. <i>Diabetes Res Clin Pract</i> . 2013. 101:50-6 10.1016/j.diabres.2013.04.005	Mean BMI over 35; no stratification
Logue, J, Stewart, S, Munro, et al. SurgiCal Obesity Treatment Study (SCOTS): protocol for a national prospective cohort study of patients undergoing bariatric surgery in Scotland. <i>BMJ Open</i> . 2015. 5:e008106 10.1136/bmjopen-2015-008106	Comparator
Lombardo, Mauro, Franchi, Arianna, Padua, et al. Potential Nutritional Deficiencies in Obese Subjects 5 Years After Bariatric Surgery. <i>Bariatric Surgical Practice and Patient Care</i> . 2019. 14:125-130 10.1089/bari.2019.0009	Study Design
Longitudinal Assessment of Bariatric Surgery, Consortium, Flum, DR, Belle, et al. Perioperative safety in the longitudinal assessment of bariatric surgery. <i>N Engl J Med</i> . 2009. 361:445-54 10.1056/NEJMoa0901836	Population
Lopez, EH, Munie, S, Higgins, et al. Morbidity and Mortality after Bariatric Surgery in Adolescents Versus Adults. <i>J Surg Res</i> . 2020. 256:180-186 10.1016/j.jss.2020.06.032	Study Design
Lundberg, CE, Bjorck, L, Adiels, et al. Risk of Myocardial Infarction, Ischemic Stroke, and Mortality in Patients Who Undergo Gastric Bypass for Obesity Compared With Nonoperated Obese Patients and Population Controls. <i>Ann Surg.</i> 2023. 277:275-283 10.1097/SLA.000000000005054	Study Design
Ma, Q, Shambhu, S, Arterburn, et al. Interventions and Operations after Bariatric Surgery in a Health Plan Research Network Cohort from the PCORnet, the National Patient-Centered Clinical Research Network. <i>Obes Surg.</i> 2021. 31:3531-3540 10.1007/s11695-021-05417-7	Study Design

Study Citation	Reason for Exclusion
Mabeza, RM, Mao, Y, Maynard, et al. Bariatric surgery outcomes in geriatric patients: a contemporary, nationwide analysis. <i>Surg Obes Relat Dis.</i> 2022. 18:1005-1011 10.1016/j.soard.2022.04.014	Outcomes
Mabeza, RM, Richardson, S, Vadlakonda, et al. Bariatric surgery improves outcomes of hospitalizations for acute heart failure: a contemporary, nationwide analysis. <i>Surg Obes Relat Dis.</i> 2023. 19:681-687 10.1016/j.soard.2022.12.027	Outcomes
Maciejewski, ML, Livingston, EH, Smith, et al. Survival among high-risk patients after bariatric surgery. JAMA. 2011. 305:2419-26 10.1001/jama.2011.817	Study Design
Mackenzie, RM, Greenlaw, N, Ali, et al. SurgiCal Obesity Treatment Study (SCOTS): a prospective, observational cohort study on health and socioeconomic burden in treatment-seeking individuals with severe obesity in Scotland, UK. <i>BMJ Open.</i> 2021. 11:e046441 10.1136/bmjopen-2020-046441	Comparator
MacLaughlin, HL, Hall, WL, Patel, et al. Weight loss, adipokines, and quality of life after sleeve gastrectomy in obese patients with stages 3-4 CKD: a randomized controlled pilot study. Am J Kidney Dis. 2014. 64:660-3 10.1053/j.ajkd.2014.06.011	Publication Type
Maffeis, C, Olivieri, F, Valerio, et al. The treatment of obesity in children and adolescents: consensus position statement of the Italian society of pediatric endocrinology and diabetology, Italian Society of Pediatrics and Italian Society of Pediatric Surgery. <i>Ital J Pediatr.</i> 2023. 49:69 10.1186/s13052-023-01458-z	Outcomes
Mahawar, KK, Himpens, JM, Shikora, et al. The first consensus statement on revisional bariatric surgery using a modified Delphi approach. <i>Surg Endosc</i> . 2020. 34:1648-1657 10.1007/s00464-019-06937-1	Intervention
Mahawar, KK, Omar, I, Singhal, et al. The first modified Delphi consensus statement on sleeve gastrectomy. <i>Surg Endosc.</i> 2021. 35:7027-7033 10.1007/s00464-020-08216-w	Study Design
Maloney, SR, Dugan, N, Prasad, et al. Impact of age on morbidity and mortality following bariatric surgery. <i>Surg Endosc</i> . 2020. 34:4185-4192 10.1007/s00464-019-07201-2	Study Design
Markopoulos, G, Skroubis, G, Kalfarentzos, et al. Comparison of one anastomosis gastric bypass versus standard Roux-en-Y gastric bypass versus a variant of biliopancreatic diversion, in a case-matched, non-superobese population: 6 years of follow-up. <i>Prz</i> <i>Gastroenterol</i> . 2022. 17:152-161 10.5114/pg.2021.108453	Study Design
Marsk, R, Naslund, E, Freedman, et al. Bariatric surgery reduces mortality in Swedish men. Br J Surg. 2010. 97:877-83 10.1002/bjs.6985	Study Design
Mazzei, M, Zhao, H, Edwards, et al. The impact of chronic kidney disease on bariatric perioperative outcome: a MBSAQIP matched analysis. <i>Surg Obes Relat Dis</i> . 2019. 15:2075-2086 10.1016/j.soard.2019.07.013	Study Design
Mazzini, GS, Augustin, T, Noria, et al. ASMBS Position Statement on the Impact of Metabolic and Bariatric Surgery on Nonalcoholic Steatohepatitis. <i>Surg Obes Relat Dis.</i> 2022. 18:314-325 10.1016/j.soard.2021.11.015	Aim
McClelland, PH, Kabata, K, Gorecki, et al. Long-term weight loss after bariatric procedures for morbidly obese adolescents and youth: a single-institution analysis with up to 19-year follow-up. <i>Surg Endosc.</i> 2023. 37:2224-2238 10.1007/s00464-022-09434-0	Population
Messiah, SE, Xie, L, Atem, et al. Disparity Between United States Adolescent Class II and III Obesity Trends and Bariatric Surgery Utilization, 2015-2018. <i>Ann Surg.</i> 2022. 276:324-333 10.1097/SLA.000000000004493	Study Design
Michaelson, R, Murphy, DK, Gross, et al. LAP-BAND for lower BMI: 2-year results from the multicenter pivotal study. <i>Obesity (Silver Spring)</i> . 2013. 21:1148-58 10.1002/oby.20477	Comparator

Study Citation	Reason for Exclusion
Mierzwa, AS, Mocanu, V, Marcil, et al. Characterizing Timing of Postoperative Complications Following Elective Roux-en-Y gastric Bypass and Sleeve Gastrectomy. <i>Obes</i> <i>Surg.</i> 2021. 31:4492-4501 10.1007/s11695-021-05638-w	Study Design
Migliore, E, Brunani, A, Ciccone, et al. Effect of Bariatric Surgery on Survival and Hospitalizations in Patients with Severe Obesity. A Retrospective Cohort Study. <i>Nutrients</i> . 2021. 13:09 10.3390/nu13093150	Study Design
Mingrone, G, Greco, AV, Giancaterini, et al. Sex hormone-binding globulin levels and cardiovascular risk factors in morbidly obese subjects before and after weight reduction induced by diet or malabsorptive surgery. <i>Atherosclerosis</i> . 2002. 161:455-62 10.1016/s0021-9150(01)00667-0	Population
Mingrone, G, Panunzi, S, De Gaetano, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. <i>N Engl J Med</i> . 2012. 366:1577-85 10.1056/NEJMoa1200111	Population
Mingrone, G, Panunzi, S, De Gaetano, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open- label, single-centre, randomised controlled trial. <i>Lancet</i> . 2015. 386:964-73 10.1016/S0140- 6736(15)00075-6	Population
Mingrone, G, Panunzi, S, De Gaetano, et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. <i>Lancet</i> . 2021. 397:293-304 10.1016/S0140-6736(20)32649-0	Population
Mital, S, Nguyen, HV. Cost-effectiveness of procedure-less intragastric balloon therapy as substitute or complement to bariatric surgery. <i>PLoS One</i> . 2021. 16:e0254063 10.1371/journal.pone.0254063	Intervention
Mitsakos, AT, Irish, W, DeMaria, et al. Body mass index and risk of mortality in patients undergoing bariatric surgery. <i>Surg Endosc.</i> 2023. 37:1213-1221 10.1007/s00464-022-09651-7	Study Design
Mocanu, V, Dang, JT, Switzer, et al. Sex and Race Predict Adverse Outcomes Following Bariatric Surgery: an MBSAQIP Analysis. <i>Obes Surg.</i> 2020. 30:1093-1101 10.1007/s11695-020-04395-6	Study Design
Mocanu, V, Lai, K, Dang, et al. Evaluation of the Trends, Characteristics, and Outcomes in North American Youth Undergoing Elective Bariatric Surgery. <i>Obes Surg.</i> 2021. 31:2180-2187 10.1007/s11695-021-05248-6	Study Design
Mocanu, V, Verhoeff, K, Forbes, et al. Comparing Patient Selection and 30-day Outcomes Between Single Anastomosis Gastric Bypass and Roux-en-Y Gastric Bypass: a Retrospective Cohort Study of 47,384 Patients. <i>Obes Surg.</i> 2023. 33:188-194 10.1007/s11695-022-06353-w	Study Design
Mocanu, V, Verhoeff, K, Sinclair, et al. Atrial dysrhythmias are independent predictors of serious complications and 30-day mortality after elective bariatric surgery: a retrospective study of 731,981 patients. <i>Surg Obes Relat Dis.</i> 2023. 19:204-211 10.1016/j.soard.2022.08.021	Study Design
Mohamed, Tantawi Abdel Naeem, Abdel- Razik, Salah, Hassanien, et al. Laparoscopic Sleeve Gastrectomy Versus Laparoscopicmini-Gastric Bypass in Management of Morbid Obesity and its Comorbidities. <i>Indian Journal of Public Health Research & Development</i> . 2020. 11:2572-2576p 10.37506/v11/i2/2020/ijphrd/195237	Setting
Montgomery, JR, Waits, SA, Dimick, et al. Perioperative Risks of Sleeve Gastrectomy Versus Roux-en-Y Gastric Bypass Among Patients With Chronic Kidney Disease: A Review of the MBSAQIP Database. <i>Ann Surg.</i> 2021. 274:e328-e335 10.1097/SLA.000000000003627	Study Design

Study Citation	Reason for Exclusion
Montgomery, JR, Waits, SA, Dimick, et al. Risks of Bariatric Surgery Among Patients With End-stage Renal Disease. JAMA Surg. 2019. 154:1160-1162 10.1001/jamasurg.2019.2824	Publication Type
Moradi, M, Kabir, A, Khalili, et al. Type 2 diabetes remission after Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), and one anastomosis gastric bypass (OAGB): results of the longitudinal assessment of bariatric surgery study. <i>BMC Endocr Disord</i> . 2022. 22:260 10.1186/s12902-022-01171-8	Setting
Morey-Vargas, OL, Aminian, A, Steckner, et al. Perioperative management of diabetes in patients undergoing bariatric and metabolic surgery: a narrative review and the Cleveland Clinic practical recommendations. <i>Surg Obes Relat Dis.</i> 2022. 18:1087-1101 10.1016/j.soard.2022.05.008	Aim
Morino, M, Toppino, M, Forestieri, et al. Mortality after bariatric surgery: analysis of 13,871 morbidly obese patients from a national registry. <i>Ann Surg.</i> 2007. 246:1002-7; discussion 1007-9 10.1097/SLA.0b013e31815c404e	Study Design
Morton, JM, Ponce, J, Malangone-Monaco, et al. Association of Bariatric Surgery and National Medication Use. <i>J Am Coll Surg</i> . 2019. 228:171-179 10.1016/j.jamcollsurg.2018.10.021	Publication Date
Murtha, JA, Svoboda, DC, Liu, et al. Perioperative Cost Differences Between Laparoscopic Sleeve Gastrectomy and Laparoscopic Roux-en-Y Gastric Bypass: A Single Institutional Review. <i>J Laparoendosc Adv Surg Tech A</i> . 2021. 31:993-998 10.1089/lap.2021.0291	Population
Mustafa, A, Rizkallah, NNH, Samuel, et al. Laparoscopic Roux-En-Y gastric bypass versus one anastomosis (loop) gastric bypass for obesity: A prospective comparative study of weight loss and complications. <i>Ann Med Surg (Lond)</i> . 2020. 55:143-147 10.1016/j.amsu.2020.04.040	Study Design
Naeem, Z, Volteas, P, Khomutova, et al. Timing and management of bleeding after bariatric surgery. <i>Surg Endosc</i> . 2023. 37:7437-7443 10.1007/s00464-023-10201-y	Study Design
Nafiu, OO, Mpody, C, Michalsky, et al. Unequal rates of postoperative complications in relatively healthy bariatric surgical patients of white and black race. <i>Surg Obes Relat Dis</i> . 2021. 17:1249-1255 10.1016/j.soard.2021.04.011	Study Design
Nasser, H, Ivanics, T, Leonard-Murali, et al. Perioperative outcomes of laparoscopic Roux- en-Y gastric bypass and sleeve gastrectomy in super-obese and super-super-obese patients: a national database analysis. <i>Surg Obes Relat Dis.</i> 2019. 15:1696-1703 10.1016/j.soard.2019.07.026	Study Design
National Institute for Health and Care Excellence. Swallowable gastric balloon capsule for weight loss: interventional procedures guidance. <i>#journal#</i> . 2020. #volume#:#pages# #DOI#	Intervention
Nelson, DW, Blair, KS, Martin, et al. Analysis of obesity-related outcomes and bariatric failure rates with the duodenal switch vs gastric bypass for morbid obesity. <i>Arch Surg</i> . 2012. 147:847-54 10.1001/archsurg.2012.1654	Study Design
Ng, AP, Bakhtiyar, SS, Verma, et al. Cost Variation in Bariatric Surgery Across the United States. Am Surg. 2023. #volume#:31348231177937 10.1177/00031348231177937	Outcomes
Nguyen, NT, Masoomi, H, Laugenour, et al. Predictive factors of mortality in bariatric surgery: data from the Nationwide Inpatient Sample. <i>Surgery</i> . 2011. 150:347-51 10.1016/j.surg.2011.05.020	Study Design
Nilsson-Condori, E, Mattsson, K, Thurin-Kjellberg, et al. Outcomes of in-vitro fertilization after bariatric surgery: a national register-based case-control study. <i>Hum Reprod</i> . 2022. 37:2474-2481 10.1093/humrep/deac164	Population

Study Citation	Reason for Exclusion
Nimeri, A, Mohamed, A, El Hassan, et al. Are results of bariatric surgery different in the Middle East? Early experience of an international bariatric surgery program and an ACS NSQIP outcomes comparison. <i>J Am Coll Surg.</i> 2013. 216:1082-8 10.1016/j.jamcollsurg.2013.01.063	Study Design
Oliveira, SC, Neves, JS, Souteiro, et al. Impact of Bariatric Surgery on Long-term Cardiovascular Risk: Comparative Effectiveness of Different Surgical Procedures. <i>Obes</i> <i>Surg</i> . 2020. 30:673-680 10.1007/s11695-019-04237-0	Study Design
Olszanecka-Glinianowicz, M, Mazur, A, Chudek, et al. Obesity in Adults: Position Statement of Polish Association for the Study on Obesity, Polish Association of Endocrinology, Polish Association of Cardiodiabetology, Polish Psychiatric Association, Section of Metabolic and Bariatric Surgery of the Association of Polish Surgeons, and the College of Family Physicians in Poland. <i>Nutrients</i> . 2023. 15:28 10.3390/nu15071641	Outcomes
O'Neill, SM, Needleman, B, Narula, et al. An analysis of readmission trends by urgency and race/ethnicity in the MBSAQIP registry, 2015-2018. <i>Surg Obes Relat Dis</i> . 2022. 18:11-20 10.1016/j.soard.2021.10.018	Study Design
Onyimadu, O, Violato, M, Astbury, et al. A systematic review of economic evaluations of interventions targeting childhood overweight and obesity. <i>Obes Rev.</i> 2023. 24:e13597 10.1111/obr.13597	Study Design
Ouni, A, Spaulding, A, Khosla, et al. Outcomes and Trends of Endoscopic Bariatric Therapies (EBT) Among Minority Populations. <i>Obes Surg.</i> 2023. 33:513-522 10.1007/s11695-022-06399-w	Study Design
Padwal, RS, Majumdar, SR, Klarenbach, et al. Health status, quality of life, and satisfaction of patients awaiting multidisciplinary bariatric care. <i>BMC Health Serv Res.</i> 2012. 12:139 10.1186/1472-6963-12-139	Population
Padwal, RS, Majumdar, SR, Klarenbach, et al. The Alberta population-based prospective evaluation of the quality of life outcomes and economic impact of bariatric surgery (APPLES) study: background, design and rationale. <i>BMC Health Serv Res.</i> 2010. 10:284 10.1186/1472-6963-10-284	Population
Padwal, RS, Rueda-Clausen, CF, Sharma, et al. Weight loss and outcomes in wait-listed, medically managed, and surgically treated patients enrolled in a population-based Bariatric program: prospective cohort study. <i>Med Care.</i> 2014. 52:208-15 10.1097/MLR.0000000000000000000	Population
Paluszkiewicz, R, Kalinowski, P, Wroblewski, et al. Prospective randomized clinical trial of laparoscopic sleeve gastrectomy versus open Roux-en-Y gastric bypass for the management of patients with morbid obesity. <i>Wideochir Inne Tech Maloinwazyjne</i> . 2012. 7:225-32 10.5114/wiitm.2012.32384	Population
Papasavas, P, Seip, RL, Stone, et al. Robot-assisted sleeve gastrectomy and Roux-en-y gastric bypass: results from the metabolic and bariatric surgery accreditation and quality improvement program data registry. <i>Surg Obes Relat Dis.</i> 2019. 15:1281-1290 10.1016/j.soard.2019.04.003	Study Design
Parikh, M, Chung, M, Sheth, et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. <i>Ann Surg.</i> 2014. 260:617-22; discussion 622-4 10.1097/SLA.00000000000919	Population
Park, DJ, An, S, Park, et al. Bariatric surgery versus medical therapy in Korean obese patients: prospective multicenter nonrandomized controlled trial (KOBESS trial). <i>Ann Surg Treat Res.</i> 2021. 101:197-205 10.4174/astr.2021.101.4.197	Population

Study Citation	Reason for Exclusion
Pastrana, M, Stoltzfus, J, Claros, et al. Outcomes of robotic bariatric surgery in super-obese patients: first report based on MBSAQIP database. <i>Surg Obes Relat Dis.</i> 2020. 16:71-79 10.1016/j.soard.2019.10.009	Study Design
Perez Martinez, P, Gomez-Huelgas, R, Casado Escribano, et al. Approach to obesity in the elderly population: a consensus report from the Diabetes, Obesity and Nutrition Working Group of SEMI (Spanish Society of Internal Medicine). <i>Rev Clin Esp</i> (<i>Barc</i>). 2023. 223:493-498 10.1016/j.rceng.2023.07.005	Publication Type
Poelemeijer, YQM, Liem, RSL, Vage, et al. Gastric Bypass Versus Sleeve Gastrectomy: Patient Selection and Short-term Outcome of 47,101 Primary Operations From the Swedish, Norwegian, and Dutch National Quality Registries. <i>Ann Surg.</i> 2020. 272:326-333 10.1097/SLA.000000000003279	Study Design
Poelemeijer, YQM, Liem, RSL, Vage, et al. Perioperative Outcomes of Primary Bariatric Surgery in North-Western Europe: a Pooled Multinational Registry Analysis. <i>Obes Surg.</i> 2018. 28:3916-3922 10.1007/s11695-018-3408-4	Study Design
Poliakin, L, Roberts, A, Thompson, et al. Outcomes of adolescents compared with young adults after bariatric surgery: an analysis of 227,671 patients using the MBSAQIP data registry. <i>Surg Obes Relat Dis.</i> 2020. 16:1463-1473 10.1016/j.soard.2020.05.028	Study Design
Pontiroli, AE, Zakaria, AS, Fanchini, et al. A 23-year study of mortality and development of co-morbidities in patients with obesity undergoing bariatric surgery (laparoscopic gastric banding) in comparison with medical treatment of obesity. <i>Cardiovasc Diabetol.</i> 2018. 17:161 10.1186/s12933-018-0801-1	Study Design
Pontiroli, AE, Zakaria, AS, Mantegazza, et al. Long-term mortality and incidence of cardiovascular diseases and type 2 diabetes in diabetic and nondiabetic obese patients undergoing gastric banding: a controlled study. <i>Cardiovasc Diabetol</i> . 2016. 15:39 10.1186/s12933-016-0347-z	Study Design
Pouchucq, C, Menahem, B, Le Roux, et al. Are Geographical Health Accessibility and Socioeconomic Deprivation Associated with Outcomes Following Bariatric Surgery? A Retrospective Study in a High-Volume Referral Bariatric Surgical Center. <i>Obes Surg.</i> 2022. 32:1486-1497 10.1007/s11695-022-05937-w	Population
Poulose, BK, Griffin, MR, Moore, et al. Risk factors for post-operative mortality in bariatric surgery. <i>J Surg Res.</i> 2005. 127:1-7 10.1016/j.jss.2004.12.017	Study Design
Poulose, BK, Griffin, MR, Zhu, et al. National analysis of adverse patient safety for events in bariatric surgery. <i>Am Surg.</i> 2005. 71:406-13 10.1177/000313480507100508	Study Design
Preiss Contreras, Y, Ramos Salas, X, Avila Oliver, et al. Obesity in adults: Clinical practice guideline adapted for Chile. <i>Medwave</i> . 2022. 22:e2649 10.5867/medwave.2022.10.2649	Publication Type
Premkumar, A, Lebrun, DG, Sidharthan, et al. Bariatric Surgery Prior to Total Hip Arthroplasty Is Cost-Effective in Morbidly Obese Patients. <i>J Arthroplasty</i> . 2020. 35:1766- 1775 e3 10.1016/j.arth.2020.02.044	Population
Pujol Rafols, J, Al Abbas, Al, Devriendt, et al. Roux-en-Y gastric bypass, sleeve gastrectomy, or one anastomosis gastric bypass as rescue therapy after failed adjustable gastric banding: a multicenter comparative study. <i>Surg Obes Relat Dis.</i> 2018. 14:1659-1666 10.1016/j.soard.2018.08.005	Aim
Purich, K, Mocanu, V, Joy, et al. The Impact of Metabolic and Bariatric Surgeon Status on Outcomes After Bariatric Surgery: a Retrospective Cohort Study Using the MBSAQIP Database. <i>Obes Surg.</i> 2022. 32:1944-1953 10.1007/s11695-022-06028-6	Aim
Qin, C, Luo, B, Aggarwal, et al. Advanced age as an independent predictor of perioperative risk after laparoscopic sleeve gastrectomy (LSG). <i>Obes Surg.</i> 2015. 25:406-12 10.1007/s11695-014-1462-0	Study Design

Study Citation	Reason for Exclusion
Qureshi, FG, Wiegand, JG, O'Neill, et al. Longitudinal Outcomes in Adolescents After Referral for Metabolic and Bariatric Surgery. <i>J Pediatr Gastroenterol Nutr</i> . 2021. 73:677-683 10.1097/MPG.000000000003290	Comparator
Rajbhandari-Thapa, J, Ingels, JB, Chung, et al. In-patient obesity diagnosis, use of surgical treatment and associated costs by payer type in the United States: Analysis of the National Inpatient Sample, 2011 through 2014. <i>Clin Obes</i> . 2020. 10:e12385 10.1111/cob.12385	Population
Ramos, AC, Chevallier, JM, Mahawar, et al. IFSO (International Federation for Surgery of Obesity and Metabolic Disorders) Consensus Conference Statement on One-Anastomosis Gastric Bypass (OAGB-MGB): Results of a Modified Delphi Study. <i>Obes Surg.</i> 2020. 30:1625-1634 10.1007/s11695-020-04519-y	Study Design
Reges, O, Greenland, P, Dicker, et al. Association of Bariatric Surgery Using Laparoscopic Banding, Roux-en-Y Gastric Bypass, or Laparoscopic Sleeve Gastrectomy vs Usual Care Obesity Management With All-Cause Mortality. JAMA. 2018. 319:279-290 10.1001/jama.2017.20513	Study Design
Rives-Lange, C, Poghosyan, T, Rassy, et al. The future of bariatric surgery research: A worldwide mapping of registered trials. <i>Obes Rev.</i> 2022. 23:e13433 10.1111/obr.13433	Study Design
Rives-Lange, C, Rassy, N, Carette, et al. Seventy years of bariatric surgery: A systematic mapping review of randomized controlled trials. <i>Obes Rev.</i> 2022. 23:e13420 10.1111/obr.13420	Study Design
Robert, M, Poghosyan, T, Delaunay, et al. Prospective multicentre randomised trial comparing the efficacy and safety of single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) versus Roux-en-Y gastric bypass (RYGB): SADISLEEVE study protocol. <i>BMJ Open</i> . 2020. 10:e037576 10.1136/bmjopen-2020-037576	Publication Type
Robinson, JN, Ayuso, SA, Thompson, et al. African American Patients Experience Worse Outcomes than Hispanic Patients Following Bariatric Surgery: an Analysis Using the MBSAQIP Data Registry. <i>Obes Surg.</i> 2023. 33:57-67 10.1007/s11695-022-06333-0	Study Design
Rogers, CA, Welbourn, R, Byrne, et al. The By-Band study: gastric bypass or adjustable gastric band surgery to treat morbid obesity: study protocol for a multi-centre randomised controlled trial with an internal pilot phase. <i>Trials.</i> 2014. 15:53 10.1186/1745-6215-15-53	Population
Romeo, S, Maglio, C, Burza, et al. Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. <i>Diabetes Care</i> . 2012. 35:2613-7 10.2337/dc12-0193	Population
Ruzieh, M, Rogers, AM, Banerjee, et al. Safety of bariatric surgery in patients with coronary artery disease. <i>Surg Obes Relat Dis.</i> 2020. 16:2031-2037 10.1016/j.soard.2020.07.015	Study Design
Saleh, F, Kim, SJ, Okrainec, et al. Bariatric surgery in patients with reduced kidney function: an analysis of short-term outcomes. <i>Surg Obes Relat Dis.</i> 2015. 11:828-35 10.1016/j.soard.2014.11.012	Study Design
Schauer, PR, Bhatt, DL, Kirwan, et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes - 5-Year Outcomes. <i>N Engl J Med</i> . 2017. 376:641-651 10.1056/NEJMoa1600869	Mean BMI over 35; no stratification
Schauer, PR, Bhatt, DL, Kirwan, et al. Bariatric surgery versus intensive medical therapy for diabetes3-year outcomes. <i>N Engl J Med</i> . 2014. 370:2002-13 10.1056/NEJMoa1401329	Mean BMI over 35; no stratification
Schauer, PR, Kashyap, SR, Wolski, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. <i>N Engl J Med.</i> 2012. 366:1567-76 10.1056/NEJMoa1200225	Mean BMI over 35; no stratification

Study Citation	Reason for Exclusion
Schiavon, CA, Bersch-Ferreira, AC, Santucci, et al. Effects of Bariatric Surgery in Obese Patients With Hypertension: The GATEWAY Randomized Trial (Gastric Bypass to Treat Obese Patients With Steady Hypertension). <i>Circulation</i> . 2018. 137:1132-1142 10.1161/CIRCULATIONAHA.117.032130	Setting
Schiavon, CA, Ikeoka, D, Santucci, et al. Effects of Bariatric Surgery Versus Medical Therapy on the 24-Hour Ambulatory Blood Pressure and the Prevalence of Resistant Hypertension. <i>Hypertension</i> . 2019. 73:571-577 10.1161/HYPERTENSIONAHA.118.12290	Setting
Schiavon, CA, Ikeoka, DT, de Sousa, et al. Effects of gastric bypass surgery in patients with hypertension: rationale and design for a randomised controlled trial (GATEWAY study). <i>BMJ Open.</i> 2014. 4:e005702 10.1136/bmjopen-2014-005702	Setting
Seo, MH, Lee, WY, Kim, et al. 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. <i>J Obes Metab Syndr</i> . 2019. 28:40-45 10.7570/jomes.2019.28.1.40	Publication Date
Seymour, KA, Turner, MC, Kuchibhatla, et al. Gastroesophageal Reflux Predicts Utilization of Dehydration Treatments After Bariatric Surgery. <i>Obes Surg.</i> 2021. 31:838-846 10.1007/s11695-020-05043-9	Aim
Shah, A, Liang, NE, Bruzoni, et al. Outcomes after metabolic and bariatric surgery in preteens versus teens using the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database and center-specific data. <i>Obesity (Silver Spring)</i> . 2023. 06:06 10.1002/oby.23908	Study Design
Shah, AS, Helmrath, MA, Inge, et al. Study protocol: a prospective controlled clinical trial to assess surgical or medical treatment for paediatric type 2 diabetes (ST(2)OMP). <i>BMJ Open</i> . 2021. 11:e047766 10.1136/bmjopen-2020-047766	Publication Type
Sharaiha, RZ, Shikora, S, White, et al. Summarizing Consensus Guidelines on Obesity Management: A Joint, Multidisciplinary Venture of the International Federation for the Surgery of Obesity & Metabolic Disorders (IFSO) and World Gastroenterology Organisation (WGO). J Clin Gastroenterol. 2023. 57:967-976 10.1097/MCG.000000000001916	Publication Type
Shawe, J, Ceulemans, D, Akhter, et al. Pregnancy after bariatric surgery: Consensus recommendations for periconception, antenatal and postnatal care. <i>Obes Rev.</i> 2019. 20:1507-1522 10.1111/obr.12927	Aim
Sheka, AC, Kizy, S, Wirth, et al. Racial disparities in perioperative outcomes after bariatric surgery. <i>Surg Obes Relat Dis.</i> 2019. 15:786-793 10.1016/j.soard.2018.12.021	Study Design
Sherf-Dagan, S, Sinai, T, Goldenshluger, et al. Nutritional Assessment and Preparation for Adult Bariatric Surgery Candidates: Clinical Practice. <i>Adv Nutr.</i> 2021. 12:1020-1031 10.1093/advances/nmaa121	Study Design
Siegel, KR, Ali, MK, Zhou, et al. Cost-effectiveness of Interventions to Manage Diabetes: Has the Evidence Changed Since 2008?. <i>Diabetes Care.</i> 2020. 43:1557-1592 10.2337/dci20-0017	Study Design
Singhal, R, Cardoso, VR, Wiggins, et al. 30-day morbidity and mortality of sleeve gastrectomy, Roux-en-Y gastric bypass and one anastomosis gastric bypass: a propensity score-matched analysis of the GENEVA data. <i>Int J Obes (Lond).</i> 2022. 46:750-757 10.1038/s41366-021-01048-1	Study Design
Sjostrom, CD, Lissner, L, Sjostrom, et al. Relationships between changes in body composition and changes in cardiovascular risk factors: the SOS Intervention Study. Swedish Obese Subjects. <i>Obes Res.</i> 1997. 5:519-30 10.1002/j.1550-8528.1997.tb00572.x	Population

Study Citation	Reason for Exclusion
Sjostrom, CD, Lissner, L, Wedel, et al. Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study. <i>Obes Res.</i> 1999. 7:477-84 10.1002/j.1550-8528.1999.tb00436.x	Population
Sjostrom, CD, Lystig, T, Lindroos, et al. Impact of weight change, secular trends and ageing on cardiovascular risk factors: 10-year experiences from the SOS study. <i>Int J Obes (Lond)</i> . 2011. 35:1413-20 10.1038/ijo.2010.282	Population
Sjostrom, L, Larsson, B, Backman, et al. Swedish obese subjects (SOS). Recruitment for an intervention study and a selected description of the obese state. <i>Int J Obes Relat Metab Disord</i> . 1992. 16:465-79 #DOI#	Population
Sjostrom, L, Narbro, K, Sjostrom, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. <i>N Engl J Med</i> . 2007. 357:741-52 10.1056/NEJMoa066254	Population
Sjostrom, L, Peltonen, M, Jacobson, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014. 311:2297-304 10.1001/jama.2014.5988	Population
Sjostrom, L, Peltonen, M, Jacobson, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012. 307:56-65 10.1001/jama.2011.1914	Population
Sjostrom, L. Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. <i>J Intern Med.</i> 2013. 273:219-34 10.1111/joim.12012	Publication Type
Smith, FJ, Holman, CD, Moorin, et al. Incidence of bariatric surgery and postoperative outcomes: a population-based analysis in Western Australia. <i>Med J Aust</i> . 2008. 189:198-202 10.5694/j.1326-5377.2008.tb01981.x	Study Design
Smith, VA, Arterburn, DE, Berkowitz, et al. Association Between Bariatric Surgery and Long-term Health Care Expenditures Among Veterans With Severe Obesity. JAMA Surg. 2019. 154:e193732 10.1001/jamasurg.2019.3732	Population
Sole, T, Januel, L, Denneval, et al. Time impact on the antidiabetic effects of key bariatric surgeries: a network meta-analysis of randomized controlled trials with meta-regression. <i>Surg Obes Relat Dis.</i> 2022. 18:832-845 10.1016/j.soard.2022.02.003	Study Design
Soong, TC, Lee, MH, Lee, et al. Long-Term Efficacy of Bariatric Surgery for the Treatment of Super-Obesity: Comparison of SG, RYGB, and OAGB. <i>Obes Surg.</i> 2021. 31:3391-3399 10.1007/s11695-021-05464-0	Study Design
Spaniolas, K, Kasten, KR, Sippey, et al. Pulmonary embolism and gastrointestinal leak following bariatric surgery: when do major complications occur?. <i>Surg Obes Relat Dis.</i> 2016. 12:379-83 10.1016/j.soard.2015.05.003	Population
Steffen, R, Horber, FF. Surgical Prevention of Weight Regain and Type 2 Diabetes Recurrence in 3 Different Bariatric Operations and Their Differential Long-Term Outcome: An 8-Year Prospective Observational Study. <i>Ann Surg Open</i> . 2021. 2:e053 10.1097/AS9.000000000000053	Population
Steinberger, AE, Youngwirth, LM, Kim, et al. Adolescent Bariatric Surgery: Racial Disparities in 30-Day Outcomes Using the MBSAQIP from 2015 to 2018. <i>Obes Surg.</i> 2021. 31:3776-3785 10.1007/s11695-021-05500-z	Study Design
Stenberg, E, Cao, Y, Jernberg, et al. Major cardiovascular events after metabolic surgery in patients with previous heart disease with or without type 2 diabetes: a nationwide cohort study. <i>Surg Obes Relat Dis.</i> 2022. 18:935-942 10.1016/j.soard.2022.04.005	Study Design
Stenberg, E, Cao, Y, Jernberg, et al. Safety of bariatric surgery in patients with previous acute coronary events or heart failure: nationwide cohort study. <i>BJS Open.</i> 2022. 6:02 10.1093/bjsopen/zrac083	Study Design

Study Citation	Reason for Exclusion
Stenberg, E, Cao, Y, Marsk, et al. Association between metabolic surgery and cardiovascular outcome in patients with hypertension: A nationwide matched cohort study. <i>PLoS Med.</i> 2020. 17:e1003307 10.1371/journal.pmed.1003307	Study Design
Stenberg, E, Szabo, E, Agren, et al. Early complications after laparoscopic gastric bypass surgery: results from the Scandinavian Obesity Surgery Registry. <i>Ann Surg.</i> 2014. 260:1040-7 10.1097/SLA.000000000000431	Study Design
Styne, DM, Arslanian, SA, Connor, et al. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. <i>J Clin Endocrinol Metab.</i> 2017. 102:709-757 10.1210/jc.2016-2573	Publication Date
Sudan, R, Maciejewski, ML, Wilk, et al. Comparative effectiveness of primary bariatric operations in the United States. <i>Surg Obes Relat Dis.</i> 2017. 13:826-834 10.1016/j.soard.2017.01.021	Study Design
Sullivan, Shelby, Swain, James M, Woodman, et al. The Obalon swallowable 6-month balloon system is more effective than moderate intensity lifestyle therapy alone: results from a 6-month randomized sham controlled trial. <i>Gastroenterology</i> . 2016. 150:S1267 #DOI#	Publication Type
Sumithran, P, Roberts, L, Caterson, et al. Incidence of adverse mental health outcomes after sleeve gastrectomy compared with gastric bypass and restrictive bariatric procedures: a retrospective cohort study. <i>Obesity (Silver Spring)</i> . 2023. 31:1913-1923 10.1002/oby.23757	Study Design
Sun, S, Borisenko, O, Spelman, et al. Patient Characteristics, Procedural and Safety Outcomes of Bariatric Surgery in England: a Retrospective Cohort Study-2006-2012. <i>Obes</i> <i>Surg.</i> 2018. 28:1098-1108 10.1007/s11695-017-2978-x	Study Design
Sundaresan, N, Roberts, A, Thompson, et al. Examining the Hispanic paradox in bariatric surgery. <i>Surg Obes Relat Dis.</i> 2020. 16:1392-1400 10.1016/j.soard.2020.06.009	Study Design
Sundbom, M, Karlson, BM. Low mortality in bariatric surgery 1995 through 2005 in Sweden, in spite of a shift to more complex procedures. <i>Obes Surg.</i> 2009. 19:1697-701 10.1007/s11695-008-9684-7	Study Design
Sundbom, M, Naslund, E, Vidarsson, et al. Low overall mortality during 10 years of bariatric surgery: nationwide study on 63,469 procedures from the Scandinavian Obesity Registry. <i>Surg Obes Relat Dis</i> . 2020. 16:65-70 10.1016/j.soard.2019.10.012	Study Design
Syn, NL, Cummings, DE, Wang, et al. Association of metabolic-bariatric surgery with long- term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants. <i>Lancet</i> . 2021. 397:1830-1841 10.1016/S0140-6736(21)00591-2	Study Design
Takemoto, E, Andrea, SB, Wolfe, et al. Weighing in on Bariatric Surgery: Effectiveness Among Medicaid Beneficiaries-Limited Evidence and Future Research Needs. <i>Obesity</i> <i>(Silver Spring)</i> . 2018. 26:463-473 10.1002/oby.22059	Study Design
Tao, W, Plecka-Ostlund, M, Lu, et al. Causes and risk factors for mortality within 1 year after obesity surgery in a population-based cohort study. <i>Surg Obes Relat Dis.</i> 2015. 11:399-405 10.1016/j.soard.2014.08.015	Study Design
Taverne, SB, Bonouvrie, DS, Uittenbogaart, et al. Guidelines Regarding Management of a Surgical Emergency During Pregnancy After Bariatric Surgery. <i>Obes Surg.</i> 2020. 30:1126-1127 10.1007/s11695-019-04325-1	Publication Type
Telem, DA, Talamini, M, Shroyer, et al. Long-term mortality rates (>8-year) improve as compared to the general and obese population following bariatric surgery. <i>Surg Endosc</i> . 2015. 29:529-36 10.1007/s00464-014-3714-4	Study Design

Study Citation	Reason for Exclusion
Thaher, O, Hukauf, M, Stroh, et al. The impact of sleeve gastrectomy and gastric binding on weight loss and remission on comorbidities: a national registry-based study. <i>Minerva Surg.</i> 2022. 77:455-467 10.23736/S2724-5691.21.09250-9	Study Design
Thaher, O, Tallak, W, Hukauf, et al. Outcome of Sleeve Gastrectomy Versus Roux-en-Y Gastric Bypass for Patients with Super Obesity (Body Mass Index > 50 kg/m(2)). <i>Obes Surg.</i> 2022. 32:1546-1555 10.1007/s11695-022-05965-6	Population
Thomas, AJ, Bainbridge, HA, Schone, et al. Recruitment and screening for a randomized trial investigating Roux-en-Y gastric bypass versus intensive medical management for treatment of type 2 diabetes. <i>Obes Surg.</i> 2014. 24:1875-80 10.1007/s11695-014-1280-4	Population
Toh, S, Rasmussen-Torvik, LJ, Harmata, et al. The National Patient-Centered Clinical Research Network (PCORnet) Bariatric Study Cohort: Rationale, Methods, and Baseline Characteristics. JMIR Res Protoc. 2017. 6:e222 10.2196/resprot.8323	Study Design
Toolabi, K, Golzarand, M, Farid, et al. Laparoscopic Roux-en-Y Gastric Bypass and Laparoscopic Sleeve Gastrectomy in Terms of Efficacy and Safety: a Comparative Study During 11-Year Experience. <i>Obes Surg.</i> 2021. 31:2489-2496 10.1007/s11695-021-05313- 0	Setting
Torbahn, G, Brauchmann, J, Axon, et al. Surgery for the treatment of obesity in children and adolescents. <i>Cochrane Database Syst Rev.</i> 2022. 9:CD011740 10.1002/14651858.CD011740.pub2	Study Design
Trastulli, S, Desiderio, J, Grandone, et al. Rationale and design of the Early Sleeve gastrectomy In New Onset Diabetic Obese Patients (ESINODOP) trial. <i>Endocrine</i> . 2017. 55:748-753 10.1007/s12020-016-0996-4	Publication Type
Valera, RJ, Botero-Fonnegra, C, Sarmiento-Cobos, et al. Trends in early postoperative major adverse cardiovascular and cerebrovascular events associated with bariatric surgery: an analysis of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program data registry. <i>Surg Obes Relat Dis.</i> 2021. 17:2033-2038 10.1016/j.soard.2021.08.023	Study Design
Valera, RJ, Sarmiento-Cobos, M, Montorfano, et al. Predictors and outcomes of acute kidney injury after bariatric surgery: analysis of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program data registry. <i>Surg Obes Relat Dis.</i> 2023. 19:1302-1307 10.1016/j.soard.2023.05.016	Study Design
van de Pas, KGH, Esfandiyari Noushi, A, Janssen, et al. A Population-Based Cohort Study on Efficacy and Safety of Bariatric Surgery in Young Adults Versus Adults. <i>Obes Surg.</i> 2023. 33:2475-2484 10.1007/s11695-023-06673-5	Study Design
van Rijswijk, A, van Olst, N, Meijnikman, et al. The effects of laparoscopic Roux-en-Y gastric bypass and one-anastomosis gastric bypass on glycemic control and remission of type 2 diabetes mellitus: study protocol for a multi-center randomized controlled trial (the DIABAR-trial). <i>Trials</i> . 2022. 23:900 10.1186/s13063-022-06762-3	Publication Type
van Veldhuisen, SL, Gorter, TM, van Woerden, et al. Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. <i>Eur Heart J</i> . 2022. 43:1955-1969 10.1093/eurheartj/ehac071	Study Design
Verhoeff, K, Mocanu, V, Dang, et al. Characterization and Risk Factors for Early Biliary Complications Following Elective Bariatric Surgery: an Mbsaqip Analysis. <i>Obes Surg.</i> 2022. 32:1170-1177 10.1007/s11695-022-05914-3	Study Design
Verhoeff, K, Mocanu, V, Dang, et al. Five Years of MBSAQIP Data: Characteristics, Outcomes, and Trends for Patients with Super-obesity. <i>Obes Surg.</i> 2022. 32:406-415 10.1007/s11695-021-05786-z	Study Design

Study Citation	Reason for Exclusion
Verhoeff, K, Mocanu, V, Jogiat, et al. Patient Selection and 30-Day Outcomes of SADI-S Compared to RYGB: a Retrospective Cohort Study of 47,375 Patients. <i>Obes Surg.</i> 2022. 32:1-8 10.1007/s11695-022-06068-y	Study Design
Verrastro, O, Panunzi, S, Castagneto-Gissey, et al. Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES): a multicentre, open-label, randomised trial. <i>Lancet</i> . 2023. 401:1786-1797 10.1016/S0140-6736(23)00634-7	Population
Villamere, J, Gebhart, A, Vu, et al. Body mass index is predictive of higher in-hospital mortality in patients undergoing laparoscopic gastric bypass but not laparoscopic sleeve gastrectomy or gastric banding. <i>Am Surg.</i> 2014. 80:1039-43 10.1177/000313481408001028	Study Design
Viner, RM, Kinra, S, Christie, et al. Improving the assessment and management of obesity in UK children and adolescents: the PROMISE research programme including a RCT. <i>NIHR Journals Library. Programme Grants for Applied Research2020</i> . 2020. 03:03 10.3310/pgfar08030	Study Design
Wadden, TA, Chao, AM, Bahnson, et al. End-of-Trial Health Outcomes in Look AHEAD Participants who Elected to have Bariatric Surgery. <i>Obesity (Silver Spring)</i> . 2019. 27:581- 590 10.1002/oby.22411	Intervention
Walker, E, Elman, M, Takemoto, et al. Bariatric Surgery Among Medicare Subgroups: Short- and Long-Term Outcomes. <i>Obesity (Silver Spring)</i> . 2019. 27:1820-1827 10.1002/oby.22613	Population
Wallhuss, A, Ottosson, J, Cao, et al. Outcomes of bariatric surgery for patients with prevalent inflammatory bowel disease: A nationwide registry-based cohort study. <i>Surgery</i> . 2023. 174:144-151 10.1016/j.surg.2023.04.059	Population
Warkentin, LM, Majumdar, SR, Johnson, et al. Weight loss required by the severely obese to achieve clinically important differences in health-related quality of life: two-year prospective cohort study. <i>BMC Med.</i> 2014. 12:175 10.1186/s12916-014-0175-5	Population
Weitzner, ZN, Phan, J, Begashaw, et al. Endoscopic therapies for patients with obesity: a systematic review and meta-analysis. <i>Surg Endosc</i> . 2023. 37:8166-8177 10.1007/s00464-023-10390-6	Study Design
Welbourn, R, Hollyman, M, Kinsman, et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry Report 2018. <i>Obes Surg.</i> 2019. 29:782-795 10.1007/s11695-018-3593-1	Study Design
Welsh, LK, Luhrs, AR, Davalos, et al. Racial Disparities in Bariatric Surgery Complications and Mortality Using the MBSAQIP Data Registry. <i>Obes Surg.</i> 2020. 30:3099-3110 10.1007/s11695-020-04657-3	Study Design
Wentworth, JM, Burton, P, Laurie, et al. Five-Year Outcomes of a Randomized Trial of Gastric Band Surgery in Overweight but Not Obese People With Type 2 Diabetes. <i>Diabetes Care</i> . 2017. 40:e44-e45 10.2337/dc16-2149	Publication Type
Wesley Vosburg, R, Druar, NM, Kim, et al. Factors Associated with Increased Risk for Pulmonary Embolism After Metabolic and Bariatric Surgery: Analysis of Nearly One Million Patients. <i>Obes Surg.</i> 2022. 32:2433-2437 10.1007/s11695-022-06102-z	Study Design
White, GE, Courcoulas, AP, King, et al. Mortality after bariatric surgery: findings from a 7- year multicenter cohort study. <i>Surg Obes Relat Dis.</i> 2019. 15:1755-1765 10.1016/j.soard.2019.08.015	Comparator
Winckelmann, LA, Gribsholt, SB, Madsen, et al. Roux-en-Y gastric bypass versus sleeve gastrectomy: nationwide data from the Danish quality registry for treatment of severe obesity. <i>Surg Obes Relat Dis.</i> 2022. 18:511-519 10.1016/j.soard.2021.12.015	Study Design

Study Citation	Reason for Exclusion
Wood, MH, Carlin, AM, Ghaferi, et al. Association of Race With Bariatric Surgery Outcomes. JAMA Surg. 2019. 154:e190029 10.1001/jamasurg.2019.0029	Study Design
Wu, Z, Gao, Z, Qiao, et al. Long-Term Results of Bariatric Surgery in Adolescents with at Least 5 Years of Follow-up: a Systematic Review and Meta-Analysis. <i>Obes Surg</i> . 2023. 33:1730-1745 10.1007/s11695-023-06593-4	Study Design
Wysocki, M, Malczak, P, Wierdak, et al. Utility of Inflammatory Markers in Detection of Perioperative Morbidity After Laparoscopic Sleeve Gastrectomy, Laparoscopic Roux-en-Y Gastric Bypass, and One-Anastomosis Gastric Bypass-Multicenter Study. <i>Obes Surg.</i> 2020. 30:2971-2979 10.1007/s11695-020-04636-8	Aim
Xia, Q, Campbell, JA, Ahmad, et al. Bariatric surgery is a cost-saving treatment for obesity- A comprehensive meta-analysis and updated systematic review of health economic evaluations of bariatric surgery. <i>Obes Rev.</i> 2020. 21:e12932 10.1111/obr.12932	Study Design
Xiang, AH, Trigo, E, Martinez, et al. Impact of Gastric Banding Versus Metformin on beta- Cell Function in Adults With Impaired Glucose Tolerance or Mild Type 2 Diabetes. <i>Diabetes</i> <i>Care</i> . 2018. 41:2544-2551 10.2337/dc18-1662	Population
Yang, AZ, Jung, JJ, Hutter, et al. Black-versus-White racial disparities in 30-day outcomes at Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program- accredited centers: a needed quality indicator. <i>Surg Obes Relat Dis.</i> 2023. 19:273-281 10.1016/j.soard.2022.12.031	Study Design
Yang, W, Zhan, M, Li, et al. Major Adverse Cardiovascular Events Among Obese Patients with Diabetes After Metabolic and Bariatric Surgery: a Meta-analysis of Matched Cohort and Prospective Controlled Studies with 122,361 Participates. <i>Obes Surg.</i> 2023. 33:2098-2107 10.1007/s11695-023-06634-y	Study Design
Yuan, H, Medina-Inojosa, JR, Lopez-Jimenez, et al. The Long-Term Impact of Bariatric Surgery on Development of Atrial Fibrillation and Cardiovascular Events in Obese Patients: An Historical Cohort Study. <i>Front Cardiovasc Med</i> . 2021. 8:647118 10.3389/fcvm.2021.647118	Study Design
Zafar, SN, Shockcor, N, Prasad, et al. Laparoscopic Sleeve Gastrectomy has a Lower Risk of Postoperative Bleeding Than Laparoscopic Roux-en-Y Gastric Bypass. <i>Surg Laparosc Endosc Percutan Tech</i> . 2019. 29:53-57 10.1097/SLE.000000000000598	Study Design